
Feature Article 

A New Space 
Subdivision for Ray 
Tracing CSC Solids 

n solid modeling, the two most common I schemes for representing solids are con- 
structive solid geometry (CSG) and boundaryrepresen- 
tation (B-rep). CSG has proved advantageous in several 
types of computations, such as the construction of mod- 
els. Other computations, such as rendering, require 
explicit geometry about the boundary of the CSG solid. 

Boundary information for the CSG 
tree can generally be obtained 

Ray tracing successfully through boundary evaluation, but 
this is a highly complex task. 

creates realistic images of Ray tracing is widely recognized 
as a powerful, effective technique 

CSC solids. A nonuniform for producing realistic images of 3D 
scenes especially because it is sim- 

space subdivision scheme ple to implement and can model a 
variety of visual phenomena, such 

that reduces intersection as specular reflection, transparency, 
and shadows. Unfortunately, ray 

computations and point tracing is extremely time-consum- 
ing because of many ray-object 

classifications could make intersection computations. Numer- 
ous methods to speed up the tracing 

this technique even more process have been proposed, such as 
bounding volume and bounding 

attractive. hierarchy’ and space subdivision.2 
Space subdivision is preferable to 

other methods because of its consistent performance in 
scenes of varying complexity. Different space subdivi- 
sion schemes are possible, each with advantages and 
disadvantages, such as binary space partition (BSP) 
trees, octree decomposition, and uniform subdivision. 

Several methods for ray tracing CSG solids based on 
space subdivision have been pr~posed .~”  Previous stud- 
ies generally have emphasized deriving suitable space 
subdivision schemes to reduce the number of intersec- 
tion computations and to efficiently trace the rays. 

Another issue in ray tracing CSG models is the vast 
number of point classifications, whereby ray-primitive 
intersection points are classified with respect to the CSG 
tree to determine if they lie on the boundary of the 
resulting solid. To speed up point classification, Jansen‘ 
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and Roth7 proposed methods for general rendering tech- 
niques. 

In this article, we describe a nonuniform space subdi- 
vision scheme that reduces both the number of ray-object 
intersection computations and point classifications. Our 
method uses the face planes of the primitives’S-bounds,8 
described later, in a bottom-up fashion and produces a 
subdivision wherein the localized CSG tree in each leaf 
voxel is greatly minimized. The use of S-bounds in the 
space subdivision effectively reduces the number of inter- 
section computations as well. The reduction of the local- 
ized CSG tree in turn further reduces the number of 
intersection computations and point classifications. We 
briefly review existing methods for ray tracing CSG 
solids, describe our proposed space subdivision method, 
discuss our implementation and compare it to 
Bouatouch’s4 method, and summarize our test results. 

Direct rendering of CSC solids 
CSG solids can be rendered directly via ray tracing, 

for example, or displayed indirectly by first converting 
CSG trees to B-rep and applying graphics hardware com- 
mon in modern workstations. Indirect rendering looks 
attractive because boundary evaluation is more efficient 
today. Moreover, once the B-rep is available, the view- 
point can be changed without regenerating the B-rep. 
However, shading techniques typically cannot produce 
realistic images. Although radiosity has grown more 
popular for global illumination, its ability to effectively 
handle specular effects is limited. Ray tracing is thus still 
important for realistic off-line rendering of CSG solids. 

Of the many techniques proposed for direct render- 
ing of CSG solids, most extend rendering algorithms 
originally developed for computer graphics. These 
include CSG scan-line algorithms,’ CSG z-buffer algo- 
rithms,” and CSG ray tra~ing.~.’ .~ Two concerns arise 
when using ray tracing to render CSG solids: the com- 
plexity of computing ray-object intersections and the 
need to determine (classify) whether or not the inter- 
section points lie on the resulting solid. 

Roth was the first to apply ray tracing to display CSG 
 model^.^ His algorithm projects each subtree’s bounding 

56 November 1995 0272-1 7-16/95/S4.00 0 1995 IEEE 



box to the view plane and reduces the number of inter- 
section computations. 

Wyvill used octree decomposition to subdivide the 
space until each voxel is classified as inside the CSG solid, 
outside the CSG solid, or of a size less than a prescribed 
tolerance.’ Cells that overlap the boundary of the CSG 
solid are associated with reduced CSG expressions by 
which the intersection computations and point classifi- 
cations can be performed. 

