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Magnetoelectric coupling is of interest for a variety of applications, but is weak in natural materials.
Strain-coupled fibrous composites of piezoelectric and piezomagnetic materials are an attractive way
of obtaining enhanced effective magnetoelectricity. This paper studies the effective magnetoelectric
behaviors of two-phase multiferroic composites with periodic array of inhomogeneities. For a class of
microstructures called periodic E-inclusions, we obtain a rigorous closed-form formula of the effective
magnetoelectric coupling coefficient in terms of the shape matrix and volume fraction of the periodic
E-inclusion. Based on the closed-form formula, we find the optimal volume fractions of the fiber phase
for maximum magnetoelectric coupling and correlate the maximum magnetoelectric coupling with the
material properties of the constituent phases. Based on these results, useful design principles are pro-
posed for engineering magnetoelectric composites.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetoelectricity (ME) refers to the magnetization induced by
an electric field, or conversely the polarization induced by a
magnetic field. The ME effect has many important technological
applications, ranging from large-area sensitive detection of mag-
netic fields (Fiebig, 2005), magnetoelectric memory cells (Kumar
etal., 2009), and to electrically controlled microwave phase shifters
(Bichurin et al., 2002). However, the ME coupling coefficient is
barely noticeable for most single-phase materials in spite of recent
discovery of gigantic magnetoelectric effects in TbMnOsz at
cryogenic temperature (Kimura et al., 2003). Therefore various
researchers have turned to composites or nano-structured materi-
als (Zheng et al., 2004; Fennie, 2008), as explained in recent reviews
of Eerenstein et al. (2006) and Nan et al. (2008). The “product prop-
erty” causes the ME effect in composites of piezoelectric (PE) and
piezomagnetic (PM) materials: an applied electric field generates
a strain in the piezoelectric material which in turn induces a strain
in the piezomagnetic material, resulting in a magnetization.

The promise of applications, and the indirect coupling through
strain have also made ME composites the topic of a number of the-
oretical and experimental investigations (Nan et al., 2008; Zheng
et al.,, 2004). The estimates of the effective properties of ME com-
posites of non-dilute volume fractions are usually obtained by
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mean-field-type models (Nan, 1994; Srinivas and Li, 2005). Exact
relations in a ME composite with cylindrical geometry were de-
rived by Benveniste (1995). The analysis for local fields is available
for simple microstructures such as a single ellipsoidal inclusion
(Huang and Kuo, 1997; Li and Dunn, 1998a), periodic array of cir-
cular/elliptic fibrous ME composites (Kuo, 2011; Kuo and Pan,
2011) and laminates (Kuo et al., 2010), etc. Numerical methods
based on the finite element method have also been developed to
address ME composites for general microstructures (Liu et al.,
2004; Lee et al., 2005), while homogenization methods were pro-
posed by Aboudi (2001) and Camacho-Montes et al. (2009).

In this paper we consider two-phase composites of piezoelectric
(PE) materials and piezomagnetic (PM) materials and seek closed-
form predictions of their effective properties by generalizing the
uniformity property of ellipsoids to other geometries, namely, peri-
odic E-inclusions. In the classic work of Eshelby (1957, 1961), he
discovered that any uniform eigenstress on an ellipsoidal inclusion
induces uniform strain on the inclusion in an infinite homogeneous
medium. This remarkable uniformity property of ellipsoids allows
for rigorous closed-form solutions to inhomogeneous problems
by the so-called equivalent inclusion method, which has been used
to develop many important materials models concerning compos-
ites, phase transformation, dislocations and cracks, etc. (Mura,
1987). However, since two or more ellipsoids do not enjoy the uni-
formity property, analysis based on Eshelby’s solution and the
equivalent inclusion method cannot account for the interactions
between inhomogeneities, e.g., composites with non-dilute
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inhomogeneities. To overcome this limitation, mean-field-type
Mori-Tanaka models have been developed to address multiferroic
composites by Li and Dunn (1998a,b), Huang (1998), Li (2000), Wu
and Huang (2000) and Srinivas et al. (2006). In addition, a phase-
field method based on a generalized Eshelby’s equivalency princi-
ple is proposed for arbitrary microstructures (Ni et al., 2010).

