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The explosive growth of the sports fandom inspires much research on manifold sports video analyses and
applications. The audience, sports fans, and even professionals require more than traditional highlight
extraction or semantic summarization. Computer-assisted sports tactic analysis is inevitably in urging
demand. Recognizing tactic patterns in broadcast basketball video is a challenging task due to its compli-
cated scenes, varied camera motion, frequently occlusions between players, etc. In basketball games, the
action screen means that an offensive player perform a blocking move via standing beside or behind a
defender for freeing a teammate to shoot, to receive a pass, or to drive in for scoring. In this paper, we
propose a screen-strategy recognition system capable of detecting and classifying screen patterns in
basketball video. The proposed system automatically detects the court lines for camera calibration, tracks
players, and discriminates the offensive/defensive team. Player trajectories are calibrated to the real-
world court model for screen pattern recognition. Our experiments on broadcast basketball videos show
promising results. Furthermore, the extracted player trajectories and the recognized screen patterns visu-
alized on a court model indeed assist the coach/players or the fans in comprehending the tactics executed
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in basketball games informatively and efficiently.
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1. Introduction

With the rapid advance in video production technology and the
consumer demand, the proliferation of digital content necessitates
the development of automatic systems and tools for semantic mul-
timedia information analysis, understanding, and retrieval. As
important multimedia content, sports video has been attracting
considerable research efforts due to the commercial benefits,
entertaining functionality, and the audience requirements. Gener-
ally, the breaks or commercials make the broadcast sports videos
somewhat tedious. Most of the audiences would rather retrieve
the events, scenes, and players of interest than watch a whole
game in a sequential way. Therefore, a great amount of research fo-
cuses on shot classification, highlight extraction, event detection
and semantic annotation. Traditional video content analysis for
quick browsing, indexing, and summarization has become a basic
requirement. More keenly than ever, the sports fans and profes-
sionals desire to watch a sports game not only with efficiency
but also with variety, profundity, and professionalism. Especially,
the coach and players prefer better understanding of the tactic pat-
terns taken in a game. Hence, the research on computer-assisted
sports tactic analysis starts rising and flourishing.

Research on sports video analysis pours out in the past decade,
mainly focusing on feature extraction, structure analysis, and
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bridging the semantic gap between low-level features and high-le-
vel events. Duan et al. [1] employ a supervised learning scheme to
perform a top-down shot classification based on mid-level repre-
sentations, including motion vector field model, color tracking
model and shot pace model. Tien et al. [2] present an automatic sys-
tem capable of segmenting a basketball video into shots based on
scene change detection. Then, shots are classified into three types:
close-up view, medium view, and full court view, based on the ratio
of the dominant color pixels in the frames. The shots of full court
view are more informative than the other two and are chosen for
content analysis. Hung and Hsieh [3] categorize shots into pitch-
er-catcher, infield, outfield, and non-field shots. Then, they combine
the detected scoreboard information with the obtained shot types
as mid-level cues to classify highlights using Bayesian Belief Net-
work (BBN) structure. Fleischman et al. [4] use complex temporal
features, such as object, field type, speech, camera motion start time
and end time, etc. Temporal data mining techniques are exploited
to discover a codebook of frequent temporal patterns for baseball
highlight classification. Cheng and Hsu [5] fuse visual motion infor-
mation with audio features, including zero crossing rate, pitch per-
iod, and Mel-frequency cepstral coefficients (MFCC), to extract
baseball highlight based on hidden Markov model (HMM). Assfalg
et al. [6] present a system for automatic annotation of highlights
in soccer videos. Domain knowledge is encoded into a set of finite
state machines, each of which models a specific highlight. The vi-
sual cues used for highlight detection are ball motion, playfield
zone, players’ positions, and colors of uniforms. Chu and Wu [7]
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consider most of the possible conditions in a baseball game based
on the game-specific rules and extract the scoreboard information
for event detection. Zhu et al. [8] address two problems: affective
feature extraction and ranking model construction to rank high-
lights in broadcast tennis video. The affective features are extracted
via recognizing the player actions and analyzing the audience re-
sponse. The highlight ranking approach combines the player ac-
tions with the real-world trajectories and audio keywords to
establish the mid-level representation of video content, and sup-
port vector regression is employed to construct the nonlinear high-
light ranking mode.

Recently, the emerging trend of sports video analysis goes from
semantics to tactics [9]. Since significant events are mainly caused
by ball-player and player-player interactions, ball/player trajecto-
ries reveal important information for tactic analysis and strategy
inference. Zhu et al. [10-12] analyze the temporal-spatial interac-
tion among the ball and players to construct a tactic representation
called aggregate trajectory based on multiple trajectories. The inter-
active relationship with play region information and hypothesis
testing for trajectory temporal-spatial distribution are exploited
to analyze the tactic patterns. Wang and Parameswaran [13] use
ball trajectory and landing position as features to classify tennis
games into 58 winning patterns. Yu et al. [14-16] present a trajec-
tory-based algorithm for ball detection and tracking in soccer vi-
deo. The ball size is first estimated from feature objects (the
goalmouth and ellipse) to detect ball candidates. Potential trajecto-
ries are generated from ball candidates by a Kalman filter based
verification procedure. Camera motion recovery helps in obtaining
better candidates and forming longer ball trajectories. The true ball
trajectories are finally selected from the potential trajectories
according to a confidence index, which indicates the likelihood
that a potential trajectory is a ball trajectory. Our previous works
[17-19] track the ball motion in different kinds of broadcast sports
videos and provide manifold trajectory-based applications to meet
the practical requirement and professionals’ needs, such as pitch-
ing evaluation in baseball, shooting location estimation in basket-
ball, virtual replay, and set type recognition in volleyball.

