
Pergamon
Comput. & Graphics, Vol. 19, No. 6, pp. 805-813, 1995

Copyright Q 1995 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0097-8493/95 $9.50 + 0.00

0097-g493(95)00051-t3
Technical Section

EFFICIENT GENERATION OF ISOSURFACES IN VOLUME
RENDERING+

JUNG-HONG CHUANGS and WOAN-CHIAUN LEE

Department of Computer Science and Information Engineering, National Chiao Tung University,
Hsinchu, Taiwan, ROC

Abstract-An efficient method for extracting isosurfaces from volume data is proposed. The method
utilizes a modified branch-on-need octree to bypass regions of no current interest. In addition, during the
generation of triangle meshes neighboring triangles are merged according to certain criteria. Methods are
also given to significantly reduce the space required for octrees. The method is more efficient and generates
far fewer triangles than the marching cube algorithm. The performance of the proposed method is
compared with that of several existing methods.

1. INTRODUCTION
Many scientific computations and medical applica-
tions produce volumetric data sets defined on 3-D
grids. Since volume data is generally complex it is
hard to understand without visual displays. Volu-
metric data can be visualized by either surface
rendering [l, 21 or direct volume rendering [3, 41.
Surface rendering techniques extract the isosurface of
a particular threshold and approximate the surface
by intermediate polygonal meshes. Although the
surface rendering is generally simple and efficient, it
is unable to effectively display the interior of the
volumetric data. Direct volume rendering, on the
other hand, directly visualizes the volumetric data
without generating any intermediate geometry and
allows the user to probe into the interior of the
volumetric data.

The marching cube method proposed in Ref. [1]
has been recognized as an effective and simple
method for isosurface extraction; nevertheless, this
method has three notable problems. First of all, the
marching cube method explores all cells, including
those containing no surface of interest [5]. Second,
the marching cube method generates an excessive
number of triangles [6-81. Finally, this method may
produce surfaces with holes, because an ambiguity
may be found on the common face of adjacent cubes
[9, 101.

In this paper, a two-phase method is proposed to
resolve the first two of these problems. The method
combines and extends the octree structure proposed
in Ref. [5] and the splitting-box approach in Ref. [7].
In the first phase, the set-up phase, a branch-on-need
octree is constructed and represented as a linear

t Supported by the National Science Council of the ROC
under grant NSC 82-0408-E-009-428.

f Author for correspondence.

octree. The: second phase performs mesh reduction
using the branch-on-need bisection tree while gen-
erating triangle meshes for the isosurface. Methods
are proposed to greatly reduce the amount of
memory required for the octree. Comparative studies
show that the proposed method is effective in
speeding up? the surface generation, in reducing the
size of triangle meshes, and in reducing the amount
of memory required.

2. THE MARCHING CUBE ALGORITHM
In the marching cube algorithm, a cube is formed

by eight adjacent data points on two consecutive
slices. Cubes are processed in a row-column and slice
by slice order. Surface points on the edges of cubes
are found by linear interpolation and their normals
are derived by using the central difference.

The basic marching cube algorithm traverses all
cubes, including cubes that contain no surfaces of
interest. This useless exploration can be avoided by
representing the volumetric space with a hierarchical
structure such as an octree, especially the branch-on-
need octree (BONO) proposed in Ref. [5]. If each
node of the octree is associated with the minimum
and maximum densities in the subvolume corespond-
ing to that node, exploration of the subvolume will be
unnecessary if the threshold is outside the range of
the minimum and maximum densities. The charac-
teristic of the branch-on-need octree is to delay
subdivision until it is absolutely necessary. To
construct the BONO for a volumetric space, we first
convert ranges of the volume in the x, y, and z
directions into binary code. Note that the range of
the volume in an axis is one less than the number of
intervals between data points in that axis. The
directions of the volume that must be subdivided
are those whose ranges have 1 as the leftmost bit. The
designated range is split into the lower part and the
upper part. The lower part always covers the largest
possible exact power of 2, that is, the lower part is a

