
Feature Article

A New Space
Subdivision for Ray
Tracing CSC Solids

n solid modeling, the two most common I schemes for representing solids are con-
structive solid geometry (CSG) and boundaryrepresen-
tation (B-rep). CSG has proved advantageous in several
types of computations, such as the construction of mod-
els. Other computations, such as rendering, require
explicit geometry about the boundary of the CSG solid.

Boundary information for the CSG
tree can generally be obtained

Ray tracing successfully through boundary evaluation, but
this is a highly complex task.

creates realistic images of Ray tracing is widely recognized
as a powerful, effective technique

CSC solids. A nonuniform for producing realistic images of 3D
scenes especially because it is sim-

space subdivision scheme ple to implement and can model a
variety of visual phenomena, such

that reduces intersection as specular reflection, transparency,
and shadows. Unfortunately, ray

computations and point tracing is extremely time-consum-
ing because of many ray-object

classifications could make intersection computations. Numer-
ous methods to speed up the tracing

this technique even more process have been proposed, such as
bounding volume and bounding

attractive. hierarchy’ and space subdivision.2
Space subdivision is preferable to

other methods because of its consistent performance in
scenes of varying complexity. Different space subdivi-
sion schemes are possible, each with advantages and
disadvantages, such as binary space partition (BSP)
trees, octree decomposition, and uniform subdivision.

Several methods for ray tracing CSG solids based on
space subdivision have been pr~posed .~” Previous stud-
ies generally have emphasized deriving suitable space
subdivision schemes to reduce the number of intersec-
tion computations and to efficiently trace the rays.

Another issue in ray tracing CSG models is the vast
number of point classifications, whereby ray-primitive
intersection points are classified with respect to the CSG
tree to determine if they lie on the boundary of the
resulting solid. To speed up point classification, Jansen‘

Jung-Hong Chuang
National Chiao Tung University

Weun-Jier Hwang
Telecommunication Laboratories

and Roth7 proposed methods for general rendering tech-
niques.

In this article, we describe a nonuniform space subdi-
vision scheme that reduces both the number of ray-object
intersection computations and point classifications. Our
method uses the face planes of the primitives’S-bounds,8
described later, in a bottom-up fashion and produces a
subdivision wherein the localized CSG tree in each leaf
voxel is greatly minimized. The use of S-bounds in the
space subdivision effectively reduces the number of inter-
section computations as well. The reduction of the local-
ized CSG tree in turn further reduces the number of
intersection computations and point classifications. We
briefly review existing methods for ray tracing CSG
solids, describe our proposed space subdivision method,
discuss our implementation and compare it to
Bouatouch’s4 method, and summarize our test results.

Direct rendering of CSC solids
CSG solids can be rendered directly via ray tracing,

for example, or displayed indirectly by first converting
CSG trees to B-rep and applying graphics hardware com-
mon in modern workstations. Indirect rendering looks
attractive because boundary evaluation is more efficient
today. Moreover, once the B-rep is available, the view-
point can be changed without regenerating the B-rep.
However, shading techniques typically cannot produce
realistic images. Although radiosity has grown more
popular for global illumination, its ability to effectively
handle specular effects is limited. Ray tracing is thus still
important for realistic off-line rendering of CSG solids.

Of the many techniques proposed for direct render-
ing of CSG solids, most extend rendering algorithms
originally developed for computer graphics. These
include CSG scan-line algorithms,’ CSG z-buffer algo-
rithms,” and CSG ray tra~ing.~.’ .~ Two concerns arise
when using ray tracing to render CSG solids: the com-
plexity of computing ray-object intersections and the
need to determine (classify) whether or not the inter-
section points lie on the resulting solid.

Roth was the first to apply ray tracing to display CSG
 model^.^ His algorithm projects each subtree’s bounding

56 November 1995 0272-1 7-16/95/S4.00 0 1995 IEEE

box to the view plane and reduces the number of inter-
section computations.

Wyvill used octree decomposition to subdivide the
space until each voxel is classified as inside the CSG solid,
outside the CSG solid, or of a size less than a prescribed
tolerance.’ Cells that overlap the boundary of the CSG
solid are associated with reduced CSG expressions by
which the intersection computations and point classifi-
cations can be performed.