Increasing research works are devoted to basketball video anal-
ysis due to a large audience base and a variety of user-specific
requirements. Liu et al. [20] propose a multiple-modality approach,
which first extracts the visual, motion and audio information from
basketball videos for low-level video segmentation and classifica-
tion. Then, domain knowledge is utilized for detecting the events
such as “foul” and “shot at the basket.” Also with a multiple-modal-
ity method, Zhang et al. [21] detect more event types in broadcast
basketball video via aligning the web-casting text with the video.
Chang et al. [22] presents a basketball wide-open warning system,
which tracks players in broadcast basketball videos and issue a
warning when there is an offensive player not well defended by
his/her opponents. To meet the sports-professional’s requirement,
Hu et al. [23] propose a robust camera calibration method for broad-
cast basketball video, extract payer trajectories by a CamShift-based
tracking method, and mapping player trajectories to the real-world
court model. The player position/trajectory information in the real
world coordinates is further utilized for professional-oriented
applications, including wide-open event detection, trajectory-based
target clips retrieval, and tactic inference.

These previous works on basketball tactic analysis are admira-
ble since they greatly assist the professionals in inferring the offen-
sive/defensive strategy of the opponent team and inspecting their
weaknesses. However, there are still a variety of tasks on tactics
analysis and statistics collection requiring assistance with com-
puter technology, such as offensive strategy analysis and screen
pattern recognition. In basketball, scoring is the most important
event that audiences are interested in and the coach/players are
aspiring to. Since basketball is a five-man sport, it is hard for an
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Fig. 1. Illustration of a screen event.

individual player to break the defense of the opponent team and
score by himself. Hence, the offensive team normally executes
some tactical strategies to get rid of the defenders and seek an
open chance to shoot the ball. Playing a fundamental and essential
role in offensive tactics, screen is a blocking move performed by an
offensive player standing beside or behind a defender, in order to
free a teammate to shoot, to receive a pass, or to drive in for
scoring. Fig. 1 exemplifies a screen event, where the triangle repre-
sents a defender, the circle an offender and the square the screener,
who is a teammate of the offender. In Fig. 1(a), no screen is set, and
the offender has little chance to shoot since he keeps guarded by
the defender. In Fig. 1(b), a screen is setting. The screener interferes
with the defender in guarding the offender and creates a good
chance for the offender to shoot.

In general, there are plenty of various offensive tactics in basket-
ball and most of the tactics commence with a screen. Screen is the
fundamental essence of the offensive tactics. Thus, the coach/play-
ers highly desire for inferring the screen patterns executed by the
opponents so as to discover the weaknesses of the opponents and
then better adapt the operational policy of their own team during
a game. Of course, professional coach/players should expertize on
the recognition of screen tactics. However, it is a tedious, exhaust-
ing, and time-consuming work for a professional to collect and re-
view videos of several matches for game annotation, tactic analysis,
and statistics compiling. Hence, computer-aided technology for
screen pattern recognition is compelling. With the foregoing moti-
vation, in this paper we are inspired to design a camera calibration
and player tracking system capable of recognizing screen patterns in
basketball videos. The tactical information and statistics can be ob-
tained automatically. The recognized screen patterns are indexed,
allowing the coach/players to quickly retrieve the video clips of des-
ignated tactics for inspection, analysis, comparison, and so forth,
needless of watching the whole videos of several matches. Further-
more, the extracted player trajectories and the recognized screen
patterns visualized on a court model greatly assist the coach/play-
ers and even the audience in comprehending the tactics executed in
basketball games informatively.

The rest of this paper is organized as follows. Section 2 intro-
duces the overview of the proposed system. Section 3 describes
the processing steps of camera calibration. Section 4 explains the
details of player extraction and tracking for trajectory computa-
tion. Section 5 presents screen pattern recognition based on the
player trajectory. Experimental results are reported and discussed
in Section 6. Finally, we conclude this paper in Section 7.

2. Overview of the proposed system architecture

Object tracking is typically the medium converting the low-le-
vel features into high-level events in video processing. Especially,
the ball/player trajectory brings significant information for tactic
analysis. In basketball games, screen is the fundamental essence
that most tactics are executed with. Enhanced from our previous
work [24], a screen-strategy recognition system capable of detect-
ing and classifying screen patterns in broadcast basketball video
based on player trajectory is proposed in this paper. Fig. 2 illus-



934 H.-T. Chen et al./]. Vis. Commun. Image R. 23 (2012) 932-947

trates the system flowchart. Broadcast basketball video contains
several prototypical shots, including close-up view shots, median
view shots, and court view shot, as exemplified in the top part of
Fig. 2. Among the different kinds of shots, court view shots best
present the spatial relationships between players and the court.
Thus, our analysis is focused on the court view shots. For court
view shot retrieval, please refer to [18].

The proposed system starts with camera calibration. To extract
court lines, we detect white pixels and then eliminate the white
pixels in white or textured regions based on the width test and
line-structure constraint. Court lines are extracted using Hough
transform. The court line intersections are used as corresponding
points to compute the camera calibration matrix, which maps real
world coordinates to image points or vice versa. With the court line
information obtained, we compute the dominant colors and ex-
tract players within the court region. For tactic analysis, we have
to classify the players and discriminate the offensive/defensive
team. Player trajectories are extracted using Kalman filter and
are mapped to the court model for screen pattern recognition.
The visualized presentation of the extracted player trajectories
and recognized screen patterns on the court model gives the
coach/players or the fans a further insight into the game and
guides them through an efficient way to tactic understanding.

3. Camera calibration

Camera calibration is an essential task to provide geometric
transformation mapping the positions of the players in the video
frames to the real-world coordinates or vice versa. Since the bas-
ketball court can be assumed to be planar, the mapping from a po-
sition p= (x,y,1)" in the court model coordinate system to the
image coordinates p’ = (1, »,1)" can be described by a plane-to-
plane mapping (a homography) p’ = Hp, where H is a 3 x 3
homography transformation matrix [25]. Homogeneous coordi-
nates are scaling invariant, so we can reduce the degrees of free-
dom for the matrix H to only eight. The transformation p’ = Hp
can be written in the following form:

hoo  hot  hoz X u v\ where
ho hu ho [|y|=|v [=]|v]|u=uw (1)
h20 h21 1 1 w 1 V= Z/C/W/
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To compute the eight independent parameters, we need at least
four pairs of corresponding points—the points whose real world
coordinates and image coordinates are both known. Since line
detection is more robust than locating the accurate positions of spe-
cific points, we utilize line intersections to establish point corre-
spondence. In the process, we make use of ideas in general
camera calibration, such as white line pixel detection and Hough
Transform-based line extraction [25]. The correspondence between
the video frame and the basketball court model are illustrated in
Fig. 3, which also shows the court lines to be extracted: L;~Ls.