Following the work of Eshelby (1957), Liu et al. (2007, 2008)
have recently found a periodic generalization of ellipsoids called
periodic E-inclusions (also called Vigdergauz microstructures in
two dimensions). Periodic E-inclusions share partially the unifor-
mity property of ellipsoids: a uniform dilatational eigenstress on
the periodic E-inclusions induces uniform strain on the periodic
E-inclusions for isotropic materials. Since it is not the ellipsoid
per se but its uniformity property that is being used in the classic
analysis based on Eshelby’s solution, we extend the argument of
equivalent inclusion method for ellipsoidal inclusions to periodic
E-inclusions and achieve explicit closed-form solutions to the
effective properties of the composites and local fields. This strategy
has been used to predict the effective properties of conductive
composites (Liu, 2009) and elastic composites (Liu et al., 2008).
Here we present the detailed calculations for composites of PE
and PM materials. Aiming to improve the magnetoelectric coupling
of the composite, we further study how the effective ME voltage
coefficient, the figure of merit of ME materials, depends on the vol-
ume fraction, the topology of microstructures and the material
properties of constituent phases. In particular, we find the optimal
volume fraction of the fiber phase for maximum effective voltage
coefficient and draw a few useful design principles, which are sum-
marized in Section 5.

The paper is organized as follows. In Section 2 we formulate the
governing equation for a periodic piezoelectric-piezomagnetic
composite and define the effective properties of the composite. In
Section 3 we introduce the periodic E-inclusion and derive the
closed-form formula of the effective properties of a composite with
a periodic E-inclusion microstructure. In Section 4 we study how the
magnetoelectric voltage coefficient depends on volume fractions of
the fiber phase and material properties of constituent phases.
Finally we summarize a few useful design principles in Section 5.

2. Problem statement

We consider a composite consisting of a periodic array of paral-
lel and separated prismatic cylinders as sketched in Fig. 1. The cyl-
inders and the matrix are made of distinct phases: transversely
isotropic piezoelectric or piezomagnetic materials. A Cartesian
coordinate system is introduced with the xy-axes in the plane of
the cross-section and z-axis along the axes of the cylinders. Let Y
be a unit cell in the xy-plane and Q c Y denote the cross-section
of the cylinder in this unit cell.

Assume that the composite be subjected to anti-plane shear
strains €, &y, in-plane electric fields E,, Ey and magnetic fields

H,, Hy at infinity. It can be shown that the composite is in a state

@@ - j/ nr (b)

@ L.

Fig. 1. Configuration of the fibrous composite: (a) the overall composite and (b) a
unit cell in the xy-plane with Q being one phase and Y \ @ being the other phase.

of generalized anti-plane shear deformation and can be described
by (Benveniste, 1995)

ux:uy:07 uz:W(x,y),
P =0xYy), ¥=y(Xxy),
where uy, uy, u, are the elastic displacements along the x-, y-, and
z-axis, and ¢ and s are, respectively, the electric and magnetic
potentials.

The general constitutive law of the rth phase for the non-van-
ishing field quantities can be written in a compact form as

(1)

(U
0 _L0Z0, L0 = { LY ifxeg, 2)

L™ ifxeY\Q,

wm

where for ease of the terminology, = “m” (r = “i”") refers to the ma-
trix (inclusion) phase,

O, O\ " e &y \ " [Ow, Ow\ "
20=|D, D, | ,Z"=| -E, -E, | =|ow. 00| , ©3)
B.. B, —H,, —H, O, Oy
and (p,q=1,2,3; i,j=1,2 or x,y)
Ca €5 g5 \"
Lo =Als;, Al =|es —Kkn —ki | - (4)

Qs —211 —Hyq

In Egs. (3) and (4), 0, Dj, B;, &;, Ej, and H; (j = x,y) are the stress,
electric displacement, magnetic flux, strain, electric field, and the
magnetic field, respectively. The materials constants Cas, K11, U
and /;; are the elastic modulus, dielectric permittivity, magnetic
permeability and ME coefficient, while e;s and g5 are the piezoelec-
tric and piezomagnetic constants. The shear strains &, and &, in-
plane electric fields E, E,, and in-plane magnetic fields H, and H,
are given by the gradient of the elastic anti-plane displacement w,
electric potential ¢, and magnetic potential v.