The so-called minimal bounding box of the primitive
can be used to prune portions outside the CSG ~ o l i d . ~ , ~
Arnaldi subdivided the view plane through a BSP based
on the projection of the minimal bounding boxes. He
then extended the 2D partition to 3D with further sub-
division along the view dire~tion.~ Bouatouch employed
BSP-based subdivision to subdivide the space. He used
the number of minimal bounding boxes in a voxel as a
stopping ~r i te r ion .~

Costs associated with ray tracing CSG solids using
space subdivision include ray-object intersection com-
putation, ray traversal, and point classification.” Earlier
studies examined the cost effect of different subdivi-
sions on intersection computation and ray traversal, but
not on point classification. Point classification is combi-
natorial in nature and might require neighborhood
information in some cases. Moreover, it is an inner loop
element in the ray tracing process. Hence, it might con-
sume much of the total processing time, especially for a
large CSG tree. Any space-subdivision scheme must take
this into account.

Effects of space subdivision
When CSG solids are ray traced using space subdivi-

sion, each voxel is generally assigned a sub-CSG tree,
which is the localization of the CSG tree on that v0xe1.~~~
Different space subdivisions result in different sub-CSG
tree assignments and thus different performance in later
intersection computation and point classification.

For the CSG solid in Figure la , let’s examine the sub-
CSG tree assignment resulting from the two space sub-
divisions shown in Figures l b and IC. Voxel 1 of
subdivision 1 is associated with a tree of single node a,
whereas voxel 1 in subdivision 2 has a sub-CSG tree for
(a u b) - c. Consequently, an intersection point in voxel
1 of subdivision 1 must be classified against tree a, while
the same intersection in subdivision 2 must be classified
against (a LJ b) - c. Moreover, the ray intersecting voxel
1 in subdivision 2 must be checked to see if it intersects
with primitives a, b, and c, but in subdivision 1 only
primitive a in voxel 1 must be checked. Subdivision
using the boundary planes in subdivision 1 results in a
much simpler sub-CSG tree assignment, which reduces
the intersection computations and point classifications.

Bounding box and 5- bounds
The bounding box technique is widely acknowledged

as useful in reducing the number of ray-object intersec-
t i o n ~ . ~ A primitive’s standard bounding box might con-
tain portions outside the resulting CSG solid. If the box
can be reduced to exclude these portions, then both the
intersection computation and the point classification
will be more efficient.

C
/-\

v

/ \
b

Subdivision 1
(b)

b

Subdivision 2
(c)

I

bound bound

I

bound

As an example, consider a circle differencing a square
as shown in Figure 2a. Figure 2b depicts a ray that inter-
sects the circle’s standard bounding box but not the
reduced bound. Figure 2c shows that only the intersec-
tion point lying inside the reduced bound must be clas-
sified. Similar effects are achieved by reducing the
bounding box for the CSG tree’s internal nodes.

The bounding box at the root of the CSG tree can be
propagated downward toward the leaves, further refin-
ing the primitive’s bounding bo^.^,^ The S-bounds con-
cept uses a similar idea but with additional steps that
repeat the upward and downward propagations until the
size of the primitive’s bounding boxes cannot be reduced
further.’ Initially, each primitive is associated with a
bounding box. In the upward propagation, we evaluate
the CSG tree based on the primitives’ current bounding
boxes and derive a new bounding box for each internal
node, including the root. In the downward propagation,
we propagate the current bounding box at the root
downward toward the leaves. At each level we calculate
the intersection to further refine the bounding box of
each child node. Subsequent upward and downward
propagations minimize the size of each node’s bound-
ing box, including the root, internal nodes, and leaves.

Subdividing the space based on face planes of the S-
bounds effectively reduces intersection computations
and minimizes the size of the sub-CSG tree assigned to
each leaf voxel. Minimizing each leaf voxel’s sub-CSG
tree can further reduce the number of intersection com-
putations and point classifications. These reductions are
especially significant for ray tracing CSG solids con-
taining complex primitives such as tori and sweeping
volumes. Traditional space subdivisions (for example,
octree and BSP) generally do not consider the geometry
of CSG primitives. As a result, the sub-CSG trees can be
highly complex given densely distributed primitives.

