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Abstract-An efficient method for extracting isosurfaces from volume data is proposed. The method 
utilizes a modified branch-on-need octree to bypass regions of no current interest. In addition, during the 
generation of triangle meshes neighboring triangles are merged according to certain criteria. Methods are 
also given to significantly reduce the space required for octrees. The method is more efficient and generates 
far fewer triangles than the marching cube algorithm. The performance of the proposed method is 
compared with that of several existing methods. 

1. INTRODUCTION 
Many scientific computations and medical applica- 
tions produce volumetric data sets defined on 3-D 
grids. Since volume data is generally complex it is 
hard to understand without visual displays. Volu- 
metric data can be visualized by either surface 
rendering [l, 21 or direct volume rendering [3, 41. 
Surface rendering techniques extract the isosurface of 
a particular threshold and approximate the surface 
by intermediate polygonal meshes. Although the 
surface rendering is generally simple and efficient, it 
is unable to effectively display the interior of the 
volumetric data. Direct volume rendering, on the 
other hand, directly visualizes the volumetric data 
without generating any intermediate geometry and 
allows the user to probe into the interior of the 
volumetric data. 

The marching cube method proposed in Ref. [1] 
has been recognized as an effective and simple 
method for isosurface extraction; nevertheless, this 
method has three notable problems. First of all, the 
marching cube method explores all cells, including 
those containing no surface of interest [5]. Second, 
the marching cube method generates an excessive 
number of triangles [6-81. Finally, this method may 
produce surfaces with holes, because an ambiguity 
may be found on the common face of adjacent cubes 
[9, 101. 

In this paper, a two-phase method is proposed to 
resolve the first two of these problems. The method 
combines and extends the octree structure proposed 
in Ref. [5] and the splitting-box approach in Ref. [7]. 
In the first phase, the set-up phase, a branch-on-need 
octree is constructed and represented as a linear 

t Supported by the National Science Council of the ROC 
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octree. The: second phase performs mesh reduction 
using the branch-on-need bisection tree while gen- 
erating triangle meshes for the isosurface. Methods 
are proposed to greatly reduce the amount of 
memory required for the octree. Comparative studies 
show that the proposed method is effective in 
speeding up? the surface generation, in reducing the 
size of triangle meshes, and in reducing the amount 
of memory required. 

2. THE MARCHING CUBE ALGORITHM 
In the marching cube algorithm, a cube is formed 

by eight adjacent data points on two consecutive 
slices. Cubes are processed in a row-column and slice 
by slice order. Surface points on the edges of cubes 
are found by linear interpolation and their normals 
are derived by using the central difference. 

The basic marching cube algorithm traverses all 
cubes, including cubes that contain no surfaces of 
interest. This useless exploration can be avoided by 
representing the volumetric space with a hierarchical 
structure such as an octree, especially the branch-on- 
need octree (BONO) proposed in Ref. [5]. If each 
node of the octree is associated with the minimum 
and maximum densities in the subvolume corespond- 
ing to that node, exploration of the subvolume will be 
unnecessary if the threshold is outside the range of 
the minimum and maximum densities. The charac- 
teristic of the branch-on-need octree is to delay 
subdivision until it is absolutely necessary. To 
construct the BONO for a volumetric space, we first 
convert ranges of the volume in the x, y, and z 
directions into binary code. Note that the range of 
the volume in an axis is one less than the number of 
intervals between data points in that axis. The 
directions of the volume that must be subdivided 
are those whose ranges have 1 as the leftmost bit. The 
designated range is split into the lower part and the 
upper part. The lower part always covers the largest 
possible exact power of 2, that is, the lower part is a 

805 



806 J.-H. Chuang and W.-C. Lee 

Table 1. Branch-on-need subdivision of a 5 x 4 x 3 volume 

Direction 

X 
Y 
z 

Parent Lower Upper 
Range Binary Range Binary Range Binary 

4 100 3 011 0 000 
3 011 3 011 3 011 
2 010 2 010 2 010 

bit string of l’s which is one bit shorter than the 
original code. The upper part is the original code 
with the leftmost 1 bit removed. Consider a volume 
of resolution 5 x 4 x 3 as an example. To see how the 
BONO is built, we first convert three ranges 5 - 1 = 4, 
4 - 1 = 3, and 3 - 1 = 2 into binary code as shown in 
Table 1. Since only the range of the x direction has a 
1 as the first bit, the volume is subdivided in the x 
direction in level one and the range of the x direction 
is split into two parts. The code of the lower part of 
the corresponding subdivision is a bit string of l’s 
that is one bit shorter than the original code. The 
code of the upper part is the original code with the 
leftmost bit removed. The codes of the ranges in they 
and z directions remain unchanged (Table 1). 