3.1. Court line extraction

In the literature, Farin et al. [25] have proposed an algorithm of
extracting court lines and finding line-correspondences, which
performs well in several kinds of sport videos such as tennis, vol-
leyball, and soccer. Hough transform is applied to the detected
white line pixels. The parameter space (0,d) is used to represent
the line: 0 is the angle between the line normal and the horizontal
axis, and d is the distance of the line to the origin. An accumulator
matrix for all (0,d) is constructed sampling at a resolution of one
degree for 0and one pixel for d. Since a line in (x,y) space corre-
sponds to a point in (0,d) space, line candidates can be determined
by extracting the local maxima above a threshold gin the accumu-
lator matrix. The line candidates are then classified into the hori-
zontal lines and the vertical lines. Next, the line candidates are
sorted according to their distances to the image boundary for find-
ing line-correspondence.

Nevertheless, when applying the method [25] to basketball vid-
eos, we find that the performance is not as good as expected. One
major problem is the determination of the threshold value o.
Fig. 4 shows sample results of court line extraction with different
o values. The original frame and the detected white line pixels
are shown in Fig. 4(a) and Fig. 4(b), respectively. Fig. 4(c)~(e) show
the extracted court lines with different ¢ values. Small ¢ value leads
to many false lines, whereas large ¢ value causes insufficient court
lines to compute camera calibration parameters. Moreover, the
free-throw line (see Fig. 3) is very easy to be discarded because it
is short in frames. To overcome the obstacles, we propose a step-
by-step method to find line-correspondence in basketball video.
We search each specific line within a specific range in order to
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Fig. 2. Flowchart of the proposed system for screen pattern recognition in broadcast basketball video.
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Fig. 4. Sample results of court line extraction. (a) Original frame. (b) Detected white line pixels. (c)-(e) Extracted court lines with different threshold o.

gather all the necessary lines L; ~ Ls (see Fig. 3). The detailed pro-
cess is described in the following, and Fig. 5 presents the
illustration.

(1) SidelineL, and baselineL,: As shown in Fig. 5(a), the court re-
gion is mainly determined by the sideline L; and baseline L,, which
are the longest (near-)horizontal and (near-)vertical line in the
frame, respectively. (We say “near” because the baseline and side-
line are not exactly vertical and horizontal in the frame.) Thus, we
extract L, via searching the local maximum in the range |0 — 7/2|<
pof the accumulator matrix produced by Hough transform (6 = /2
represents a horizontal line) and extract L, via searching the local
maximum in the range |0- 7/2|>p, where pis a statistically deter-
mined threshold. To prevent extracting the sideline close to the
frame bottom, we add the constraint that the parameter d of the
sideline L, should be greater than quarter the frame height, as shown
in Fig. 6. Furthermore, the slope of the detected baseline also helps to
identify whether the frame presents the left court or the right.

(2) LinesLs and L4: With the baseline and sideline extracted, we
can determine the court region and filter out the white line pixels
outside the court region, as shown in Fig. 5(b) and (c). We apply
Hough transform to the remaining white line pixels and extract
the longest two (near-) horizontal lines as L; and L4, as shown in
Fig. 5(d). The top edge L; and bottom edge L4 can be distinguished
by the slopes.

(3) Free — throwlineLs: Again, we filter out the white line pixels
outside the region bounded by L; and L4, as shown in Fig. 5(e), and
apply Hough transform to the remaining white line pixels. Because
the main camera is located at the center of the court, the angle be-
tween the free-throw line Ls and the horizontal axis in the frame is
greater than the angle between the baseline Ls and the horizontal
axis no matter which side of court is on screen, as show in Fig. 3(a).
Hence, we extract the free-throw line Ls via searching the local
maximum in the ranges 0 <60 < 0, and 0, <0 < 7/2 for left court
frames and right court frames, respectively, where 0, is the angle
between the baseline normal and the horizontal axis. Fig. 5(f)
shows the detected free-throw line Ls.

3.2. Computation of camera calibration parameters

With the court lines L;~Ls extracted, now we are ready to com-
pute the camera calibration parameters. Multiplying out the linear
system in Eq. (1), we obtain two equations, Egs. (2) and (3), for
each corresponding point—the point whose real world coordinate
(x,y) and image coordinate (u, v) are both known.

hoox + ho1y + hoz = u(hyox + hy1y + 1) @)

hioX + h11y +hp = ?/(hzox + h21y + 1) (3)
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Fig. 5. Processing steps of extracting the court lines L, ~Ls. (a) Detected sideline L, and baseline L,. (b) Court region. (c¢) White line pixels within the court region. (d) Detected
L3 and L,. (e) White line pixels within the region bounded by L; and L,. (f) Detected free-throw line Ls.
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Fig. 6. Constraint to prevent ambiguity in sideline extraction.

From Eqgs. (2) and (3), we set up a linear system AB = C as Eq. (4),
where n is the number of corresponding points.