1 FortheCSG
iolid in (a), two
iifferent space
Subdivisions
ihown in (b)
nnd (c) result in
different sub-
CSG tree
assignments.

2 (a)The
primitive and
the effects of a
ray intersecting
the primitive’s
(b) standard
bounding box
and (c) reduced
bounding box.

lEEE Computer Graphics and Applications 57

Feature Article

Ray tracing with a new space subdivision
A nonuniform space subdivision based on S-bounds

minimizes the size of the bounding boxes as well as the
size of the sub-CSG tree in each voxel. The increased
processing cost for ray traversals resulting from nonuni-
Form subdivision can be reduced through a suitable data
structure, which we describe later in this section, and
can be ameliorated by reduced intersection computa-
tions and point classifications.

A new space subdivision algorithm
The nonuniform space subdivision algorithm we pro-

pose consists of a preprocessing step and a subdivision
step. In the preprocessing step, we perform the S-bounds
computation and produce an S-bound for each node of
the CSG tree.

The objective of the subdivision step is to subdivide
the space so as to minimize the sub-CSG tree assigned to
each leaf voxel. The space subdivision yields a subdivi-
sion hierarchy and assigns a sub-CSG tree to each leaf
voxel of this hierarchy. The data structure for the voxel
on each level of the hierarchy contains pointers both to
its child voxels and to its neighboring voxels. Each leaf
voxel of the hierarchy also contains, in addition to point-
ers, the associated sub-CSG tree.

To construct the subdivision hierarchy of a CSG tree,
we subdivide the root’s S-bound by upwardly propa-
gating the subdivision hierarchies at both child nodes.
This process is applied recursively to each internal node
of the CSG tree. Consequently, the subdivision proceeds
in a bottom-up fashion, starting from the subdivision
hierarchies of primitives (the primitives’ S-bounds). The
sub-CSG tree associated with each leaf voxel of the
subdivision hierarchy is assigned or updated during
upward propagation. We obtain the subdivision hierar-
chy of a CSG tree by calling the recursive routine
Space-Subdivision (node) with parameter node
the root of the given CSG tree. The input parameter to
this routine is a node of the CSG tree.

Space-Subdivision(node) {

if (node is a primitive)
return primitive’s S-bound as
its subdivision hierarchy and
the primitive itself as the
associated sub-CSG tree;

left-subdivision-hierarchy
= Space-Subdivision
(left-child-node);

else {

right-subdivision-hierarchy
= Space-Subdivision
(right-child-node);

Merge-Subdivision-Hierarchy(node,
left-subdivision-hierarchy,
right-subdivision-hierarchy) ;
1

1

Here we describe how the Merge-Subdivision-

Hierarchy () is computed for a CSG nodep = 16 r,
where 6 is any Boolean operator and 1 and r are left and
right children ofp, respectively. Let L, R, and P be the S-
bounds of I , r , and p , respectively, and SI and S, be the
subdivision hierarchies of 1 and r, respectively. The sub-
division hierarchy of node p , denoted as s,, is con-
structed by subdividing its S-bound P using the
subdivision hierarchies SI and S,. The following two
steps describe this process:

1. Subdivide S-bound P using the subdivision hierarchy
of 1. If 6 is a union operator, we subdivide S-bound
P using the face planes of 1 and embed the subdivi-
sion hierarchy SI into the leaf voxel that coincides
with,!,, producing the desired subdivision hierarchy
S,. The sub-CSG trees originally associated with the
leaf voxel of SI are retained at the corresponding leaf
voxels in S,. Other leaf voxels of S, have empty sub-
CSG trees assigned to them. If the operator 6 is an
intersection or a difference, the subdivision hierar-
chy S, and its associated sub-CSG trees are identi-
cal to that of 1, since S-bounds 1 and P have the same
extent.