We assume the microstructure of the composite is periodic and
the composite is subject to a macroscopic average applied field

Exx ézy
F-| -E -E
-H,, -H,

From the homogenization theory (Milton, 2002), the microscopic
local fields and effective properties are determined by the unit cell

problem
{ V- [Lx)(Vu+F)] =0 onY,
periodic boundary conditions on 9Y,

()

where u = [w, @,y]" is the column vector field formed by the dis-
placement, electric and magnetic potentials, and the tensor L(x) takes
the value of LY if x € Q and L™ if x € Y \ Q. Further, the effective
properties of the composite, denoted by the tensor L, are given by

ep w_ 1 B
T-LF I-g /y T®)dx,  E(X) = Lx)(Vu +F), (6)

where | - | denotes the area of a domain. From Eq. (6), we can alter-
nately define the effective tensor L® by the quadratic form

F-L‘"F:%/Y.F-L(x)(Vu+F)dx. (7)

3. The closed-form solutions

A closed-form analytical solution to Eq. (5) is not anticipated for
general microstructure. Nevertheless, for periodic E-inclusions we
solve Eq. (5) by the well-known Eshelby equivalent inclusion
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method. Below we first present a brief description of periodic E-
inclusions and then solution to Eq. (5).

3.1. Periodic E-inclusions: existence and property

Motivated by the broad applications of Eshelby’s solutions in a
variety of materials models, Liu et al. (2007, 2008) generalized the
geometric shape of ellipsoids according to their uniformity property
in the context of Newtonian potential problem, i.e., the Newtonian
potential ¢ : R" — R (n > 2 is the dimension of space) induced by a
homogeneous ellipsoid Q satisfies the overdetermined problem:

V¢ =—y, onR"

VV¢=-Q onQ, 8)

[Vo| — 0 as x| — +o0,
where ,, is the characteristic function of €, equal to one on Q and
vanishing otherwise, and Q is a nonnegative symmetric n x n ma-
trix with Tr(Q) = 1. In analogy with Eq. (8), a periodic E-inclusion

in a unit cell Y ¢ R" is defined as a domain Q such that the solution
to the potential problem (Liu et al., 2008)

{V2¢=fxg

periodic boundary conditions

onY,

9
on JY, ®)

satisfies the overdetermined condition
VVp=-(1-£)Q onQ, (10)

where f = |Q|/|Y| is the volume fraction of the inclusion. The termi-
nology “E-inclusion” arises from the associations with “Eshelby”,
“Ellipsoid” and “Extremal” properties of such geometries.

The overdetermined condition (Eq. (10)) places strong restric-
tions on the domain Q. The existence of periodic E-inclusions can
be established by considering a simple variational inequality (Fried-
man, 1982):

1) = min 1t = [ 5190 +f0

dx}, (11)

where the admissible potential @ := {¢ : ¢ > ¢, ¢ is periodic on
Y} and ¢:Y — R is a given function referred to as the “obstacle”.
Loosely speaking, the variational inequality (Eq. (11)) models an
elastic membrane being pushed down onto the obstacle formed
by the graph of ¢ Then one anticipates that part of the membrane
will be in contact with the obstacle, defining the coincident set
Qc:={xeY: ¢(x)=&(x)}. Under some mild conditions, it can be
shown the solution ¢ to Eq. (11) in fact satisfies the overdetermined
problem

V¢ :fXV\QC - Vzc“%ng onYy,
VV¢ = VV¢ on Qc, (12)
periodic boundary conditions on 9Y.