805

806 J.-H. Chuang and W.-C. Lee

Table 1. Branch-on-need subdivision of a 5 x 4 x 3 volume

Direction

X
Y
z

Parent Lower Upper
Range Binary Range Binary Range Binary

4 100 3 011 0 000
3 011 3 011 3 011
2 010 2 010 2 010

bit string of l’s which is one bit shorter than the
original code. The upper part is the original code
with the leftmost 1 bit removed. Consider a volume
of resolution 5 x 4 x 3 as an example. To see how the
BONO is built, we first convert three ranges 5 - 1 = 4,
4 - 1 = 3, and 3 - 1 = 2 into binary code as shown in
Table 1. Since only the range of the x direction has a
1 as the first bit, the volume is subdivided in the x
direction in level one and the range of the x direction
is split into two parts. The code of the lower part of
the corresponding subdivision is a bit string of l’s
that is one bit shorter than the original code. The
code of the upper part is the original code with the
leftmost bit removed. The codes of the ranges in they
and z directions remain unchanged (Table 1).

The number of triangles produced by the basic
marching cube algorithm is generally large. The
triangle meshes can in general be reduced either
during or after the surface generation [7, 81. The
splitting-box (SB) algorithm proposed in Ref. [7]
does the mesh reduction while generating the triangle
mesh and results in a reduced triangle mesh with an
error less than the size of the cell. The MC property is
used throughout the splitting-box algorithm. An edge
of a box is called MC if it possesses at most one
transition of the isosurface. A face of a box is MC if
all its four edges are MC. A box is called MC if its
faces are all MC faces. The SB algorithm takes the
entire volume data as the initial box and recursively
bisects the box down to the cell level. The box is
bisected perpendicularly to its longest edge or
randomly if the edges are of equal length. Whenever
a box becomes MC during the bisection process, i.e.
all its edges contain at most one transition either
from black to white or from white to black, the
contour chains (polygons) in the box are found by
the standard marching cube algorithm. The contour
chains derived are passed to the descendant boxes
after the bisection and are checked to see if they are
‘legitimate’ approximations of the contour chains
found in the descendant boxes. Each contour chain is
associated with a Boolean valid to identify whether
the chain is a legitimate approximation. If a contour
chain in the upper level of the bisection process is a
legitimate approximation of the contour chains in the
lower level, the latter are replaced by the former.

3. EFFICIENT GENERATION OF ISOSURFACES

The splitting-box algorithm traverses all cells,
including cells in regions of no current interest, and
results in a time complexity of O(n3), where n3 is

the number of input grid points [7]. In this section,
we present an algorithm that first constructs the
branch-on-need octree and from which a brunch-on-
need bisection tree is derived. With the branch-on-
need bisection tree, the number of triangles
generated is reduced by adapting the size of
triangles to the surface’s shape. Methods are also
given to greatly reduce the memory required for
the BONO. This is crucial when only limited
memory space is available.

3.1. L.inear branch-on-need octree
Each node of the BONO contains fields for

storing the minimum-density, maximum-density,
branch, and address. The minimum-density and
maximum-density represent the minimum and max-
imum densities, respectively, in the volume repre-
sented by the node. The branch represents how the
node is subdivided; the branch is usually three bits
long, with 1 representing the required subdivision in
a particular direction. The address field is usually a
pointer that points to the leftmost child of the
node.

Since the number of nodes on each level of the
BONO can be computed from the binary representa-
tions of the ranges, the space required for storing the
linear BONO can be allocated beforehand. In the
linear BONO, the four-byte-long pointers can be
replaced by an index which normally requires only
three bytes. The index in the record of the linear
BONO refers to the record of the leftmost child of the
node. The index of the i-th leftmost child of a node
can be referred to by adding i- 1 to the index of the
node. The scheme evidently allows to traverse the
whole tree. Each record of the linear BONO contains
minimum-density, maximum-density, branch, and
index. Figure 1 depicts a BONO with one node on
level one, four nodes on level two, and 12 nodes on
level three, together with the corresponding linear
BONO. In the linear octree, the record for the
leftmost child of node 2 can be indicated by the index
of node 2, which is 7. The record for the third
leftmost child of node 2 can be indicated by adding 2
to the index of node 2, which is 9.