The so-called minimal bounding box of the primitive 
can be used to prune portions outside the CSG ~ o l i d . ~ , ~  
Arnaldi subdivided the view plane through a BSP based 
on the projection of the minimal bounding boxes. He 
then extended the 2D partition to 3D with further sub- 
division along the view dire~tion.~ Bouatouch employed 
BSP-based subdivision to subdivide the space. He used 
the number of minimal bounding boxes in a voxel as a 
stopping ~r i te r ion .~  

Costs associated with ray tracing CSG solids using 
space subdivision include ray-object intersection com- 
putation, ray traversal, and point classification.” Earlier 
studies examined the cost effect of different subdivi- 
sions on intersection computation and ray traversal, but 
not on point classification. Point classification is combi- 
natorial in nature and might require neighborhood 
information in some cases. Moreover, it is an inner loop 
element in the ray tracing process. Hence, it might con- 
sume much of the total processing time, especially for a 
large CSG tree. Any space-subdivision scheme must take 
this into account. 

Effects of space subdivision 
When CSG solids are ray traced using space subdivi- 

sion, each voxel is generally assigned a sub-CSG tree, 
which is the localization of the CSG tree on that v0xe1.~~~ 
Different space subdivisions result in different sub-CSG 
tree assignments and thus different performance in later 
intersection computation and point classification. 

For the CSG solid in Figure la ,  let’s examine the sub- 
CSG tree assignment resulting from the two space sub- 
divisions shown in Figures l b  and IC. Voxel 1 of 
subdivision 1 is associated with a tree of single node a, 
whereas voxel 1 in subdivision 2 has a sub-CSG tree for 
(a u b )  - c. Consequently, an intersection point in voxel 
1 of subdivision 1 must be classified against tree a, while 
the same intersection in subdivision 2 must be classified 
against (a LJ b)  - c. Moreover, the ray intersecting voxel 
1 in subdivision 2 must be checked to see if it intersects 
with primitives a, b, and c, but in subdivision 1 only 
primitive a in voxel 1 must be checked. Subdivision 
using the boundary planes in subdivision 1 results in a 
much simpler sub-CSG tree assignment, which reduces 
the intersection computations and point classifications. 

Bounding box and 5- bounds 
The bounding box technique is widely acknowledged 

as useful in reducing the number of ray-object intersec- 
t i o n ~ . ~  A primitive’s standard bounding box might con- 
tain portions outside the resulting CSG solid. If the box 
can be reduced to exclude these portions, then both the 
intersection computation and the point classification 
will be more efficient. 
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As an example, consider a circle differencing a square 
as shown in Figure 2a. Figure 2b depicts a ray that inter- 
sects the circle’s standard bounding box but not the 
reduced bound. Figure 2c shows that only the intersec- 
tion point lying inside the reduced bound must be clas- 
sified. Similar effects are achieved by reducing the 
bounding box for the CSG tree’s internal nodes. 

The bounding box at the root of the CSG tree can be 
propagated downward toward the leaves, further refin- 
ing the primitive’s bounding  bo^.^,^ The S-bounds con- 
cept uses a similar idea but with additional steps that 
repeat the upward and downward propagations until the 
size of the primitive’s bounding boxes cannot be reduced 
further.’ Initially, each primitive is associated with a 
bounding box. In the upward propagation, we evaluate 
the CSG tree based on the primitives’ current bounding 
boxes and derive a new bounding box for each internal 
node, including the root. In the downward propagation, 
we propagate the current bounding box at the root 
downward toward the leaves. At each level we calculate 
the intersection to further refine the bounding box of 
each child node. Subsequent upward and downward 
propagations minimize the size of each node’s bound- 
ing box, including the root, internal nodes, and leaves. 

Subdividing the space based on face planes of the S- 
bounds effectively reduces intersection computations 
and minimizes the size of the sub-CSG tree assigned to 
each leaf voxel. Minimizing each leaf voxel’s sub-CSG 
tree can further reduce the number of intersection com- 
putations and point classifications. These reductions are 
especially significant for ray tracing CSG solids con- 
taining complex primitives such as tori and sweeping 
volumes. Traditional space subdivisions (for example, 
octree and BSP) generally do not consider the geometry 
of CSG primitives. As a result, the sub-CSG trees can be 
highly complex given densely distributed primitives. 

1 FortheCSG 
iolid in (a), two 
iifferent space 
Subdivisions 
ihown in (b) 
nnd (c) result in 
different sub- 
CSG tree 
assignments. 