If, in particular, one chooses a quadratic obstacle
&= _174 (x —¢p) - Q(x — ¢p) with ¢, being the center of the unit cell
Y, comparing Eq. (12) with Eq. (9) and (10) one concludes that the
coincident set Q¢ is precisely a periodic E-inclusion, i.e. Qc = Q.
The interested reader is referred to Liu et al. (2008) for details of
the above existence proof.

Geometrically, the shape of a periodic E-inclusion in R" is pre-
scribed by the scalar volume fraction f, the symmetric shape matrix
Q € R™" and the unit cell Y associated to the periodicity. In the di-
lute limit the shape matrix Q coincides with the demagnetization
matrix of an ellipsoid in the study of ferromagnetics and is deter-
mined by the aspect ratios and orientations of the ellipsoid. In
two dimensions, explicit parameterizations of periodic E-inclu-
sions are available for a rectangular unit cell (Vigdergauz, 1988;
Grabovsky and Kohn, 1995; Liu et al., 2007) and examples of peri-

odic E-inclusions in the unit cell [0, 1.5] x [0, 1] are shown in Fig. 2
for isotropic shape matrix Q =1/2 and volume fractions from 0.1
to 0.7. From Fig. 2 we see that a two-dimensional periodic E-inclu-
sion of isotropic shape matrix is roughly a circle at a low volume
fraction, say, 0.1, and a rounded rectangle of roughly the same
aspect ratio as the unit cell at a high volume fraction, say, 0.7.
For more general unit cells and in three dimensions, periodic E-
inclusions can be constructed by solving the above variational
inequality (11) and numerical calculations show similar qualitative
dependence of the shape on the volume fraction (Liu et al., 2007,
2008).

3.2. Applications to magnetoelectric composites

We now solve Eq. (5) by the equivalent inclusion method for
periodic E-inclusions. To this end, we first consider the associated
homogeneous inclusion problem

{v. [L(m)Vu+Z*X_Q =0

periodic boundary conditions on 9Y,

onY, (13)

where £* € R¥? is the “eigenstress”. We remark that the physical
interpretations of Eqs. (5) and (13) are different from the classic
Eshelby inclusion problem in elasticity, though their forms appear
to be the same. Further, the applied periodic boundary conditions
in Egs. (5) and (13) take into account the interactions between
the inclusions which are neglected or phenomenologically ac-
counted for by the analysis based on Eshelby’s solution.

The solution to Eq. (13) is closely related with the following
simple potential problem (Eq. (9)). To see this, by Fourier transfor-
mations of Eq. (9) we find that

kok

VVx) =~ > Ja(k) exp(ik - x)

— vxeY, (14)
koo [k

where #" is the reciprocal lattice associated with the unit cell Y (i.e.,
Y is a primitive unit cell associated with the lattice .# and .#" is the
reciprocal lattice of %), and (k) = [, x,exp(—ik-x)dx are the
Fourier coefficients of the characteristic function y,(x). Similarly,
the solution to Eq. (13) can be expressed as

Vux) =- Y (NZ'K) @ Kjo(K) exp(ik - X), (15)

ke '\ {0}

where the 3 x 3 symmetric matrix N(K) is the inverse of the matrix
L;Tq}kjkj. In Eq. (15), for clarity we omit the k-dependence of N in
notation. From the particular form of L™ defined in Eq. (4), direct
calculations reveal that

Fig. 2. Periodic E-inclusions (Vigdergauz structures) with unit cell [0, 1.5] x [0, 1]
and isotropic shape matrix Q = I/2. From inward to outward, the volume fraction of
the inclusion increases from 0.1 to 0.7.
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m T e
L™k = A™ kP, N(K) :W(A( H (16)

Comparing Eq. (14) with Eq. (15), we conclude that

Vu=(A")"'2'VV¢ onY. (17)

We emphasize that the above relation between the solution to the
system of equations Eq. (13) and the scalar potential problem (Eq.
(9)) holds for any inclusion Q.