3.2. Branch-on-need bisection tree
After constructing the linear BONO for the given

volum~etric data, we next traverse the BONO to
generate the isosurface for a given threshold and
adapt the size of the polygon meshes to the shape
of isos,urface. As the BONO is traversed, an octree

Efficient generation of isosurfaces 807

5 6 7 8 9 10 11 12 13 14 15 16

(a) A BONO

0 1 2. 15 16

(b) ‘Ihe corresponding linear BONO

Fig. 1. A BONO and its linear BONO.

node is discarded if the threshold is less than its
minimal value or larger than its maximum; other-
wise, the subdivision for the octree node is replaced
by a sequence of at most three bisections starting
from the box represented by the current octree
node. The bisection is performed in the z direction,
then in the y direction, and finally in the x
direction. Whether a bisection in a specific direc-
tion is necessary is determined by the branch field
of the octree node. The branch field of the internal
octree node consists of three bits representing how
the node is subdivided in the z, y, and x direction.
For example, brunch= 111 means subdivisions in
each of the z, y, and x direction and brunch= 101
means subdivisions in only the z and x direction.
That is, the bisection order follows the order of the
l-bit in the branch field. After the bisection, the
branch fields of subboxes will represent the
remaining directions for further subdivision. For
example, for branch= 101, the branch fields of the
subboxes after subdivision in the z direction are
assigned to be 001. For a specific direction, the
bisection is performed identically to the subdivision
performed on the BONO in that direction. This is
why the bisection tree is called a branch-on-need
bisection tree (BONBT). Consequently, each sub-
division of BONO is correctly replaced by at most
three bisections.

Each node of the BONBT contains information on
the minimum and the maximum coordinates of the
corresponding box, the 12 Booleans for the MC
property on the 12 edges, the 12 contour points, the 12
contour segments, and the four contour chains.
Although many fields are needed in a node, the space
requirement of the bisection tree is on the order of log
m, where m is the number of grid points, since at most
one path of the tree is required to be in the memory,

3.3. Generation of reduced triangular meshes
For a given threshold, we traverse the BONO,

discard the volume whose [minimum-density, max-
imum-density] does not contain the threshold, and
substitute the subdivision of the node whose [mini-
mum-density, maximum-density] contains the thresh-
old with at most three branch-on-need bisections.
For such a sequence of bisections, methods similar to
the splitting-box algorithm [7] are employed to
compute (contour chains of boxes and examine
whether the contour chains of two bisected boxes
can be approximated by the contour chains of their
parent box within a specific error 6, and 6 is the size
of the cell. The bisections are performed recursively
following the traversal of the BONO from top to
bottom until a leaf node of the BONO is reached.
Contour chains are then collected according to their
legitimation of approximation during the bottom-to-
top phases of the tree traversal.

Here we discuss the steps of mesh generation
involved in the bisection process. While the BONO is
traversed, an octree node A is discarded if the
threshold is less than its minimal value or larger
than its maximum; otherwise, the subdivision for this
octree node is replaced by a sequence of at most three
branch-on-need bisections starting from the box B
represented by the current octree node. We first
derive all contour chains on B using marching cube
computations. Each contour chain is associated with
two fields, valid andpred. When B is bisected into two
subboxes, say B, and B,, we verify whether B, and B2
are MC. If any of B1 and B2 is not an MC box, the
valid fields of all contour chains of B are set to false.
If one of B, and B2 is MC and the other is not, we
compute all contour chains of the MC subbox and
continue co recursively examine the quality of the
contour chains. If both B1 and B2 are MC boxes,