2 (a)The 
primitive and 
the effects of a 
ray intersecting 
the primitive’s 
(b) standard 
bounding box 
and (c) reduced 
bounding box. 
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Ray tracing with a new space subdivision 
A nonuniform space subdivision based on S-bounds 

minimizes the size of the bounding boxes as well as the 
size of the sub-CSG tree in each voxel. The increased 
processing cost for ray traversals resulting from nonuni- 
Form subdivision can be reduced through a suitable data 
structure, which we describe later in this section, and 
can be ameliorated by reduced intersection computa- 
tions and point classifications. 

A new space subdivision algorithm 
The nonuniform space subdivision algorithm we pro- 

pose consists of a preprocessing step and a subdivision 
step. In the preprocessing step, we perform the S-bounds 
computation and produce an S-bound for each node of 
the CSG tree. 

The objective of the subdivision step is to subdivide 
the space so as to minimize the sub-CSG tree assigned to 
each leaf voxel. The space subdivision yields a subdivi- 
sion hierarchy and assigns a sub-CSG tree to each leaf 
voxel of this hierarchy. The data structure for the voxel 
on each level of the hierarchy contains pointers both to 
its child voxels and to its neighboring voxels. Each leaf 
voxel of the hierarchy also contains, in addition to point- 
ers, the associated sub-CSG tree. 

To construct the subdivision hierarchy of a CSG tree, 
we subdivide the root’s S-bound by upwardly propa- 
gating the subdivision hierarchies at both child nodes. 
This process is applied recursively to each internal node 
of the CSG tree. Consequently, the subdivision proceeds 
in a bottom-up fashion, starting from the subdivision 
hierarchies of primitives (the primitives’ S-bounds). The 
sub-CSG tree associated with each leaf voxel of the 
subdivision hierarchy is assigned or updated during 
upward propagation. We obtain the subdivision hierar- 
chy of a CSG tree by calling the recursive routine 
Space-Subdivision (node) with parameter node 
the root of the given CSG tree. The input parameter to 
this routine is a node of the CSG tree. 

Space-Subdivision(node) { 

if (node is a primitive) 
return primitive’s S-bound as 
its subdivision hierarchy and 
the primitive itself as the 
associated sub-CSG tree; 

left-subdivision-hierarchy 
= Space-Subdivision 
(left-child-node); 

else { 

right-subdivision-hierarchy 
= Space-Subdivision 
(right-child-node); 

Merge-Subdivision-Hierarchy(node, 
left-subdivision-hierarchy, 
right-subdivision-hierarchy) ; 
1 

1 

Here we describe how the Merge-Subdivision- 

Hierarchy ( ) is computed for a CSG nodep = 16 r, 
where 6 is any Boolean operator and 1 and r are left and 
right children ofp, respectively. Let L, R, and P be the S- 
bounds of I ,  r ,  and p ,  respectively, and SI  and S, be the 
subdivision hierarchies of 1 and r, respectively. The sub- 
division hierarchy of node p ,  denoted as s,, is con- 
structed by subdividing its S-bound P using the 
subdivision hierarchies SI  and S,. The following two 
steps describe this process: 

1. Subdivide S-bound P using the subdivision hierarchy 
of 1. If 6 is a union operator, we subdivide S-bound 
P using the face planes of 1 and embed the subdivi- 
sion hierarchy SI into the leaf voxel that coincides 
with,!,, producing the desired subdivision hierarchy 
S,. The sub-CSG trees originally associated with the 
leaf voxel of SI are retained at the corresponding leaf 
voxels in S,. Other leaf voxels of S, have empty sub- 
CSG trees assigned to them. If the operator 6 is an 
intersection or a difference, the subdivision hierar- 
chy S, and its associated sub-CSG trees are identi- 
cal to that of 1, since S-bounds 1 and P have the same 
extent. 

2. Continue the subdivision of S, using the subdivision 
hierarchyof S,. For each nonempty leaf voxel V, in S, 
we perform a downward search for leaf voxels of S, 
that intersect with V,, then subdivide each of these 
leaf voxels, say V,, using face planes of V,. For each 
newly created leaf voxel, if the voxel intersects with 
V,, then we assign to it the sub-CSG tree that results 
from applying 6 to the sub-CSG trees associated 
with V, and V,, respectively. Otherwise, the voxel 
inherits the sub-CSG tree associated with V,. The 
voxel V, becomes an internal node of S, and is not 
associated with a sub-CSG tree. 