2. Continue the subdivision of S, using the subdivision
hierarchyof S,. For each nonempty leaf voxel V, in S,
we perform a downward search for leaf voxels of S,
that intersect with V,, then subdivide each of these
leaf voxels, say V,, using face planes of V,. For each
newly created leaf voxel, if the voxel intersects with
V,, then we assign to it the sub-CSG tree that results
from applying 6 to the sub-CSG trees associated
with V, and V,, respectively. Otherwise, the voxel
inherits the sub-CSG tree associated with V,. The
voxel V, becomes an internal node of S, and is not
associated with a sub-CSG tree.

The following pseudocode describes the downward
search and subdivision in Step 2:

Downward-Subdivision(operator 8 ,
subdivision-hierarchy,
right-voxel V,) {

if (subdivision-hierarchy is a leaf

Subdivide the leaf voxel by face
planes of V, and assign
appropriate sub-CSG trees to
newly created leaf voxels as
described in Step 2;

voxel) {

return; 1
for each child voxel D of the
subdivision-hierarchy do
if (voxel D intersects with

right-voxel

operator 6,
subdivision-hierarchy of D;
right-voxel V,)

Downward-Subdivision(

1

Avoxel is subdivided using the face planes of anoth-
er voxel in a manner similar to BSP; that is, only the

58 November 1995

respective halfspace resulting from the previous subdi-
vision is subdivided. As a result, the number of voxels
can be reduced and the size of the vacant voxel enlarged.
In the resulting subdivision hierarchy of p , each leaf
voxel is empty, intersects with primitives of both l and
r, or intersects with primitives of only 1 or only r.
Consequently, the sub-CSG tree assigned to each leaf
voxel is minimized.

Figure 3 illustrates the subdivision process.

Ray tracing
After space subdivision comes standard ray tracing.

For those nonempty voxels the ray encounters, we first
compute the intersections of the ray with primitives in
the associated sub-CSG tree, discard the intersections
outside of the primitives’ S-bounds, then sort the inter-
sections along the ray, and finally classify intersections
against the sub-CSG tree until we find the nearest inter-
section. If the nearest intersection is not in the current
voxel, the next voxel pierced by the ray is searched.
Because the subdivision is nonuniform, locating the next
voxel along the ray generally requires a vertical and a
horizontal search on the subdivision hierarchy.

To speed up the search, for each face Fof leaf voxel V
we maintain a pointer pointing to the adjacent voxel on
the lowest possible level of the hierarchy that has a face
which totally encloses F. When locating the next voxel
along the ray, we determine the face at which the ray
exits the voxel and then retrieve the face pointer. If the
neighboring voxel is a leaf, we have found the next
voxel. If the neighbor is an interior node, the point
where the ray exits the voxel is computed and used to
perform a downward search on the neighbor’s subdi-
vision hierarchy.

When a ray traverses from one voxel to a neighboring

voxel of equal or lower subdivision level, the neighbor is
generally a leaf voxel, and no further traversal is neces-
sary. On the other hand, when the ray traverses from a
voxel of lower subdivision level to the neighboring voxel,
a downward search is required.

In addition to locating the next voxel along the ray,
another problem for ray tracing with space subdivision
is the fragmentation of the object. An object might over-
lap several leaf voxels such that it cannot be totally
enclosed by anyvoxel. For such an object, the ray-object
intersection computation is generally performed in all
intersecting voxels. To eliminate unnecessary compu-
tations, the mail box concept has been p ropo~ed .~ For
each object, both the identityofthe most recent ray that
intersects the object and the corresponding intersec-
tions are recorded in the mail box. Subsequent inter-
section computations simply check to see if the object
has been tested against the current ray and, if so, refer
to the intersection data stored in the mail box.

Subdivision level
Traditional space subdivisions typically require a ter-

mination criterion such as a prescribed maximum level
of subdivision or a maximum number of primitives
allowed inside a voxel. In the CSG model, voxels might
overlap with many primitives, and, consequently, the
number of primitives inside the voxels exceeds the allow-
able number when the maximum level of subdivision is
reached. For such voxels, the associated sub-CSG tree
might be complex and contain unnecessary information.