808 J.-H. Chuang and W.-C. Lee

contour chains for both are derived and the contour
chains of B are examined to see if they approximate
the contour chains of B, and B2 within 6. We
examine every intersection between contour segments
of B and four edges on the common face of B1 and
B2. If an intersection point lies between a pair of
consecutive vertices of different signs, then this point
is called a feasible point and the respective contour
points of B, and B2 are replaced by this point. After
all the intersections are processed, we bisect each
contour chain C of B into two subchains Ci and C,,
where C, is on B, and C, is on Bz, and check to see if
there exist contour chains CB, on B, and CB, on BZ,
respectively, that coincide with Ci and C,. If such
chains do exist, CB, and CBp are legitimately
approximated by C and the valid of C and the pred
of CB, and CB, are set to true. Otherwise, the valid of
C is set to false. After all contour chains of B are
examined, B1 and B2 are bisected and contour chains
on B1 and B2 are examined recursively.

The above steps are performed recursively in a
traversing order of the binary BONBT until a
2x 2 x 2 box is obtained. Contour chains are
collected on the way up during the traversal of the
bisection tree. A contour chain is output if its valid is
true and pred is false, since there is no contour chain
in the parent box that is able to approximate it within
the error of 6. Now we summarize the recursive
procedure for the surface generation as follows:
assume the box represented by the root of BONBT is
B and all contour chains of B have been computed.

PROCEDURE LBONO-SB(B)
begin
bisect B into B1 and Bz;
compute all feasible points on the common edges of
B, and B2;
compute all contour points of B1 and B2;
replace the contour points by the corresponding
feasible points in B1 and B2

if there is one;
if (not both B1 and B2 are MC) then

for (each contour chain C of B)
set the valid of C to false;

Compute the contour chains of the MC box;
else begin /* if both B1 and B2 are MC */

compute all contour chains in B, and B,;
for (each contour chain C in B)

begin
split C into Ci and C2;
if (there exists CB, in B, and CB, in Bz coincide
with Ct and C,)

set the valid of C and the pred of CB, and CB,
to true

else
set the valid of C and the pred of CB, and CB,
to false

end
end

if (B branches only in one direction) then
I* B1 and Bz are the octree nodes */

begin
if (the corresponding octree node of B, is empty)
then set B, to NULL
else LBONO-SB(B,);
if (the corresponding octree node of B2 is empty)
then set Bz to NULL
else LBONO-SB(B*);
end

else 1” B, and Bz are not octree nodes */
LBONO-SB(Bi); LBONO-SB(B2);

for (each contour chain C in B)
if (the valid of C is true and the pred of C is false)

if (not both the sub-chains of C are valid) then
output the valid sub-chain for rendering and

set the pred value to true;
for (each contour chain C in B, and B2)

if (the vaIid of C is true and the pred of C is false)
output C for rendering;

end

3.4. An improved linear branch-on-need octree
As described previously, each node of the branch-

on-need bisection tree contains fields representing the
minimum and the maximum coordinates of the
corresponding box. The value of the branch field in
a node of the BONO can be derived from the
minimum and the maximum coordinates of the
corresponding BONBT node, since the range of the
volume represented by the tree node can be obtained
from the minimum and maximum coordinates and
the value of the branch can be derived from the range
using the branch-on-need strategy. Hence the branch
normally found on the internal node of the standard
BONO can be deleted, with additional computations,
of course. Note that the branch field is not necessary
for leaf nodes. Moreover, the address field of leaf
nodes can be deleted since it can be derived directly
from the minimum coordinate found on the corres-
ponding node in the BONBT.