The following pseudocode describes the downward 
search and subdivision in Step 2: 

Downward-Subdivision(operator 8 ,  
subdivision-hierarchy, 
right-voxel V,) { 

if (subdivision-hierarchy is a leaf 

Subdivide the leaf voxel by face 
planes of V, and assign 
appropriate sub-CSG trees to 
newly created leaf voxels as 
described in Step 2; 

voxel) { 

return; 1 
for each child voxel D of the 
subdivision-hierarchy do 
if (voxel D intersects with 

right-voxel 

operator 6, 
subdivision-hierarchy of D; 
right-voxel V,) 

Downward-Subdivision( 

1 

Avoxel is subdivided using the face planes of anoth- 
er voxel in a manner similar to BSP; that is, only the 
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respective halfspace resulting from the previous subdi- 
vision is subdivided. As a result, the number of voxels 
can be reduced and the size of the vacant voxel enlarged. 
In the resulting subdivision hierarchy of p ,  each leaf 
voxel is empty, intersects with primitives of both l and 
r, or intersects with primitives of only 1 or only r. 
Consequently, the sub-CSG tree assigned to each leaf 
voxel is minimized. 

Figure 3 illustrates the subdivision process. 

Ray tracing 
After space subdivision comes standard ray tracing. 

For those nonempty voxels the ray encounters, we first 
compute the intersections of the ray with primitives in 
the associated sub-CSG tree, discard the intersections 
outside of the primitives’ S-bounds, then sort the inter- 
sections along the ray, and finally classify intersections 
against the sub-CSG tree until we find the nearest inter- 
section. If the nearest intersection is not in the current 
voxel, the next voxel pierced by the ray is searched. 
Because the subdivision is nonuniform, locating the next 
voxel along the ray generally requires a vertical and a 
horizontal search on the subdivision hierarchy. 

To speed up the search, for each face Fof leaf voxel V 
we maintain a pointer pointing to the adjacent voxel on 
the lowest possible level of the hierarchy that has a face 
which totally encloses F. When locating the next voxel 
along the ray, we determine the face at which the ray 
exits the voxel and then retrieve the face pointer. If the 
neighboring voxel is a leaf, we have found the next 
voxel. If the neighbor is an interior node, the point 
where the ray exits the voxel is computed and used to 
perform a downward search on the neighbor’s subdi- 
vision hierarchy. 

When a ray traverses from one voxel to a neighboring 

voxel of equal or lower subdivision level, the neighbor is 
generally a leaf voxel, and no further traversal is neces- 
sary. On the other hand, when the ray traverses from a 
voxel of lower subdivision level to the neighboring voxel, 
a downward search is required. 

In addition to locating the next voxel along the ray, 
another problem for ray tracing with space subdivision 
is the fragmentation of the object. An object might over- 
lap several leaf voxels such that it cannot be totally 
enclosed by anyvoxel. For such an object, the ray-object 
intersection computation is generally performed in all 
intersecting voxels. To eliminate unnecessary compu- 
tations, the mail box concept has been p ropo~ed .~  For 
each object, both the identityofthe most recent ray that 
intersects the object and the corresponding intersec- 
tions are recorded in the mail box. Subsequent inter- 
section computations simply check to see if the object 
has been tested against the current ray and, if so, refer 
to the intersection data stored in the mail box. 

Subdivision level 
Traditional space subdivisions typically require a ter- 

mination criterion such as a prescribed maximum level 
of subdivision or a maximum number of primitives 
allowed inside a voxel. In the CSG model, voxels might 
overlap with many primitives, and, consequently, the 
number of primitives inside the voxels exceeds the allow- 
able number when the maximum level of subdivision is 
reached. For such voxels, the associated sub-CSG tree 
might be complex and contain unnecessary information. 

Traditional space subdivisions facilitate intersection 
computation and ray traversal, but not for point classi- 
fication. In contrast, in our nonuniform space subdivi- 
sion scheme the height of the CSG tree affects the 
subdivision level. Although more subdivisions might 

/ \  UArl- 
Subdivision hierarchy of a u b  

0 
Subdivision hierarchy of c n d  

(c) 

/ \  

3 Computing the space subdivision hierarchy of ( a  u b) 
- (c n d). The CSG solid and its subdivision are shown in 
(a). The subdivision hierarchy of a u b is depicted in (b) 
after performing Step 1 of Merge-Subdivision- 
Hierarchy ( ). The left and right subdivision 
hierarchies of ( a  u 6)  - (c n d) are shown in the top and 
bottom portions of (c), respectively. The top portion 
results from applying Merge-Subdivi sion- 
Hierarchy ( ) on a u  b. The resulting space 
subdivision hierarchy of ( a  u b)-(c n d) appears in (d). 
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4 Ray-traced 
image of 
Model 2. 