0 0 O

4. Player extraction and tracking

Player tracking in broadcast basketball video is intrinsically
challenge task due to the frequent occlusions of the players, espe-
cially the players of the same team wearing uniforms of the same

x y 1 X1 -y, hoo “
0 0 0 X y; 1 —vixq —-w),y ho "
X2 b 1.0 0 0 —uxy —upy, hoy "
0 0 0 x y, 1 —wxo —1u), hio "
h |
h12
X Vo 1 0 0 0 —upx, -—upy, hao th
0 0 0 Xy ¥y, 1 —vpXyp —vny, ha v

(4)

In our system, the extracted court lines L;~Ls form six intersection
points, namely n = 6. To solve B, we can over-determine A and find a
least squares fitting for B with a pseudo-inverse solution:

AB=C, A’AB=A'C, B=(A"A)'A’B (5)

Thus, we derive the parameters of camera calibration to form the
matrix transforming the real world coordinate to the image coordi-
nate. Since H homography matrix performs a plane- to-plane map-
ping, the image position p/ can also be transformed to a position p
on the real world court model by

p=H'p (6)

color. In addition to the playing field, a court view frame also con-
tains some areas of the audience or stadium, as shown in Fig. 3(a).
Objects and noises in the audience region will cause false alarms
and degrade the performance in player segmentation and tracking.
To improve tracking accuracy and computational efficiency, we
utilize the extracted baseline and sideline to determine the court
region, as shown in Fig. 5(b), and direct the following processes
at the court region, as illustrated in Fig. 7.

4.1. Foreground object segmentation

As shown in Fig. 3, the court region contains two parts: (1) the
restricted area and (2) the playing field excluding the restricted
area (say the unrestricted area). The color of the restricted area is
almost uniform, as is also the case for the unrestricted area. We
can construct the background model via detecting the dominant
colors of the restricted area and the unrestricted area individually
on the basis of Gaussian mixture model (GMM) [26,27]. Then,
region growing is applied to construct the dominant color map,
as shown in Fig. 7(b), where the non- dominant color pixels in
black are deemed foreground pixels. The background subtraction
method is used to segment the foreground objects consisting of
the difference between the video frames and the background
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Fig. 7. Illustration of player segmentation and team discrimination

model, and morphological operations are performed on the fore-
ground pixels to remove small objects, noises and gaps, as shown
in Fig. 7(c).

4.2. Player clustering and offensive/defensive team discrimination

The foreground objects contain players of the two teams, refer-
ees and some noises. Yet, only the player regions are contributive
to tactic analysis. Based on color information, we attempt to use
k-means clustering to separate the foreground regions into two
clusters, each of which represents the uniform color of a team.
However, we cannot have just two clusters (k=2) due to the
non-player regions, such as referees or other noises To determine
the cluster number, we experiments on different number of clus-
ters, as shown in Fig. 8, where the x-axis indicates the cluster num-
ber k and the y-axis gives the clustering error. Generally, the more
the clusters, the smaller the total distance between all data points
and their corresponding cluster centroid, which is regarded as clus-
tering error. Based on the experiment, we choose k=6 since the
clustering error almost converges when there are more than six
clusters, and we select YCbCr color space in our system since YCbCr
leads to smaller clustering error. Thus, we separate the foreground
regions into six clusters and take the largest two clusters as the
uniform colors of the two teams. Fig. 7(d) shows the clustered
players of two teams.

-+ RGB
— HSV
YCbCr

Clustering error

.. .
e
o

Ll W 7 S

123 456789 10111213 14 15616 171819 20
k (# of clusters )

Fig. 8. Experimental data with different color spaces and number of clusters.

We then discriminate the offensive/defensive team to realize
which team possesses the ball. In a basketball game, the players
on defense try their best to avoid the offensive players from putt-
ing the ball into the basket, so each defender is expected to stand
closer to the basket than the offender he is guarding, which helps
to identify the team on offense. As show in Fig. 9, we map the in-
frame positions of players to the real-world court model by Eq. (6).
For each team, we compute the average distance from the basket to
players. The team with players averagely farther away from the
basket than the other team is recognized as the offensive team.

4.3. Kalman filter-based player tracking

Being widely used in moving object tracking [14,15], the Kal-
man filter provides optimal estimates of the system parameters,
such as position and velocity, given measurements and knowledge
of a system’s behavior [28]. In this work, we apply a Kalman filter-
based approach to track players. In general, the Kalman filter de-
scribes a system as:

Xn = AnXyq + W,y (7)

Z, = HoX, + Vi ()

where X, is the state vector (representing estimated player position
at the nth frame), A, is the system evolution matrix, and wy, is the
system noise vector. z, is the vector of measurements (positions
of player candidates), H, is the unit array, and v, is the measure
noise vector.

Initially, we create a new tracker for each player candidate.
Then, the Kalman filter algorithm is used for predicting each
player’s position in the next frame. The player candidate closest
to the predicted position is regarded as measurement and the
parameters of Kalman filter are update. If there is no candidate
close to the predicted position, we regard the predicted state as
measurement directly. Besides, since all players are expected to
stay in the court, once a tracker state is out of the court, we mark
it as missing. Every time a tracker misses, we double the search
range, since the object may be occluded and the tracker misses
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temporarily. We expect that the tracker can keep tracking on the
object when it shows again. If a tracker misses for consecutive &
frames, that is, the tracker is outside the court for too many frames,
we terminate the tracker. After updating all trackers, we add new
trackers for the untracked candidates. The Kalman filter-based
player tracking is described in Algorithm 1.

Algorithm 1: Player Tracking

Input: tracker list trackers and candidate list candidates
Output: none
|| - Step 1: update trackers —
for each tracker in trackers do
local prediction:= predict (tracker)
local measurement
if 3 candidate € candidates: dist (prediction, candidate) < ;
then
measurement := candidate
set_tracked (candidate)
else
measurement := prediction
end if

correct (tracker, measurement)

if is_out_of court_bound (measurement) then

increase_missing_count (tracker) else

reset_missing_count (tracker)

end if

if missing_count (tracker) > ¢ then
terminate (tracker)

end if

end for

|| - Step 2: create new trackers -

for each candidate in candidates do

if not_tracked (candidate) then

add_tracker (trackers, candidate)

end if

end for

® Offensive
O Defensive

@ Offensive
_ Defensive

(b)

Fig. 9. Offensive/defensive team discrimination. (a) Original frame (b) Player positions mapped to the court model and the discrimination result.