To further reduce the space needed to store a
BONO, we can partition the value of the density into,
say eight intervals, and use a field min-max of 8-bits
to represent the status of the data values for the node;
see Ref. [111. In the course of constructing a BONO,
we assign the min-max of a node by setting the bits
whose corresponding density intervals contain data
values to 1 and the bits whose density intervals
contain no data values to 0. For example, volume
data with 8-bits for each vertex has densities ranging
from 0 to 255. If the density range of 132, 1281 is
found to be more important for rendering, the
density range O-255 can be partitioned into O-31,
3247, 4863, 64-79, 8&95, 96111, 112-128, 129-
255, each of which corresponds to bit i of the field
min-max, i=O, . , 7. As an example, for a node
containing data values ranging from 69 to 75 and
from 100 to 110, the associated min-max is 00010100.

To check if the current BONO node contains the
surface of a given threshold, we need two auxiliary
flags, value-l and value-2, with the same length as
min-max to encode the threshold. Bits in value-l and

Efficient generation of isosurfaces 809

value-2 are initially set to 0. For the given threshold,
we determine the range in which the threshold lies
and set the corresponding bit in value-l and value-2
to 1. Moreover, the bits on the right of this bit of
value-l and those on the left of this bit of value-2 are
set to 1. Now the 1 bits of value-l represent ranges
with values equal to or greater than the threshold and
the 1 bits of value-2 represent ranges with values
equal to or less than the threshold. To decide whether
the volume represented by the current node is of
current interest, we need to perform the following
two logical and operations:

r, = min-max and value-l
r2 = min-max and value-2.

If r, =0 or rz=O the volume of the current node
contains no isosurface of the given threshold since all
the data values in the volume are below or above the
threshold. If both rl and r2 are nonzero, the volume
contains an isosurface of interest. The data fields
needed in the improved BONO are the following: For
the internal nodes, we need two fields, min-max and
address. For leaf nodes, only min-max is required.

As described above, the improved BONO can be
implemented as a linear BONO. Since the structure
of leaf nodes is different from that of internal nodes,
we now have a linear octree for internal nodes and an
array for leaf nodes. The linear BONO for internal
nodes is basically similar to the one described above
except that the parent node of a leaf node now has an
index referring to the index of that leaf node in the
array for leaf nodes. So each record of the improved

linear BONO for internal nodes contains a min-max
and an index and each record of the array for leaf
nodes contains only min-max.

Figure 2 depicts the same BONO as that shown in
Fig. 1, together with the corresponding improved
linear octrees. The record for the leftmost child of node
0 is referred to by index of node 0, which is 1. The
record for the third leftmost child of node 2 is indicated
by adding 2 to the index of node 2, which is 4.

3.5. Implementation and examples
The proposed method has been implemented on an

IRIS Indigo Entry with an R4000 CPU and 16MB of
RAM. For comparison, three other isosurface gen-
eration algorithms, the marching cube algorithm
(MCUBE) [l], BONO approach (BONO) [5], and
Splitting-Box (SB) algorithm [7], were also imple-
mented. The linear BONO data structure described
above was implemented in the BONO approach and
in the proposed method. In addition, the improved
linear BONO structure described above was imple-
mented in the proposed method. The proposed
method using the linear BONO is denoted by
LBONO-SB-1 and the proposed method using the
improved linear BONO is denoted by LBONO-SB-2.
As shown below, the improved linear BONO
significantly reduces the memory space required with
a much smaller additional cost. The current imple-
mentations of these four methods do not consider
effective ways to reuse previously computed inter-
section points. For the BONO approach and the
proposed method, the amount of time required for

0 1 2 3 4 5 6 789 10 11

(a) A BONO with internal nodes and leaf nodes numbered separately.

(b) Linear octree for internal nodes

(c) Array for leaf nodes

Fig. 2. An improved BONO and its linear octrees

810 J.-H. Chuang and W.-C. Lee

Table 2. The statistics for the head data with a threshold of 48

Time (s) Triangle
Space

Method Is G Ratio (%) Number Ratio (%) ratio (%)

MCUBE 0 305 100 419,753 100
BONO 16 138 50.49 419,753 100 100
SB 0 456 149.51 166,002 39.5
LBONO-SB-1 16 167 60 139,905 33.3 100.13
LBONO-SB-2 12 202 70.16 139,905 33.3 23.03

S: time for setting up BONO.
G: time for isosurface extraction.