Traditional space subdivisions facilitate intersection
computation and ray traversal, but not for point classi-
fication. In contrast, in our nonuniform space subdivi-
sion scheme the height of the CSG tree affects the
subdivision level. Although more subdivisions might

/ \ UArl-
Subdivision hierarchy of a u b

0
Subdivision hierarchy of c n d

(c)

/ \

3 Computing the space subdivision hierarchy of (a u b)
- (c n d). The CSG solid and its subdivision are shown in
(a). The subdivision hierarchy of a u b is depicted in (b)
after performing Step 1 of Merge-Subdivision-
Hierarchy (). The left and right subdivision
hierarchies of (a u 6) - (c n d) are shown in the top and
bottom portions of (c), respectively. The top portion
results from applying Merge-Subdivi sion-
Hierarchy () on a u b. The resulting space
subdivision hierarchy of (a u b)-(c n d) appears in (d).

IEEE Computer Graphics and Applications 59

Feature Article

4 Ray-traced
image of
Model 2.

5 Ray-traced
image of
Model 3.

6 Ray-traced
image of
Model 4.

r-traced
image of
Model 5.

7R

be required in the area where many Boolean operators
are involved, our proposed subdivision generates small-
er, more compact sub-CSG trees, significantly reducing
the number of intersection computations and point
classifications.

Nonetheless, the subdivision hierarchy can be large
for a complex CSG solid. For such solids, we must con-

sider the complexity of ray traversal and the storage
space necessary for the hierarchy. Although we can
speed up ray traversal by setting pointers to neighboring
voxels, the storage space required for a hierarchy of high
subdivision level could be a problem. To avoid such dif-
ficulties, we can terminate the space subdivision mid-
way by setting a minimum size of leaf voxels or a
maximum level of subdivision.

Alternatively, we can take advantage of the ratio of
surface areas. When the value of surface-area-
ratio,equaltosize-of-surface-of-subdivid-
ed-voxel divided by si ze-o f-surf ace-of-sub-
dividing-voxel, exceeds a user-defined value, the
voxel subdivision terminates; otherwise, the subdivi-
sion takes place. Our experimental results show that,
when applied to test models, this heuristic criterion sig-
nificantly reduced the subdivision hierarchy's size.
Heuristics of this kind have also been applied in the con-
struction of the hierarchy extent tree."

Experiments and results
We implemented our proposed space subdivision in

C+ + on a Silicon Graphics Indy workstation with a
MIPS 4600PC CPU and 32 Mbytes of RAM. We con-
ducted experiments on five models, described in Table
1. Ray-traced images of four of these models appear in
Figures 4 ,5 ,6 , and 7. All ray-traced images are 512 x
512 in resolution.

For comparison purposes, we also implemented the
BSP space subdivision proposed by Bouatouch4 because
it uses minimal bounding boxes of primitives for subdi-
vision termination. We believe that ray tracing CSG
solids with traditional subdivisions-uniform, octree,
or BSP-speeds up significantly when the minimal
bounding box or S-bounds of the primitive, rather than
the primitive itself, determines subdivision termination.

Table 2 compares the performance of the BSP subdi-
vision and the proposed nonuniform space subdivision
algorithms. The subdivision time includes S-bounds
computation, which is relatively short. The minimum
bounding box computation by Bouatouch" has been
replaced by S-bounds computation, which generally
produces smaller bounding boxes. Moreover, for BSP
subdivision, several pairs of the maximum subdivision
level and the maximum number of primitives allowed
inside each voxel were tested for each model; only the
best results were used for comparison. Both subdivisions
implement the auxiliary data structure mail box to avoid
unnecessary ray-object intersection computations.

From Table 2 we see that the gain factor for the num-
bers of intersection computations and point classifica-
tions ranges from 1.70 to 4.54, while the gain factor for
processing time ranges from 1.29 to 2.82. Because the
BSP method does not subdivide the space according to
the effective volume of CSG primitives, the sub-CSG
trees can be highly complex where primitives are dense-
ly distributed. In these cases, we expect the gain factor
to be much higher.

Note that the gain factors could be higher, if the min-
imum bounding box used in BSP-based subdivision is
not replaced by S-bounds. Intersection computation
time would be significantly reduced in cases involving

60 November 1995

Table 1. Number of primitives featured in five test models.