5. Screen pattern recognition

Typically, basketball tactics consist of a series of screen strate-
gies, attempting to make an offensive teammate not guarded by
a defender and have a good chance to score. Hence, screen is the
fundamental essence of offensive basketball tactics. We introduce
three most frequently used screen strategies: front-screen, back-
screen, and down-screen, as illustrated in Figs. 10-12, respectively.

Front-screen: The screener sets the screen for the offender, who
uses the screen to drive past the defender in the direction perpen-
dicular to the direction from the defender to the basket, as shown
in Fig. 10, where the triangle, circle, and rectangle indicate the de-
fender, offender, and screener, respectively. Fig. 10(a) illustrates
the trajectories of the offensive players involved in the screen.
The moments before the screen, on the screen and after the screen
are shown in Fig. 10(b)-(d), respectively. Front screen is used to
create open shots inside and outside. Screening for the ball handler
often creates mismatches in height or speed when defenders
switch.

Back-screen: The screener sets the screen behind the defender so
that the offender can cut toward the basket, as shown in Fig. 11.
The screener must allow a step between himself and the defender
here, as the defender will step back while trying to catch the
offender.

Down-screen: As shown in Fig. 12, the screener sets the screen
for the offender, usually down low on the court, who uses the
screen to cut up toward the ball to receive the pass. The screener
is usually facing the defender.

5.1. Screen detection

In order to prevent the defensive players from helping their
teammates, the offensive players tend to make the space wider
and seldom stay close to each other. Hence, the case of an offensive
player standing next to another offensive player implies that the
offensive team is probably executing a tactic. Therefore, we can ini-
tially determine whether there is a screen event based on the dis-
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Fig. 12. Down-screen. (a) Player trajectories in the screen strategy. (b) Before screen. (c) On screen. (d) After screen.
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tances between offensive players. Besides, since the screen is set to
block the defender(s), there must be at least one defensive player
between the screener and his teammate. Thus, the screener can
also be recognized. Generally, the defender stays close to his target
but not side by side since the defender has to prevent his target
from driving to the basket. On the other hand, the screener must
be in contact with the defender in order to block the defender
effectively. Accordingly, if we find that there are two offensive
players close to each other, and there is at least one defensive
player between them, we can infer that there is a screen and the
screener is the offensive player closer to the defensive player. Algo-
rithm 2 depicts the proposed screen detection method. In the fol-
lowing, we use screenee to mean the offensive player whom the
screener sets screen for.

Algorithm 2: Screen Detection

Input: players,; and players g,
players
Output: screener and screenee |[[the screener sets screen for the
screenee
screener:= nil
screenee:= nil
if 3 player; € players,g, player; € players,g: ds < distance
(player;, player;) < A; and i #j then
if 3 defender € players,ey: distance(defender, player;) < s or
distance(defender, player;) < Js
then
if distance(defender, player;) < distance(defender, player;)
then
screener := player;
screenee := player;
else
screener := player;
screenee := player;
end if
end if
end if
return screener, screenee

||offensive and defensive

5.2. Screen classification

The foregoing introduction describes that each screen type fol-
lows a specific pattern. The front-screen is usually set around the
three-point line and the screenee moves to an open space instead
of driving to the basket. A screener sets a back-screen by moving
from the low post to the high post, and the screenee drives to
the basket after the screen. The down-screen is set by a screener
moving from the high post to the low post. Therefore, we have to
utilize the trajectories of the screener and screenee to recognize
the screen pattern. Here we denote the initial position of the
screener as p;,;;,» the last position of the screener as pjq, the posi-
tion of the screener when the screen is set as Py, and those of
the screenee as pPrinit, Pjgg» ANA Plreen- AlsO, the position of the basket
is represented by py .- Take a look again at Figs. 10, 11. The down-
screen is the only type that the screener moves down to the low
post. Hence, we first check the screener trajectory and confirm
whether the screener moves to the baseline by |Ppaser — Pinic] @and
|Dpasket ~Dscreen |- If the screener moves to the baseline, our proposed
system recognizes it as a down-screen, as formulated in Eq. (9). The
other two screen patterns (front-screen and back-screen) are hard
to be distinguished by the screener trajectory due to the similar
movement of the screeners. Once we find that the screener does

not move to the baseline (not a down-screen), we analyze the
screenee trajectory. In a back-screen the screenee tends to move
to the basket, while in a front-screen the screenee is likely to move
around outside the restricted area. Accordingly, we discriminate
back-screen and front-screen by the angle between the screenee’s
moving direction (dmoying = Plgst - Picreen) aNd the direction from the
screenee to the basket (dpasker = Phasker = Phcreen)- If the angle between
the two directions is small, that is, the screenee tends to move to
the basket, our proposed system recognizes it as a back-screen;
otherwise, it is recognized as a front-screen.

screenType
Down, lflpbasket - pinit‘ > ‘pbasker _pscreenl

. ~1 ( 4moving Doask
BaCk7 lf|pbasket 7pinit‘ < ‘pbasket 7pscreerl| and cos (d,:;?:g‘d @ Er‘) < 05
_ ving | Apasket (9)

. -1 ( dmoving ‘dpasket
FT'OTlf, lflpbasket 7pinit‘ < ‘pbasket 7pscreen| and cos (d"r:,o;,::j\db:zk;o = 05

undefined, else

6. Experimental results and discussion

To evaluate the effectiveness of our proposed framework, we
conduct the experiments on the video data of the Beijing 2008
Olympic Games. The testing videos include four men’s basketball
matches: USA vs. AUS, ARG vs. USA, USA vs. CHN, and ESP vs.
USA recorded from live broadcast television programs with frame
resolution of 640 x 352 (29.97 fps). We manually select 20 clips
with obvious tactic execution from each of the four matches. To-
tally, we have 80 video clips (40 for training and the other 40 for
testing).