Further, we assume the inclusion Q is a periodic E-inclusion
with shape matrix Q and volume fraction f. From the definition
of periodic E-inclusions discussed above, the solution to Eq. (9)
for a periodic E-inclusion satisfies the overdetermined condition
(Eq. (10)). By Egs. (17) and (10), we conclude that the periodic E-
inclusion has the Eshelby uniformity property for the homogeneous
periodic problem (13) in the sense that the field Vu is uniform in-
side the inclusion €, and is given by

Vu=—(1-f)RZ" on Q, (18)

where the components of the tensor R : R*? — R3*? are given by

-1
Rug = (A™) Qy (p.q=1.2.3;ij=1.2). (19)

Here the reader is cautioned that Vu being uniform on periodic E-
inclusions for any applied “eigenstress” X* depends on a property of
tensor L™, i.e., the matrix N(k) is independent of k upon being mul-
tiplied by a scalar factor |k|*>. From this viewpoint, periodic E-inclu-
sions does not enjoy the full uniformity property as ellipsoids, as
shown in Liu (2010) by the complex variable method.

We now consider the inhomogeneous problem (5). Following
the equivalent inclusion method we claim that the solution to
Eq. (5) is identical to that of Eq. (13) if the average applied field
F for Eq. (5) and the “eigenstress” X* for Eq. (13) are related by

ALF = (1 - f)ALRE’ — £ = [(1 — f)ALR — I}Z", (20)

where AL = L™ — L® and I : R**? — R**? is the identity mapping.
To see this, we first notice that a solution to Eq. (13) with uniform
field inside 2 (cf. Eq. (18)) satisfies Eq. (5) inside the matrix Y \ Q
since they are the same equations, and inside the inclusion €2 since
Vu is uniform on Q. Further, on the interface 9Q we find that Eq. (5)
requires the interfacial conditions

LY (Vu(x—)+F) —L™(Vu(x+) + F)ln =0 on 9Q, (1)

where n is the outward normal on 9Q, and x— (x+) denotes the
boundary value approached from inside (outside) 2. Similarly, Eq.
(13) implies the interfacial conditions

LMVux-)+ X —L™Vux+)n=0 on dQ. (22)

A brief and straightforward algebraic calculation shows that if Eq.
(22)is satisfied and Vu(x—) is given by Eq. (18), then Eq. (21) is sat-
isfied as well for any average applied field F satisfying Eq. (20). We
henceforth conclude that the solution to the homogeneous problem
(13) is indeed a solution to the inhomogeneous problem (5) if the
uniformity property (Eq. (18)) holds and the algebraic relation
(Eq. (20)) is satisfied.

To calculate the effective tensor of the composite, by Eqgs. (7)
and (18) we find that the effective tensor L® satisfies

F-L°F= ‘17‘ / F- (L™ — ALy,)(Vu + F)dx
Y
=F-L™F - fF- AL|—(1 — f)RE" + F|.
By Eq. (20) we rewrite the above equation as

F-L°F=F-L™F 4 fF-x*.

Further, it can be shown that the tensor (1 — f)ALR — Il is invertible
for generic cases and the above equation implies

L* = L™ +f[(1 — f)ALR — II] ' AL, (23)

which is our closed-form formula of the effective properties for
two-phase composites of PM and PE materials.

A few remarks are in order regarding Eq. (23). First, it is a rigor-
ous closed-form prediction to the effective properties of periodic
composites of PE and PM materials with microstructures being
periodic E-inclusions and there is no phenomenological parame-
ters in Eq. (23). Also, we do not need to compute the generalized
Eshelby tensor which is usually quite time consuming in the classic
analysis based on the Eshelby’s works. Second, the assumption of
unit cell Y being rectangular is not essential since there exist corre-
sponding periodic E-inclusions for any unit cell with any given po-
sitive semi-definite shape matrix Q with Tr(Q) =1 and volume
fraction f € (0, 1). If we send the shape matrix Q to a degenerate
matrix with eigenvalues {0, 1}, the inclusion degenerates to a lam-
inate regardless of the unit cell Y and Eq. (23) recovers the formula
for simple laminated composites. Third, the anisotropy of the effec-
tive tensor L° is determined by the anisotropy of microstructure
(i.e., the shape matrix Q) and the anisotropy of the materials. As
illustrated in Fig. 2, the aspect ratios of the inclusions alone cannot
determine the anisotropy of the microstructure (i.e., the shape ma-
trix Q). Another geometric feature, particularly important for peri-
odic composites of any microstructure at high volume fractions, is
the unit cell Y or equivalently the inter-distance and inter-orienta-
tion between one inclusion and its neighbors. Eq. (23) offers a prac-
tical and simple way to characterize the anisotropy of the
microstructure from the measured anisotropy of one kind of effec-
tive properties, e.g., the effective electric conductivity, which in
turn can be used to predict other effective properties including
the effective ME tensors. Finally, we may use Eq. (23) to design
the anisotropy of the microstructure according to the desired
anisotropy of the effective ME composites in applications.