The number of triangles produced by the basic 
marching cube algorithm is generally large. The 
triangle meshes can in general be reduced either 
during or after the surface generation [7, 81. The 
splitting-box (SB) algorithm proposed in Ref. [7] 
does the mesh reduction while generating the triangle 
mesh and results in a reduced triangle mesh with an 
error less than the size of the cell. The MC property is 
used throughout the splitting-box algorithm. An edge 
of a box is called MC if it possesses at most one 
transition of the isosurface. A face of a box is MC if 
all its four edges are MC. A box is called MC if its 
faces are all MC faces. The SB algorithm takes the 
entire volume data as the initial box and recursively 
bisects the box down to the cell level. The box is 
bisected perpendicularly to its longest edge or 
randomly if the edges are of equal length. Whenever 
a box becomes MC during the bisection process, i.e. 
all its edges contain at most one transition either 
from black to white or from white to black, the 
contour chains (polygons) in the box are found by 
the standard marching cube algorithm. The contour 
chains derived are passed to the descendant boxes 
after the bisection and are checked to see if they are 
‘legitimate’ approximations of the contour chains 
found in the descendant boxes. Each contour chain is 
associated with a Boolean valid to identify whether 
the chain is a legitimate approximation. If a contour 
chain in the upper level of the bisection process is a 
legitimate approximation of the contour chains in the 
lower level, the latter are replaced by the former. 

3. EFFICIENT GENERATION OF ISOSURFACES 

The splitting-box algorithm traverses all cells, 
including cells in regions of no current interest, and 
results in a time complexity of O(n3), where n3 is 

the number of input grid points [7]. In this section, 
we present an algorithm that first constructs the 
branch-on-need octree and from which a brunch-on- 
need bisection tree is derived. With the branch-on- 
need bisection tree, the number of triangles 
generated is reduced by adapting the size of 
triangles to the surface’s shape. Methods are also 
given to greatly reduce the memory required for 
the BONO. This is crucial when only limited 
memory space is available. 

3.1. L.inear branch-on-need octree 
Each node of the BONO contains fields for 

storing the minimum-density, maximum-density, 
branch, and address. The minimum-density and 
maximum-density represent the minimum and max- 
imum densities, respectively, in the volume repre- 
sented by the node. The branch represents how the 
node is subdivided; the branch is usually three bits 
long, with 1 representing the required subdivision in 
a particular direction. The address field is usually a 
pointer that points to the leftmost child of the 
node. 

Since the number of nodes on each level of the 
BONO can be computed from the binary representa- 
tions of the ranges, the space required for storing the 
linear BONO can be allocated beforehand. In the 
linear BONO, the four-byte-long pointers can be 
replaced by an index which normally requires only 
three bytes. The index in the record of the linear 
BONO refers to the record of the leftmost child of the 
node. The index of the i-th leftmost child of a node 
can be referred to by adding i- 1 to the index of the 
node. The scheme evidently allows to traverse the 
whole tree. Each record of the linear BONO contains 
minimum-density, maximum-density, branch, and 
index. Figure 1 depicts a BONO with one node on 
level one, four nodes on level two, and 12 nodes on 
level three, together with the corresponding linear 
BONO. In the linear octree, the record for the 
leftmost child of node 2 can be indicated by the index 
of node 2, which is 7. The record for the third 
leftmost child of node 2 can be indicated by adding 2 
to the index of node 2, which is 9. 

3.2. Branch-on-need bisection tree 
After constructing the linear BONO for the given 

volum~etric data, we next traverse the BONO to 
generate the isosurface for a given threshold and 
adapt the size of the polygon meshes to the shape 
of isos,urface. As the BONO is traversed, an octree 
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5 6 7 8 9 10 11 12 13 14 15 16 

(a) A BONO 

0 1 2. 15 16 

(b) ‘Ihe corresponding linear BONO 

Fig. 1. A BONO and its linear BONO. 