6.1. Performance of court line detection and camera calibration

In Section 3, we first detect white pixels using color informa-
tion. To improve the accuracy and efficiency of the subsequent line
detection and camera calibration processes, we eliminate the
white pixels in white regions or in textured regions based on the
width test and the line-structure constraint. Fig. 13 demonstrates
sample results of white line pixel detection. The original frames
are presented in Fig. 13(a). In Fig. 13(b), although most of the white
pixels in white regions such as white uniforms are discarded, there
are still false detected white line pixels occurring in the textured
areas. With line-structure constraint, Fig. 13(c) shows that the
number of false detections reduced, and white line pixel candi-
dates are retained only if the pixel neighbor shows a linear struc-
ture. Those discarded pixels mostly come from spectators, the
score board overlay, the channel mark, and advertisement logos.
Table 1 presents the numeric statistics of white pixel numbers
with/without the line-structure constraint. It is obvious the line-
structure constraint effectively filters out a high percentage of
the non-line white pixels.

In Section 3.1, we have mentioned that Farin’s court line extrac-
tion/camera calibration method [25] cannot achieve good perfor-
mance for basketball videos, although it works well on tennis,
volleyball, and soccer videos. The major reason is that the free-
throw line is much shorter than other court lines and Farin’s meth-
od cannot effectively extract the free-throw line as well as other
court lines for finding line correspondences. Hence, we propose a
step-by-step approach to find the court lines for camera calibra-
tion. The camera calibration results are inspected manually that
a frame is regarded as “well calibrated” when all the five court
lines (L;~Ls in Fig. 3) are extracted correctly. The accuracy of cam-
era calibration is then defined by

#wellcalibratedframe
#totalframes

Accuracy = (10)
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Fig. 13. Results of white pixel detection. (a) Original frame. (b) Without line-structure constraint. (c) With line-structure constraint.

Table 1

Statistics of white line pixel detection with/without line-structure constraint. (N;:
average number of white line pixels without line-structure constraint per frame, N:
average number of white line pixels with line-structure constraint, P4: percentage of
discarded non-line white pixels.)

Matches N, N, Pa(%)
USA vs. AUS 10932.9 7200.1 34.14
ARG vs. USA 8516.0 4651 45.39
USA vs. CHN 9061.2 5379.0 40.64
ESP vs. USA 11509.7 6676.4 41.99

The results in Table 2 show that up to 91.47% of frames can be well
calibrated by our proposed approach, which facilitates the subse-
quent analysis. Example calibrated results are demonstrated in
Fig. 14, where black lines are court lines extracted by our proposed
method, and red lines give the real court model projected onto im-
age coordinates. Since the camera motion in a shot is continuous,
the corresponding points (the court line intersections) should not
move dramatically in successive frames. Hence, though court lines
may be occluded by players in some frames, the incorrect coordi-
nates of the corresponding points can be recovered by interpolation.

Table 2
Performance of the proposed court line extraction/camera calibration method.

Matches # Frames # Well calibrated frames Accuracy
USA vs. AUS 1445 1358 93.98
ARG vs. USA 1242 1087 87.52
USA vs. CHN 1359 1201 88.37
ESP vs. USA 1368 1306 95.47
Total 5414 4952 91.47

Farin’s court line extraction/camera calibration method [25] is
implemented for comparison. The threshold of Hough transform
is set o = 25 experimentally. A larger threshold will lead to the mis-
detection of the free-throw line in most frames, resulting in a lower
accuracy, while a smaller threshold will cause the explosively in-
crease of false lines, requiring much higher computational cost.
The results are presented in Table 3, where N, gives the average
numbers of extracted lines per frame. Since the number of court
lines is fixed, a larger N; value means more false lines are ex-
tracted. On average, the accuracy of Farin’s method is 77.32% with
about 22 lines extracted per frame, compared to the accuracy
91.47% of our proposed approach. The main reason causing errors
is the misdetection of the free-throw line.
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Fig. 14. Results of court line extraction/camera calibration.

Table 3
Performance of the court line extraction/camera calibration method in [25]. (N;:
average numbers of extracted lines per frame).

Matches # frames  # well calibrated frames  Accuracy N

USA vs. AUS 1445 1154 79.86 23.78
ARG vs. USA 1242 1002 80.68 20.99
USA vs. CHN 1359 973 71.60 20.83
ESP vs. USA 1368 1057 77.27 22.54
Total 5414 4186 77.32 22.08

6.2. Results of player extraction and offensive/defensive team
discrimination

With the court line information obtained after camera calibra-
tion, we compute the dominant colors within the court region
and extract the non-dominant colored regions as foreground ob-
jects. The extracted players are further clustered into the two
teams. Fig. 15 demonstrates the player extraction and clustering
results. Original frames are given in Fig. 15(a). The dominant colors
of the restricted area and the unrestricted area are determined
individually to form the dominant color maps, as shown in
Fig. 15(b). Based on color information, we classify the foreground
pixels into two groups to obtain the player mask for each team,
as presented in Figs. 15(c) and (d).

Through player clustering, some non-player foreground objects,
e.g. the referees (see the red ellipses in Fig. 15(a)), can be removed.
However, noises may occur in the player mask in the case that the
referee has similar color with the players, as in 3rd and 4th rows of
Fig. 15. Sometimes player bodies may be divided into parts, such as
arms and numbers on uniforms (see the blue squares in 1st and
2nd rows of Fig. 15), even though we have performed the dilation
operation to remove gaps. On the other hand, when two objects are
close to each other, it is hard to judge whether they are two players
or they are just two parts belonging to one player (see the green
triangles in 3rd, 4th, and 6th rows of Fig. 15). To resolve this prob-
lem, we regard two objects close to each other as different objects,
and let the tracking procedure clarify if they belong to the same ob-
ject through their trajectories. In some cases, the players standing
near the court boundary may be extracted incorrectly since we
only consider pixels within the court region. This phenomenon
may affect the result of player tracking. However, based on
basketball domain knowledge, we know that the players standing
near the court boundary do not have enough space for screen
setting, so we can simply ignore the players nearby the court
boundary.