4. Applications

Below we apply the closed-form solution (Eq. (23)) to the de-
sign of ME composites. For simplicity we will assume the micro-
structure is isotropic in the sense that the shape matrix Q =1/2.
A material property of particular interest is the ME voltage coeffi-
cient ogq1 = A3, /K¢, where A7, (k%) is the effective ME coupling
coefficient (dielectric permittivity) of the composite. The effective
ME voltage coefficient o, relates the overall electric field gener-
ated in the composite with the applied magnetic field and is the
figure of merit for magnetic field sensors.

As a first example, we choose the widely used BaTiO3 (BTO) as
the piezoelectric phase and CoFe,04 (CFO) as the piezomagnetic
phase. Both BTO and CFO are transversely isotropic, i.e. with
6 mm symmetry. The independent material constants are listed
in Table 1 in Voigt notation, where the xy plane is isotropic and
the fiber axis is along the z-direction. Note that in all materials
the ME coefficient /;; = 0. We consider both cases: BTO fibers in
a CFO matrix and CFO fibers in a BTO matrix.

Fig. 3 shows how the ME voltage coefficient depends on the
volume fraction of the inclusion. The ME voltage coefficient is
non-zero for every non-zero volume fraction of the inclusion even
though this coefficient is zero for each constituent phase. This
reflects the magnetoelectric coupling is mediated by the elastic
interaction and implies that there is an optimal volume fraction
for the desired maximum ME voltage coefficient. Fig. 3a shows
the maximum (absolute value) ME voltage coefficient occurs at
the volume of f,,; = 0.35 with o317 = 0.0306 V/cmOe in the case
of BTO fibers in a CFO matrix, whereas Fig. 3b shows the maximum
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Table 1 (absolute value) ME voltage coefficient occurs at the volume of
Material parameters of BaTiOs?, CoFe;0,%, P(VDF-TrFE)® and Terfenol-D/epoxy*. fopt =0.98 with o1 = 0.0245 V/cmOe in the case of CFO fibers
Property BaTiO; CoFe;04 P(VDE-TrFE)  Terfenol-D/epoxy in a BTO matrix. Figs. 3a and b also compare with the effective
Caa (N/m?) 43.0G 453G 0.256G 13.6G ME voltage coefficients predicted by Kuo (2011) who used multi-
€15 (C/m?) 11.6 0 ~0.015 0 pole expansion technique and by Benveniste (1995) who employed
g5 (NJAm) 0 550 0 108.3 the composite cylinder assemblage (CCA) model. In Kuo (2011), the
ki (CINM?) 112x10° 0.08x107° 0.07x10°  0.05x 10°° curve stops at f = m/4 when the inclusions begin to touch each
iy (NS’/C?) 5 107¢ 590 x10°% 126 x10° 54x10°° other. Still, the overall magnitudes and trends agree well among
An (NsVQ) 0 0 0 0 predictions based on the closed-form solutions for periodic E-
2 Li and Dunn (1998b). inclusions, Kuo’s model, and Beveniste’s CCA, and in particular
® Nan et al. (2001b). Benveniste’s CCA gave the same predictions as the present