node is discarded if the threshold is less than its 
minimal value or larger than its maximum; other- 
wise, the subdivision for the octree node is replaced 
by a sequence of at most three bisections starting 
from the box represented by the current octree 
node. The bisection is performed in the z direction, 
then in the y direction, and finally in the x 
direction. Whether a bisection in a specific direc- 
tion is necessary is determined by the branch field 
of the octree node. The branch field of the internal 
octree node consists of three bits representing how 
the node is subdivided in the z, y, and x direction. 
For example, brunch= 111 means subdivisions in 
each of the z, y, and x direction and brunch= 101 
means subdivisions in only the z and x direction. 
That is, the bisection order follows the order of the 
l-bit in the branch field. After the bisection, the 
branch fields of subboxes will represent the 
remaining directions for further subdivision. For 
example, for branch= 101, the branch fields of the 
subboxes after subdivision in the z direction are 
assigned to be 001. For a specific direction, the 
bisection is performed identically to the subdivision 
performed on the BONO in that direction. This is 
why the bisection tree is called a branch-on-need 
bisection tree (BONBT). Consequently, each sub- 
division of BONO is correctly replaced by at most 
three bisections. 

Each node of the BONBT contains information on 
the minimum and the maximum coordinates of the 
corresponding box, the 12 Booleans for the MC 
property on the 12 edges, the 12 contour points, the 12 
contour segments, and the four contour chains. 
Although many fields are needed in a node, the space 
requirement of the bisection tree is on the order of log 
m, where m is the number of grid points, since at most 
one path of the tree is required to be in the memory, 

3.3. Generation of reduced triangular meshes 
For a given threshold, we traverse the BONO, 

discard the volume whose [minimum-density, max- 
imum-density] does not contain the threshold, and 
substitute the subdivision of the node whose [mini- 
mum-density, maximum-density] contains the thresh- 
old with at most three branch-on-need bisections. 
For such a sequence of bisections, methods similar to 
the splitting-box algorithm [7] are employed to 
compute (contour chains of boxes and examine 
whether the contour chains of two bisected boxes 
can be approximated by the contour chains of their 
parent box within a specific error 6, and 6 is the size 
of the cell. The bisections are performed recursively 
following the traversal of the BONO from top to 
bottom until a leaf node of the BONO is reached. 
Contour chains are then collected according to their 
legitimation of approximation during the bottom-to- 
top phases of the tree traversal. 

Here we discuss the steps of mesh generation 
involved in the bisection process. While the BONO is 
traversed, an octree node A is discarded if the 
threshold is less than its minimal value or larger 
than its maximum; otherwise, the subdivision for this 
octree node is replaced by a sequence of at most three 
branch-on-need bisections starting from the box B 
represented by the current octree node. We first 
derive all contour chains on B using marching cube 
computations. Each contour chain is associated with 
two fields, valid andpred. When B is bisected into two 
subboxes, say B, and B,, we verify whether B, and B2 
are MC. If any of B1 and B2 is not an MC box, the 
valid fields of all contour chains of B are set to false. 
If one of B, and B2 is MC and the other is not, we 
compute all contour chains of the MC subbox and 
continue co recursively examine the quality of the 
contour chains. If both B1 and B2 are MC boxes, 
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contour chains for both are derived and the contour 
chains of B are examined to see if they approximate 
the contour chains of B, and B2 within 6. We 
examine every intersection between contour segments 
of B and four edges on the common face of B1 and 
B2. If an intersection point lies between a pair of 
consecutive vertices of different signs, then this point 
is called a feasible point and the respective contour 
points of B, and B2 are replaced by this point. After 
all the intersections are processed, we bisect each 
contour chain C of B into two subchains Ci and C,, 
where C, is on B, and C, is on Bz, and check to see if 
there exist contour chains CB, on B, and CB, on BZ, 
respectively, that coincide with Ci and C,. If such 
chains do exist, CB, and CBp are legitimately 
approximated by C and the valid of C and the pred 
of CB, and CB, are set to true. Otherwise, the valid of 
C is set to false. After all contour chains of B are 
examined, B1 and B2 are bisected and contour chains 
on B1 and B2 are examined recursively. 

The above steps are performed recursively in a 
traversing order of the binary BONBT until a 
2x 2 x 2 box is obtained. Contour chains are 
collected on the way up during the traversal of the 
bisection tree. A contour chain is output if its valid is 
true and pred is false, since there is no contour chain 
in the parent box that is able to approximate it within 
the error of 6. Now we summarize the recursive 
procedure for the surface generation as follows: 
assume the box represented by the root of BONBT is 
B and all contour chains of B have been computed. 