6.3. Performance of player tracking and screen pattern recognition

For tactic analysis, we have to discriminate the offensive and
defensive teams first. For each of the two teams, the average dis-
tance from the basket to the players is computed. The team with
players averagely farther away from the basket is recognized as
the offensive team, and the other is the defensive team. In the 40
testing clips, all offensive/defensive teams can be correctly dis-
criminated. Sample results of offensive/defensive team discrimina-
tion are shown Fig. 16, where the left part of each figure shows the
video frame, and the right part presents the player positions
mapped to the court model as well as indicates the offensive and
defensive teams.

The proposed system tracks players using Kalman filter, and
then detects and recognizes screen patterns based on the player
trajectory information. Fig. 17 shows the results of player tracking
and screen pattern recognition of some testing clips. The offender,
screener, and defender are labeled with yellow, green and red ellip-
ses under their feet, respectively. The left part of each image in
Fig. 17 shows the frame when a screen pattern is detected, and
the right part presents the recognized screen pattern along with
the player trajectories of the offender and screener.

We manually inspect the player tracking results of each frame
in the testing clips and evaluate the performance with precision
and recall measures defined in Eq. (11) [29]:

#correct correspondences
#established correspondences’
l#correct correspondences

#actual correspondences

precision =

recal

(11)

where “# actual correspondences” denotes the number of objects at
the moment and “# established correspondences” represents the
total number of created trackers. A correct correspondence means
the tracker really corresponds to one player. Table 4 presents the
precision and recall of player tracking results for each testing clip.
Overall, the average precision and recall rates are 89.71% and
89.20%, respectively. Most failures result from the occlusion and
merging problems. Occlusion is normally a major obstacle in object
tracking, and it occurs frequently in basketball video. Furthermore,
it is difficult to predict trajectories of basketball players, since they
usually change directions rapidly. So far, the occlusion problem can-
not be perfectly solved in basketball video. Besides, player bodies
sometimes are divided into parts, so the number of the extracted
players may be more than the number of the actual players. This
phenomenon leads to redundant trackers for the same player and
decreases the accuracy.
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Fig. 16. Sample results of offensive/defensive team discrimination.

In spite of some errors in player tracking, the proposed system
can still correctly recognize the screen patterns in 35 testing clips.
Only five clips are misrecognized. Example results of correctly rec-
ognized screen patterns are demonstrated in Fig. 17. Take Fig. 17(a)
for explanation. The screener, labeled with green ellipse under his
feet, moves up from near the free-throw line to the top of the
three-point line and sets the screen, and his offensive teammate
(labeled with yellow ellipse) drives past the defender to the upper
region. Thus, our algorithm regards it as a “front screen.” Fig. 18

shows three failed cases. In Fig. 18(a), the screener moves from
near the top sideline to the top of the three-point line and sets
the screen, and the screenee moves from near the bottom sideline
to the top sideline. It should be a “front-screen,” but the screener is
closer to the basket when he sets the screen than he starts to move.
As a result, our algorithm regards it as a “down-screen.” In
Fig. 18(b), the screener moves from the free-throw line to the
low post, and the screenee tries to move to the three-point line.
It is a special case since the screener is setting the screen on the
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Fig. 17. Results of player tracking and screen pattern recognition. (a and b) Front screen. (¢ and d) Back screen. (e and f) Down screen.

Table 4

Precision and recall of player tracking results for each testing clip.
USA vs. AUS ARG vs. USA USA vs. CHN ESP vs. USA
Clip Precision Recall Clip Precision Recall Clip Precision Recall Clip Precision Recall
1-1 89.27 88.78 2-1 89.68 89.30 3-1 94.26 94.46 4-1 95.65 75.86
1-2 76.39 79.94 2-2 87.26 86.94 3-2 93.28 94.43 4-2 88.33 72.60
1-3 80.46 82.97 2-3 92.83 93.60 3-3 91.40 90.56 4-3 89.83 81.54
1-4 81.53 82.08 2-4 86.80 88.80 3-4 92.01 92.84 4-4 91.94 91.94
1-5 88.16 89.51 2-5 88.64 88.18 3-5 99.19 97.27 4-5 90.91 76.92
1-6 84.83 85.36 2-6 88.15 86.65 3-6 92.56 94.02 4-6 87.67 79.01
1-7 82.91 84.29 2-7 92.70 94.03 3-7 92.50 93.98 4-7 93.94 83.78
1-8 86.02 85.18 2-8 90.36 91.49 3-8 93.24 94.17 4-8 93.62 83.02
1-9 84.74 85.21 2-9 86.88 87.53 3-9 92.34 92.79 4-9 93.75 93.75
1-10 89.18 90.34 2-10 93.48 92.27 3-10 97.02 96.32 4-10 94.74 78.26
All 84.74 85.77 all 89.63 89.72 all 94.07 94.32 all 91.67 81.77

moving path of the screenee instead of standing next to the defen-
der, so that the screener is farther away from the defender than the
screenee when the screen is detected, and our algorithm fails to
recognize the screener correctly. In Fig. 18(c), the screen is set near
the top edge of the restricted area, and the screenee moves from
outside the three-point line the free-throw line. Although the
screenee does not drive to the basket and it should be a “front-
screen,” the angle between his moving direction and the basket
direction is small so that our algorithm mistakes the screen type
as a “back-screen.” Overall, the proposed system achieves a high
accuracy of 87.5% (35/40) in screen pattern recognition.

6.4. Comparison and discussion

In the literature, many approaches of content analysis in basket-
ball games have been developed. The player tracking scheme with
applications to tactic analysis in [23] better meets the basketball
professionals’ requirements. Thus, we compare and discuss our

proposed system with Hu's work [23], wherein player trajectories
are extracted by a CamShift-based tracking method and mapped to
the real world court model for professional-oriented applications,
including wide-open event detection, trajectory-based target clips
retrieval, and tactic inference.