Models Model 1 Model 2 Model 3 Model 4 Model 5
Number of primitives 30 34 71 78 31 3

Table 2. Performance comparison of BSP subdivision and nonuniform space subdivision (time in seconds).

Model Space Number of Intersection Classification Processina Time
(/, d)’ Subdivision* Leaf Voxels Number C.F.’ Number G.F.3 Subdivision Synthesis G.F.’

’ ‘The (I , d) represents the number of light sources and the depth of ray tracing for the models tested.

level and maximum number of primitives.
A is the BSP subdivision by Bouatouch4; B is our proposed subdivision. The numbers preceding A represent pairs of maximum subdivision

Gain factor.

complex primitives such as tori and sweeping volumes.
Although we did not extensively test all models for them,
the gain factors should remain roughly constant on
applying the secondary ray of various depths. Our
experiments on Model 2 show a relatively small gain fac-
tor because most of its primitives are not axis-aligned.
This problem is typical for space subdivision based on
axis-aligned bounding boxes.

Nonuniform space subdivision time is generally pro-
portional to the number of primitives. For the models
we tested, the time for subdivision is relatively small
compared with that for synthesis. We expect that the
increased subdivision time needed for large CSG trees
can be greatly ameliorated by reduced synthesis time
because sub-CSG trees become more localized as more
subdivisions are performed.

We also examined the effect of surface-area-
rat i o on several models in terminating voxel subdivi-
sion midway. Table 3 (on the next page) illustrates our
results. The heuristic effectively reduced the number of
leaf voxels with a relatively small efficiency loss. Observe
that the number of leaf voxels is significantly reduced
when surface-area-ratio equals 0.95.

Conclusion
The nonuniform space subdivision scheme we have

proposed for ray tracing of CSG solids greatly reduces the
number of ray-object intersection computations and point

classifications. We have performed several experiments
and observed that the gain factor on processing time over
the BSP-based space subdivision method4 ranges from
1.29 to 2.82. For CSG solids with complex primitives, such
as tori and sweeping volumes, the reductions achieved
with this subdivision scheme lead to significantly
improved efficiency.

The algorithm first performs S-bounds computation
on a given CSG tree and then subdivides the S-bound at
the root by upwardly propagating the subdivision hier-
archies at both of its child nodes. This process is per-
formed recursively for each internal node; thus, the
subdivision proceeds in a bottom-up fashion, starting
with the primitives’ S-bounds.

Terminating the proposed space subdivision midway
is possible by setting a minimum size of leaf voxels. We
tested a heuristic termination criterion that utilized the
ratio of surface areas and significantly reduced the sub-
division hierarchy’s size. Nonuniform space subdivision
implemented without early termination is usually more
computationally efficient than when terminated mid-
way; however, subdivision with early termination is nec-
essary when computer memory is limited.

Because our proposed subdivision largely depends on
the CSG expression, and because the expression is not
unique for a CSG solid, more research is necessary to
understand how the choice of the CSG expression

w affects the performance of this algorithm.

IEEE Computer Graphics and Applications 61

Feature Article

Table 3. Effect of surface-area-rat io on subdivision termination (time in seconds).

Model surface-area-rat io Number of Number of Number of Subdivision Synthesis
(1, a)’ Leaf Voxels Intersections Classifications Time Time
Model 2 NA‘ 826 1,457,15 3 2,837,061 0.40 242.45
(2, 1) 0.95 131 2,538,463 3,924,578 0.1 1 243.02

0.90 107 2,839,382 4,147,851 0.09 252.66
Model 3 NA’ 1,787 1,813,277 1,498,425 1.79 255.29
(2#1) 0.95 751 3,015,476 2,324,2 3 7 0.47 288.27

0.90 732 3,396,218 2,595,65 7 0.44 294.65
Model 3 N A2 1,787 4,741,579 3,325,635 1.79 533.00
(2,2) 0.95 75 1 7,940,186 5,448,535 0.47 593.23

0.90 732 8,823,721 6,069,345 0.44 61 1.07
Model 4 NA’ 1,680 1 ,177,205 888,869 1.84 197.18
(2, 1) 0.95 588 2,093,746 1,829,567 0.51 239.16