PROCEDURE LBONO-SB(B) 
begin 
bisect B into B1 and Bz; 
compute all feasible points on the common edges of 
B, and B2; 
compute all contour points of B1 and B2; 
replace the contour points by the corresponding 
feasible points in B1 and B2 

if there is one; 
if (not both B1 and B2 are MC) then 

for (each contour chain C of B) 
set the valid of C to false; 

Compute the contour chains of the MC box; 
else begin /* if both B1 and B2 are MC */ 

compute all contour chains in B, and B,; 
for (each contour chain C in B) 

begin 
split C into Ci and C2; 
if (there exists CB, in B, and CB, in Bz coincide 
with Ct and C,) 

set the valid of C and the pred of CB, and CB, 
to true 

else 
set the valid of C and the pred of CB, and CB, 
to false 

end 
end 

if (B branches only in one direction) then 
I* B1 and Bz are the octree nodes */ 

begin 
if (the corresponding octree node of B, is empty) 
then set B, to NULL 
else LBONO-SB(B,); 
if (the corresponding octree node of B2 is empty) 
then set Bz to NULL 
else LBONO-SB(B*); 
end 

else 1” B, and Bz are not octree nodes */ 
LBONO-SB(Bi); LBONO-SB(B2); 

for (each contour chain C in B) 
if (the valid of C is true and the pred of C is false) 

if (not both the sub-chains of C are valid) then 
output the valid sub-chain for rendering and 

set the pred value to true; 
for (each contour chain C in B, and B2) 

if (the vaIid of C is true and the pred of C is false) 
output C for rendering; 

end 

3.4. An improved linear branch-on-need octree 
As described previously, each node of the branch- 

on-need bisection tree contains fields representing the 
minimum and the maximum coordinates of the 
corresponding box. The value of the branch field in 
a node of the BONO can be derived from the 
minimum and the maximum coordinates of the 
corresponding BONBT node, since the range of the 
volume represented by the tree node can be obtained 
from the minimum and maximum coordinates and 
the value of the branch can be derived from the range 
using the branch-on-need strategy. Hence the branch 
normally found on the internal node of the standard 
BONO can be deleted, with additional computations, 
of course. Note that the branch field is not necessary 
for leaf nodes. Moreover, the address field of leaf 
nodes can be deleted since it can be derived directly 
from the minimum coordinate found on the corres- 
ponding node in the BONBT. 

To further reduce the space needed to store a 
BONO, we can partition the value of the density into, 
say eight intervals, and use a field min-max of 8-bits 
to represent the status of the data values for the node; 
see Ref. [ 111. In the course of constructing a BONO, 
we assign the min-max of a node by setting the bits 
whose corresponding density intervals contain data 
values to 1 and the bits whose density intervals 
contain no data values to 0. For example, volume 
data with 8-bits for each vertex has densities ranging 
from 0 to 255. If the density range of 132, 1281 is 
found to be more important for rendering, the 
density range O-255 can be partitioned into O-31, 
3247, 4863, 64-79, 8&95, 96111, 112-128, 129- 
255, each of which corresponds to bit i of the field 
min-max, i=O, . , 7. As an example, for a node 
containing data values ranging from 69 to 75 and 
from 100 to 110, the associated min-max is 00010100. 

To check if the current BONO node contains the 
surface of a given threshold, we need two auxiliary 
flags, value-l and value-2, with the same length as 
min-max to encode the threshold. Bits in value-l and 
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value-2 are initially set to 0. For the given threshold, 
we determine the range in which the threshold lies 
and set the corresponding bit in value-l and value-2 
to 1. Moreover, the bits on the right of this bit of 
value-l and those on the left of this bit of value-2 are 
set to 1. Now the 1 bits of value-l represent ranges 
with values equal to or greater than the threshold and 
the 1 bits of value-2 represent ranges with values 
equal to or less than the threshold. To decide whether 
the volume represented by the current node is of 
current interest, we need to perform the following 
two logical and operations: 

r, = min-max and value-l 
r2 = min-max and value-2. 

If r, =0 or rz=O the volume of the current node 
contains no isosurface of the given threshold since all 
the data values in the volume are below or above the 
threshold. If both rl and r2 are nonzero, the volume 
contains an isosurface of interest. The data fields 
needed in the improved BONO are the following: For 
the internal nodes, we need two fields, min-max and 
address. For leaf nodes, only min-max is required. 