Table 3. The statistics for the head data with a threshold of 80

Method

Time (s) Triangle
Space

S G Ratio (%) Number Ratio (%) ratio (%)

MCUBE 0 334 100 585,03 1 100
BONO 16 173 56.59 585,03 1 100 100
SB 0 493 147.6 296,292 50.64
LBONO-SB-1 16 203 65.57 247,472 42.3 100.13
LBONO-SB-2 12 234 73.65 247,472 42.3 23.03

S: time for setting up BONO.
G: time for isosurface extraction.

Table 4. The statistics for the brain data with a threshold of 45

Method

Time (s) Triangle
Space

s G Ratio (%) Number Ratio (%) ratio (%)

MCUBE 0 461 100 1,321,498 100
BONO 19 233 53.96 1,321,498 100 100
SB 0 826 176.87 894,646 67.69
LBONO-SB-1 19 284 64.88 824,306 62.37 100.10
LBONO-SB-2 15 317 71.09 824,306 62.37 23.03

S: time for setting up BONO.
G: time for isosurface extraction.

setting up BONO is denoted by Sand that needed for
isosurface generation by G. The comparisons of
speed and the number of triangles generated are
made relative to the performance of MCUBE.

Two data sets were tested. The data values of each
set take one byte for storage and range from 0 to 255.
For the improved linear BONO, the range of the data
values is partitioned into the following eight intervals:
&31, 3247, 48-63, 64-79, 8&95, 96-111, 112-128,
129-255. The first data set tested was volume data of a
3-D head with resolution of 256 x 256 x 80. Table 2
shows the statistics obtained for the threshold of 48.
The LBONO-SB-1 takes 60% of the time taken by
MCUBE, which is about 9% more than that needed by
BONO and about 89% less than that needed by SB.
Moreover, LBONO-SB-1 and LBONO-SB-2 elimi-
nate about 6% more triangles than SB. This may be
because these two methods use the branch-on-need
bisection strategy, rather than the even-subdivision

strategy used in SB. One notable observation is that
LBONO-SB-2 requires only 23.03% of the memory
space needed by LBONO-SB-1 with about 10%
additional computation cost. As described above,
LBONO-SB- 1 requires four bytes for the fields brunch
and irzdex and two bytes for minimum-density and
muxirnum-density. As shown above, LBONO-SB-2
needs four bytes for each internal node and only one
byte for each leaf node. The BONO of the head data
has 93,669 internal nodes and 655,360 leaf nodes.
Consequently, a total of 4,494,174 bytes are needed for
the linear BONO used in LBONO-SB-1 and 1,035,886
bytes are needed for the improved linear BONO in
LBONO-SB-2. Note that the branch-on-need bisec-
tion tree has 23 levels and requires only 23 x 130 bytes,
where 23 is the number of levels (=loga(256
x 256 x 80)) and 130 is the number of bytes necessary
for a tree node. So the bisection tree requires only
(1 + 22 x 2) x 130 bytes. Table 3 shows the statistics

Efficient generation of isosurfaces

Fig. 3. Head image with a threshold of 80 produced by MCUBE and BONO.

Fig. 4. Head image with a threshold of 80 produced by SB.

obtained for the threshold of 80; the results in Table requires only 23.03% of the space needed by
3 are similar to those in Table 2. The LBONO-SB-1 LBONO-SB-1 with about 8% additional computa-
takes 65.57% of the time needed by MCUBE, which tion cost. Table 4 shows statistics for the isosurface
is about 9% more than that needed by BONO and generation on a brain data, with a threshold of 45.
about 82% less than that needed by SB. Moreover, The brain data has a resolution of 256 x 256 x 109
LBONO-SB-I and LBONO-SB-2 eliminate about with one byte for each item of data. The BONO for
8.3% more triangles than SB and LBONO-SB-2 the brain data consists of 127,013 internal nodes and

812 J.-H. Chuang and W.-C. Lee

Fig. 5. Head image with a threshold of 80 produced by LBONO-SB-1 and LBONO-SB-2.