We apply Hu's system [23] to our testing data, and Table 5 pre-
sents the player tracking results.! Fig. 19 illustrates the comparison
on player tracking in terms of precision and recall. Compared with
the average precision and recall rates (89.71% and 89.20%, respec-
tively) of our player tracking method, Hu's system achieve a similar
precision rate (85.71% on average) but a lower recall rate (68.35%
averagely). One major factor causing the player tracking perfor-
mance not to be as good as in [23] is that our testing data contain
frequent occlusion of players of the same team since we focus on
screen pattern recognition. Thus, players are easily missed due to

! Many thanks to Dr. Hu Min-Chun, who is the corresponding author of [23], for
providing us with their system for performance comparison.
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Fig. 18. Failed cases of screen pattern recognition. (a) Front screen is misrecognized as down screen. (b) Down screen is misrecognized as back screen. (c¢) Front screen is
misrecognized as back screen.

Table 5
Player tracking results of [23].
USA vs. AUS ARG vs. USA USA vs. CHN ESP vs. USA
Clip Precision Recall Clip Precision Recall Clip Precision Recall Clip Precision Recall
1-1 90.41 66.73 2-1 85.26 51.92 3-1 83.48 52.46 4-1 89.47 72.34
1-2 92.03 74.26 2-2 76.92 52.33 3-2 82.43 64.44 4-2 94.74 73.97
1-3 91.46 75.76 2-3 91.45 51.94 3-3 85.20 70.46 4-3 96.12 80.00
1-4 88.15 75.50 2-4 74.01 76.71 3-4 95.59 63.93 4-4 91.37 80.38
1-5 91.82 77.68 2-5 82.64 59.52 3-5 78.50 70.34 4-5 87.10 58.70
1-6 80.99 69.28 2-6 83.70 53.47 3-6 88.03 55.38 4-6 84.87 80.63
1-7 79.56 80.00 2-7 78.45 59.87 3-7 95.63 63.22 4-7 88.03 67.76
1-8 85.71 73.33 2-8 83.56 65.56 3-8 98.26 64.20 4-8 92.74 72.78
1-9 86.16 72.49 2-9 72.47 68.32 3-9 94.83 54.19 4-9 83.15 74.50
1-10 79.63 76.44 2-10 83.33 59.52 3-10 76.67 79.58 4-10 74.06 76.29
All 88.11 72.55 all 80.17 60.41 all 85.96 64.97 all 86.56 74.11
Precision —+—our method =-=-Hu's method [23] Recall —+—0ur method =-=-Hu's method [23]
100
80
60
40
20
0+ T T T [0 IR o e e e
135 7 9111315171921232527293133353739 135 7 9111315171921232527293133353739
clip# clip#

Fig. 19. The comparison on player tracking between Hu’s method [23] and ours.
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the well-known “error merge” problem, which means trackers lose
their associated objects and falsely coalesce with other objects when
two or more players of the same team occlude with each other. How-
ever, this comparison cannot assertively conclude which method
outperforms the other, but shows that different methods have their
advantage in different cases.

As for tactic analysis, three applications are introduced in [23]:
(1) Wide-open detection: the relative/absolute player positions in
the court model coordinates are used to detect wide open events.
Wide-open means that some offensive player is not well defended
by his/her opponents. (2) Trajectory-based video retrieval: the
distance between a query trajectory (manually drawn) and each
trajectory in the database is computed to retrieve similar video
clips. (3) Defensive strategy analysis: based on player moving
trajectories, the “stability” of defensive players is evaluated to
classify the defensive strategy into one-on-one defense or zone
defense. To realize the offensive strategy, we propose the screen
pattern recognition method in this paper. Playing a fundamental
and essential role in offensive tactics, screen is a blocking move
performed by an offensive player, who stands beside or behind
a defender, in order to free a teammate to shoot, to receive a pass,
or to drive in for scoring. Hence, the visualized presentation of the
player trajectories and recognized screen patterns on the court
model assists the professionals or the audience in comprehending
the offensive tactics executed in basketball games informatively
and efficiently. It is hard to judge which tactic analysis application
is more useful to the professionals or the general audience.
Besides, increasing researchers have been devoted in this area. It
can be anticipated that a wider variety of tactics analysis applica-
tions will be designed for basketball and even for more kinds of
sports.

7. Conclusion

The more you know the opponents, the better chance of
winning you stand. Thus, game study in advance of the play is
an essential task for the coach and players. Tactic analysis pro-
vides informative and detailed insight of sports games but until
now little work has been devoted to this topic. It is a growing
trend to assist game study for intelligence collection in sports
games with computer technology. To cater for this, in this paper
we propose a screen-strategy recognition system capable of
detecting and classifying screen patterns in broadcast basketball
video. The proposed system automatically detects the court lines
for camera calibration, determines the court region and extracts
the players using color information. The extracted players are fur-
ther classified and discriminated into the offensive and defensive
teams. Then, the proposed system tracks players using Kalman
filter and calibrates the players’ positions to the real-world court
coordinates by the homography matrix obtained from camera
calibration. Analyzing the extracted player trajectories on the
real-world court model, the system can detect and recognize
the screen pattern on execution. Our experiments on broadcast
basketball videos show promising results. Furthermore, the ex-
tracted player trajectories and the recognized screen patterns
are visualized on a court model, which indeed facilitates the
coach/ players or the fans understanding the tactics executed in
basketball games.

In addition to the player trajectory, ball trajectory is also vital
information for tactic analysis. Hence, we are currently working
on integrating the framework of this paper with our previous work
[18], which tracks the ball and reconstruct the 3D ball trajectory
for shooting location estimation in basketball video, to build a
powerful basketball video analysis system. It is our belief that
the preliminary work presented in this paper will inspire extensive

research and manifold applications of automatic tactic analysis and
intelligence collection in various kinds of sports games.
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