As described above, the improved BONO can be 
implemented as a linear BONO. Since the structure 
of leaf nodes is different from that of internal nodes, 
we now have a linear octree for internal nodes and an 
array for leaf nodes. The linear BONO for internal 
nodes is basically similar to the one described above 
except that the parent node of a leaf node now has an 
index referring to the index of that leaf node in the 
array for leaf nodes. So each record of the improved 

linear BONO for internal nodes contains a min-max 
and an index and each record of the array for leaf 
nodes contains only min-max. 

Figure 2 depicts the same BONO as that shown in 
Fig. 1, together with the corresponding improved 
linear octrees. The record for the leftmost child of node 
0 is referred to by index of node 0, which is 1. The 
record for the third leftmost child of node 2 is indicated 
by adding 2 to the index of node 2, which is 4. 

3.5. Implementation and examples 
The proposed method has been implemented on an 

IRIS Indigo Entry with an R4000 CPU and 16MB of 
RAM. For comparison, three other isosurface gen- 
eration algorithms, the marching cube algorithm 
(MCUBE) [l], BONO approach (BONO) [5], and 
Splitting-Box (SB) algorithm [7], were also imple- 
mented. The linear BONO data structure described 
above was implemented in the BONO approach and 
in the proposed method. In addition, the improved 
linear BONO structure described above was imple- 
mented in the proposed method. The proposed 
method using the linear BONO is denoted by 
LBONO-SB-1 and the proposed method using the 
improved linear BONO is denoted by LBONO-SB-2. 
As shown below, the improved linear BONO 
significantly reduces the memory space required with 
a much smaller additional cost. The current imple- 
mentations of these four methods do not consider 
effective ways to reuse previously computed inter- 
section points. For the BONO approach and the 
proposed method, the amount of time required for 

0 1 2 3 4 5 6 789 10 11 

(a) A BONO with internal nodes and leaf nodes numbered separately. 

(b) Linear octree for internal nodes 

(c) Array for leaf nodes 

Fig. 2. An improved BONO and its linear octrees 
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Table 2. The statistics for the head data with a threshold of 48 

Time (s) Triangle 
Space 

Method Is G Ratio (%) Number Ratio (%) ratio (%) 

MCUBE 0 305 100 419,753 100 
BONO 16 138 50.49 419,753 100 100 
SB 0 456 149.51 166,002 39.5 
LBONO-SB-1 16 167 60 139,905 33.3 100.13 
LBONO-SB-2 12 202 70.16 139,905 33.3 23.03 

S: time for setting up BONO. 
G: time for isosurface extraction. 

Table 3. The statistics for the head data with a threshold of 80 

Method 

Time (s) Triangle 
Space 

S G Ratio (%) Number Ratio (%) ratio (%) 

MCUBE 0 334 100 585,03 1 100 
BONO 16 173 56.59 585,03 1 100 100 
SB 0 493 147.6 296,292 50.64 
LBONO-SB-1 16 203 65.57 247,472 42.3 100.13 
LBONO-SB-2 12 234 73.65 247,472 42.3 23.03 

S: time for setting up BONO. 
G: time for isosurface extraction. 

Table 4. The statistics for the brain data with a threshold of 45 

Method 

Time (s) Triangle 
Space 

s G Ratio (%) Number Ratio (%) ratio (%) 

MCUBE 0 461 100 1,321,498 100 
BONO 19 233 53.96 1,321,498 100 100 
SB 0 826 176.87 894,646 67.69 
LBONO-SB-1 19 284 64.88 824,306 62.37 100.10 
LBONO-SB-2 15 317 71.09 824,306 62.37 23.03 

S: time for setting up BONO. 
G: time for isosurface extraction. 

setting up BONO is denoted by Sand that needed for 
isosurface generation by G. The comparisons of 
speed and the number of triangles generated are 
made relative to the performance of MCUBE. 