884,736 leaf nodes. A total of 6,070,496 bytes are
required for the linear BONO used in LBONO-SB-1
and 1,398,638 bytes for the improved linear BONO.
The branch-on-need bisection tree needs 5850 bytes,
since the tree is of height 23 (=loga(256 x 256 x 109)).
So LBONO-SB-1 and LBONO-SB-2 require
6,076,344 and 1,398,638 bytes, respectively, and
LBONO-SB-2 requires only 23.03% of the space
needed for LBONO-SB-1 with about 6% additional
computation cost. The LBONO-SB-1 takes 64.88%
of the time needed by MCUBE, which is about 11%
more than that needed by BONO and about 112%
less than that needed by SB. Moreover, LBONO-
SB-1 and LBONO-SB-2 eliminate about 5.3% more
triangles than SB. From the tested examples, we can
make the following general observations:

l LBONO-SB-1 takes about 10% more time than
BONO and reduces the number of triangles
generated by 33% to 63%.

l LBONO-SB-2 requires only about 23% of the
space needed by BONO and reduces the number of
triangles by 33% to 63%, with about 14% to 22%
additional computation cost.

l Both LBONO-SB-1 and LBONO-SB-2 not only
consume much less time than SB but also produce
fewer triangles.

l LBONO-SB-2 consumes only about 23% of the
space needed by LBONO-SB-1 with little addi-
tional computation time.

4. CONCLUDING REMARKS

While the marching cube method for isosurface
generation is simple and effective, it explores volumes
that <are of no current interest and produces an
extremely large number of triangles. In this paper we
have described a two-phase algorithm that resolves
both of these problems. The algorithm employs a
branch-on-need octree to avoid useless exploration of
volume and reduces the number of generated
triangles by adapting the size of the triangles to the
surface’s shape. Methods are also given that greatly
reduce the amount of space required for the branch-
on-need octree and generate identical results with
little additional computational cost. The proposed
algorithm is effective in speeding up the isosurface
generation, in reducing the size of triangle meshes,
and in decreasing the amount of memory required.

REFERENCES

1. W. E. Lorensen and H. E. Cline, Marching cubes: a
high resolution 3D surface construction algorithm.
Camp. Grph. 22, 163-169 (1987).

2. D. Meyers, S. Skinner, and K. Sloan, Surfaces from
contours. ACM Trans. Graph. 11, 228-258 (1992).

3. M. Levoy, Display of surfaces from volume data. IEEE
Comp. Graph. Appl. 8, 29-31 (1988).

4. L. Westover, Footprint evaluation for volume
rendering. Camp. Graph. 24, 367-376 (1990).

5. J. Wilhelms and A. Van Gelder, Octrees for faster
isosurface generation. ACM Trans. Graph. 11, 201-227
(1!>92).

6. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle, Mesh optimization. Proc. SIGGRAPH ‘93,
19-26 (1993).

Figures 3-5 are images of the head data with a
7. H. Miller ‘and M. Stark, Adaptive generation of

threshold of 80.
surfaces in volume data. The Visual Comp. 9, 182-199
(1!)93).

Efficient generation of isosurfaces 813

8. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, 10. J. Wilhehns and A. Van Gelder, Topological considera-
Decimation of triangle meshes. Camp. Graph. 26,65-70 tion in isosurfacc generation. Comp. Graphics, 24,79-86
(1992). (1990).

9. G. M. Neilson and B. Hamann, The asymptotic decider: 11. C.-C. Lin. A fast volume rendering algorithm. Master’s
Resolving the ambiguity in marching cubes. Proc. thesis, National Chiao Tung University (1993).
Visualization ‘91, 83-90 (1991).