5 Ray-traced 
image of 
Model 3. 

6 Ray-traced 
image of 
Model 4. 

r-traced 
image of 
Model 5. 
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be required in the area where many Boolean operators 
are involved, our proposed subdivision generates small- 
er, more compact sub-CSG trees, significantly reducing 
the number of intersection computations and point 
classifications. 

Nonetheless, the subdivision hierarchy can be large 
for a complex CSG solid. For such solids, we must con- 

sider the complexity of ray traversal and the storage 
space necessary for the hierarchy. Although we can 
speed up ray traversal by setting pointers to neighboring 
voxels, the storage space required for a hierarchy of high 
subdivision level could be a problem. To avoid such dif- 
ficulties, we can terminate the space subdivision mid- 
way by setting a minimum size of leaf voxels or a 
maximum level of subdivision. 

Alternatively, we can take advantage of the ratio of 
surface areas. When the value of surface-area- 
ratio,equaltosize-of-surface-of-subdivid- 
ed-voxel divided by si  ze-o f-surf ace-of-sub- 
dividing-voxel, exceeds a user-defined value, the 
voxel subdivision terminates; otherwise, the subdivi- 
sion takes place. Our experimental results show that, 
when applied to test models, this heuristic criterion sig- 
nificantly reduced the subdivision hierarchy's size. 
Heuristics of this kind have also been applied in the con- 
struction of the hierarchy extent tree." 

Experiments and results 
We implemented our proposed space subdivision in 

C+ + on a Silicon Graphics Indy workstation with a 
MIPS 4600PC CPU and 32 Mbytes of RAM. We con- 
ducted experiments on five models, described in Table 
1. Ray-traced images of four of these models appear in 
Figures 4 ,5 ,6 ,  and 7. All ray-traced images are 512 x 
512 in resolution. 

For comparison purposes, we also implemented the 
BSP space subdivision proposed by Bouatouch4 because 
it uses minimal bounding boxes of primitives for subdi- 
vision termination. We believe that ray tracing CSG 
solids with traditional subdivisions-uniform, octree, 
or BSP-speeds up significantly when the minimal 
bounding box or S-bounds of the primitive, rather than 
the primitive itself, determines subdivision termination. 

Table 2 compares the performance of the BSP subdi- 
vision and the proposed nonuniform space subdivision 
algorithms. The subdivision time includes S-bounds 
computation, which is relatively short. The minimum 
bounding box computation by Bouatouch" has been 
replaced by S-bounds computation, which generally 
produces smaller bounding boxes. Moreover, for BSP 
subdivision, several pairs of the maximum subdivision 
level and the maximum number of primitives allowed 
inside each voxel were tested for each model; only the 
best results were used for comparison. Both subdivisions 
implement the auxiliary data structure mail box to avoid 
unnecessary ray-object intersection computations. 

From Table 2 we see that the gain factor for the num- 
bers of intersection computations and point classifica- 
tions ranges from 1.70 to 4.54, while the gain factor for 
processing time ranges from 1.29 to 2.82. Because the 
BSP method does not subdivide the space according to 
the effective volume of CSG primitives, the sub-CSG 
trees can be highly complex where primitives are dense- 
ly distributed. In these cases, we expect the gain factor 
to be much higher. 

Note that the gain factors could be higher, if the min- 
imum bounding box used in BSP-based subdivision is 
not replaced by S-bounds. Intersection computation 
time would be significantly reduced in cases involving 
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Table 1. Number of primitives featured in five test models. 

Models Model 1 Model 2 Model 3 Model 4 Model 5 
Number of primitives 30 34 71 78 31 3 

Table 2. Performance comparison of BSP subdivision and nonuniform space subdivision (time in seconds). 

Model Space Number of Intersection Classification Processina Time 
(/, d)’ Subdivision* Leaf Voxels Number C.F.’ Number G.F.3 Subdivision Synthesis G.F.’ 