Two data sets were tested. The data values of each 
set take one byte for storage and range from 0 to 255. 
For the improved linear BONO, the range of the data 
values is partitioned into the following eight intervals: 
&31, 3247, 48-63, 64-79, 8&95, 96-111, 112-128, 
129-255. The first data set tested was volume data of a 
3-D head with resolution of 256 x 256 x 80. Table 2 
shows the statistics obtained for the threshold of 48. 
The LBONO-SB-1 takes 60% of the time taken by 
MCUBE, which is about 9% more than that needed by 
BONO and about 89% less than that needed by SB. 
Moreover, LBONO-SB-1 and LBONO-SB-2 elimi- 
nate about 6% more triangles than SB. This may be 
because these two methods use the branch-on-need 
bisection strategy, rather than the even-subdivision 

strategy used in SB. One notable observation is that 
LBONO-SB-2 requires only 23.03% of the memory 
space needed by LBONO-SB-1 with about 10% 
additional computation cost. As described above, 
LBONO-SB- 1 requires four bytes for the fields brunch 
and irzdex and two bytes for minimum-density and 
muxirnum-density. As shown above, LBONO-SB-2 
needs four bytes for each internal node and only one 
byte for each leaf node. The BONO of the head data 
has 93,669 internal nodes and 655,360 leaf nodes. 
Consequently, a total of 4,494,174 bytes are needed for 
the linear BONO used in LBONO-SB-1 and 1,035,886 
bytes are needed for the improved linear BONO in 
LBONO-SB-2. Note that the branch-on-need bisec- 
tion tree has 23 levels and requires only 23 x 130 bytes, 
where 23 is the number of levels (=loga(256 
x 256 x 80)) and 130 is the number of bytes necessary 
for a tree node. So the bisection tree requires only 
(1 + 22 x 2) x 130 bytes. Table 3 shows the statistics 
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Fig. 3. Head image with a threshold of 80 produced by MCUBE and BONO. 

Fig. 4. Head image with a threshold of 80 produced by SB. 

obtained for the threshold of 80; the results in Table requires only 23.03% of the space needed by 
3 are similar to those in Table 2. The LBONO-SB-1 LBONO-SB-1 with about 8% additional computa- 
takes 65.57% of the time needed by MCUBE, which tion cost. Table 4 shows statistics for the isosurface 
is about 9% more than that needed by BONO and generation on a brain data, with a threshold of 45. 
about 82% less than that needed by SB. Moreover, The brain data has a resolution of 256 x 256 x 109 
LBONO-SB-I and LBONO-SB-2 eliminate about with one byte for each item of data. The BONO for 
8.3% more triangles than SB and LBONO-SB-2 the brain data consists of 127,013 internal nodes and 
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Fig. 5. Head image with a threshold of 80 produced by LBONO-SB-1 and LBONO-SB-2. 

884,736 leaf nodes. A total of 6,070,496 bytes are 
required for the linear BONO used in LBONO-SB-1 
and 1,398,638 bytes for the improved linear BONO. 
The branch-on-need bisection tree needs 5850 bytes, 
since the tree is of height 23 (=loga(256 x 256 x 109)). 
So LBONO-SB-1 and LBONO-SB-2 require 
6,076,344 and 1,398,638 bytes, respectively, and 
LBONO-SB-2 requires only 23.03% of the space 
needed for LBONO-SB-1 with about 6% additional 
computation cost. The LBONO-SB-1 takes 64.88% 
of the time needed by MCUBE, which is about 11% 
more than that needed by BONO and about 112% 
less than that needed by SB. Moreover, LBONO- 
SB-1 and LBONO-SB-2 eliminate about 5.3% more 
triangles than SB. From the tested examples, we can 
make the following general observations: 

l LBONO-SB-1 takes about 10% more time than 
BONO and reduces the number of triangles 
generated by 33% to 63%. 

l LBONO-SB-2 requires only about 23% of the 
space needed by BONO and reduces the number of 
triangles by 33% to 63%, with about 14% to 22% 
additional computation cost. 

l Both LBONO-SB-1 and LBONO-SB-2 not only 
consume much less time than SB but also produce 
fewer triangles. 

l LBONO-SB-2 consumes only about 23% of the 
space needed by LBONO-SB-1 with little addi- 
tional computation time. 

4. CONCLUDING REMARKS 

While the marching cube method for isosurface 
generation is simple and effective, it explores volumes 
that <are of no current interest and produces an 
extremely large number of triangles. In this paper we 
have described a two-phase algorithm that resolves 
both of these problems. The algorithm employs a 
branch-on-need octree to avoid useless exploration of 
volume and reduces the number of generated 
triangles by adapting the size of the triangles to the 
surface’s shape. Methods are also given that greatly 
reduce the amount of space required for the branch- 
on-need octree and generate identical results with 
little additional computational cost. The proposed 
algorithm is effective in speeding up the isosurface 
generation, in reducing the size of triangle meshes, 
and in decreasing the amount of memory required. 
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