0.90 583 2,106,021 1,835,696 0.51 238.90
Model 4 NA’ 1,680 3,282,658 2,227,521 1.84 41 0.28
(2, 2) 0.95 588 5,848,183 4,592,871 0.51 506.84

0.90 583 5,871,167 4,606,391 0.51 506.34
Model 5 NA’ 12,659 2,016,291 1,313,283 28.60 350.47

0.95 5,361 3,717,191 3,148,116 6.47 487.81
0.90 5,298 3,749,548 3,180,649 6.39 494.33

’ The (1, d) represents the number of light sources and the depth of ray tracing for the models tested
’The s u r f a t e-a‘lrea-rat Lo strategywas not applied

Acknowledgment
This work was supported by the National Science

Council of the Republic of China under grant NSC 82-
0408-E-009-209. When this article was written, Weun-
Jier Hwang was at National Chiao Tung University.

play Techniques for Constructive Solid Geometry,” IEEE
CGM, Vol. 6, No. 9, Sept. 1986, pp. 29-39.

11. J.D. MacDonald and S.K. Booth, “Heuristics for Ray Trac-
ing Using Space Subdivision,” Visual Computer, Vol. 6,
1990, pp. 153-166.

References
1. T.L. Kay and J.T. Kajiya, “Ray Tracing Complex Scenes,”

Computer Graphics, Vol. 20, No. 4, Aug. 1986, pp. 269-278.
2. A.S. Glassner, “Space Subdivision for Fast Ray Tracing,”

3. B. Amaldi, T. Priol, and K. Bouatouch, “ANew Space Sub-
division Method for Ray Tracing CSG Modelled Scenes,”
Visual Computer, Vol. 3,1987, pp. 98-108.

4. K. Bouatouch et al., “A New Algorithm of Space Tracing
Using A CSG Model,” Proc. Eurographics, Eurographics
Assoc., Amsterdam, The Netherlands, 1987, pp. 65-78.

5. G. Wyvill, T.L. Kunii, and Y. Shirai, “Space Division for Ray
Tracing in CSG,” IEEE CGM, Vol. 6, No. 4, April 1986, pp.

6. F.W. Jansen, “Depth-Order Point Classification Techniques
for CSG Display Algorithms,” ACM Tram. Graphics, Vol. 10,
No. 1, Jan. 1991, pp. 40-70.

7. S.D. Roth, “Ray Casting for Modeling Solids,” Computer
Graphics and Image Processing, Vol. 18, No. 2,1982, pp.

8. S. Cameron, “Efficient Bounds in Conmctive Solid Geom-
etry,”IEEECG&A,Vol. 21, No. 4, July 1991, pp. 68-74.

9. X. Pueyo and J.C. Mendoza, “A New Scan Line Algorithm
for the Rendering of CSG Trees,”Proc. Eurographics, Euro-
graphics Assoc., Amsterdam, The Netherlands, 1987, pp.

10. J.R. Rossignac and A.A.G. Requicha, “Depth-Buffering Dk-

IEEE CG&A, Vol. 4, NO. 10, Oct. 1984, pp. 15-22.

28-34.

109-144.

347-361.

Jung-Hong Chuang is an associate
professor of computer science and
information engineering at National
Chiao Tung University, Taiwan, Re-
public of China. His research interests
include geometric and solid modeling,
computergraphics, and visualization.

Chuang received a BS degree in applied mathematicsfrom
National Chiao Tung University in 1978 and MS and PhD
degrees in computer science from Purdue University in
1987and 1990, respectiveb.

WeunJier Hwang is an assistant
research engineer at the Telecommu-
nication Laboratories, Taiwan, Re-
public of China. His research interests
include computer graphics and net-
works. Hwang received a BS in trans- - portation and management in 1990

and an MS in computer science and information engi-
neering in 1992, bothfrom National Chiao Tung Univer-
sity.

Readers may contact Chuang at Dept. of Computer Sci-
ence and Information Engineering, National Chiao Tung
University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, Repub-
lic of China, e-mail jhchuang@csuniu.csie.nctu.edu.tw.

62 November 1995