’ ‘The ( I ,  d) represents the number of light sources and the depth of ray tracing for the models tested. 

level and maximum number of primitives. 
A is the BSP subdivision by Bouatouch4; B is our proposed subdivision. The numbers preceding A represent pairs of maximum subdivision 

Gain factor. 

complex primitives such as tori and sweeping volumes. 
Although we did not extensively test all models for them, 
the gain factors should remain roughly constant on 
applying the secondary ray of various depths. Our 
experiments on Model 2 show a relatively small gain fac- 
tor because most of its primitives are not axis-aligned. 
This problem is typical for space subdivision based on 
axis-aligned bounding boxes. 

Nonuniform space subdivision time is generally pro- 
portional to the number of primitives. For the models 
we tested, the time for subdivision is relatively small 
compared with that for synthesis. We expect that the 
increased subdivision time needed for large CSG trees 
can be greatly ameliorated by reduced synthesis time 
because sub-CSG trees become more localized as more 
subdivisions are performed. 

We also examined the effect of surface-area- 
rat i o  on several models in terminating voxel subdivi- 
sion midway. Table 3 (on the next page) illustrates our 
results. The heuristic effectively reduced the number of 
leaf voxels with a relatively small efficiency loss. Observe 
that the number of leaf voxels is significantly reduced 
when surface-area-ratio equals 0.95. 

Conclusion 
The nonuniform space subdivision scheme we have 

proposed for ray tracing of CSG solids greatly reduces the 
number of ray-object intersection computations and point 

classifications. We have performed several experiments 
and observed that the gain factor on processing time over 
the BSP-based space subdivision method4 ranges from 
1.29 to 2.82. For CSG solids with complex primitives, such 
as tori and sweeping volumes, the reductions achieved 
with this subdivision scheme lead to significantly 
improved efficiency. 

The algorithm first performs S-bounds computation 
on a given CSG tree and then subdivides the S-bound at 
the root by upwardly propagating the subdivision hier- 
archies at  both of its child nodes. This process is per- 
formed recursively for each internal node; thus, the 
subdivision proceeds in a bottom-up fashion, starting 
with the primitives’ S-bounds. 

Terminating the proposed space subdivision midway 
is possible by setting a minimum size of leaf voxels. We 
tested a heuristic termination criterion that utilized the 
ratio of surface areas and significantly reduced the sub- 
division hierarchy’s size. Nonuniform space subdivision 
implemented without early termination is usually more 
computationally efficient than when terminated mid- 
way; however, subdivision with early termination is nec- 
essary when computer memory is limited. 

Because our proposed subdivision largely depends on 
the CSG expression, and because the expression is not 
unique for a CSG solid, more research is necessary to 
understand how the choice of the CSG expression 

w affects the performance of this algorithm. 
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Table 3. Effect of surface-area-rat io on subdivision termination (time in seconds). 

Model surface-area-rat io Number of Number of Number of Subdivision Synthesis 
(1, a)’ Leaf Voxels Intersections Classifications Time Time 
Model 2 NA‘ 826 1,457,15 3 2,837,061 0.40 242.45 
(2, 1 )  0.95 131 2,538,463 3,924,578 0.1 1 243.02 

0.90 107 2,839,382 4,147,851 0.09 252.66 
Model 3 NA’ 1,787 1,813,277 1,498,425 1.79 255.29 
(2#1)  0.95 751 3,015,476 2,324,2 3 7 0.47 288.27 

0.90 732 3,396,218 2,595,65 7 0.44 294.65 
Model 3 N A2 1,787 4,741,579 3,325,635 1.79 533.00 
(2,2) 0.95 75 1 7,940,186 5,448,535 0.47 593.23 

0.90 732 8,823,721 6,069,345 0.44 61 1.07 
Model 4 NA’ 1,680 1 ,177,205 888,869 1.84 197.18 
(2, 1) 0.95 588 2,093,746 1,829,567 0.51 239.16 

0.90 583 2,106,021 1,835,696 0.51 238.90 
Model 4 NA’ 1,680 3,282,658 2,227,521 1.84 41 0.28 
(2, 2) 0.95 588 5,848,183 4,592,871 0.51 506.84 

0.90 583 5,871,167 4,606,391 0.51 506.34 
Model 5 NA’ 12,659 2,016,291 1,313,283 28.60 350.47 

0.95 5,361 3,717,191 3,148,116 6.47 487.81 
0.90 5,298 3,749,548 3,180,649 6.39 494.33 

’ The (1, d) represents the number of light sources and the depth of ray tracing for the models tested 
’The s u r f a t  e-a‘lrea-rat Lo strategywas not applied 
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