© Liu et al. (2003, 2004). closed-form solutions. Further, we verify our results with the

o o T
\ ‘\\
| @ : (b) -
,’ 0005 \‘
001} I' E
g / g
= omst ’i 4 E el |
e 2
£ 7, =
e | 54 7 = oomsf
d / &
0.026/ Ve
E-inclusion
——— E-nclusion o
o003} _’/ ......... Bernwnlmelid 00 ] [ Benveniste
s skt =——l5
0035 A " . . . A . . . 0008 P . . . . . . .
0 01 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1
Fiber volume fraction f Fiber volume fraclion f

Fig. 3. The predicted ME voltage coefficients versus volume fractions: (a) BTO fibers in a CFO matrix and (b) CFO fibers in a BTO matrix. In both (a) and (b), the solid line “—" is
based on the presented closed-form solution for periodic E-inclusions with shape matrix Q = 1/2, i.e., Eq. (23); the dotted line “...” is from Benveniste (1995); the dashed line
“~ =" is from Kuo (2011).

- 8
Cupe €15, PE

10°

K11,PE

jt1,PE

Fig. 4. The contour plots of the maximum effective ME voltage coefficients o, versus different material parameters for composite of PE fibers in a PM matrix. The unit for
ME voltage coefficient is 0.0306 V/cmOe and the horizontal and vertical axes represent: (a) normalized elastic constants 644,,,5 and 644,pM; (b) normalized piezoelectric
coefficient of PE phase é;5 pr and normalized piezomagnetic coefficient of PM phase §ispm; (¢) normalized dielectric permittivities K11 pr and &1 pw; (d) normalized magnetic
permeabilities jt;1pr and fiy1 py.
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compatibility relations given in Eq. (21) proposed in the work of
Benveniste (1995). These exact universal connections are derived
based on a formalism discovered by Milgrom and Shtrikman
(1989), and are independent of the details of the microgeometry
and of the particular choice of the averaging model. Again, they
are in good agreement.

Next, we study how the effective ME voltage coefficient de-
pends on the elastic moduli Caspz and Cuqpy, dielectric permittivi-
ties K11 pe and K1 py, magnetic permeabilities ft;; pz and fi;; py Of
the PE and PM materials, piezoelectric coefficient espr of the PE
material, and piezomangetic coefficient q,sp, of the PM material.
For ease of comparison, we choose the material properties of BTO
and CFO as the reference and define the normalized material prop-
erties of the PE and PM phases as

6 . C44,PE E _ C44,PM S Ka4.PE
44PE = s 4am == , Knpg=_—_—"—
44.BTO 44.CFO

b
K44810

and likewise are kn’pm, ﬂ]]ypg, :a'llyPMv é151p5 and (A]-ls,pM. By Eq (23),
we can write the effective voltage coefficient as a function of vol-
ume fraction and the normalized material properties of the PE
and PM phases

Xg11 = 055,11(f; Caare, Caspm, kn,m ). (24)

As demonstrated by Fig. 3, there exists an optimal volume fraction
fope for maximum ME voltage coefficients. We can formally write
this optimal volume and the corresponding maximum effective
ME voltage coefficient as functions of the above normalized proper-
ties of the PE and PM phases

'

10° 10

Cu,pe

K11,pM

Os

10° 10

k11,PE

fopt = fopt(Caape, Caapm, K11,E, - - ),

N P ~ R
g = O(E,ll(fopty Caape, Caapym, K11 pE, - - -)-

Below we numerically compute the maximum ME voltage coeffi-
cient o7}, by Eq. (23) and its dependence of the normalized material
properties of PE and PM phases. These results give important guide-
lines for practical designs of ME composites of PE and PM materials.

Fig. 4 shows the contours of the maximum ME voltage coeffi-
cients o, of PE fibers (over volume fraction f) in a PM matrix at
the optimal fibrous volume fraction fo,,, where the maximum ME
voltage coefficients o 11proincro = 0.0306 V/cmOe of BTO fibers
in a CFO matrix is chosen as the unit for the ME voltage coefficient
o, for ease of comparison. The optimal volume fractions of PE
phase f,; vary from 0.28 to 0.64, whose exact values can be easily
computed by numerically maximizing the effective ME voltage
coefficient over f € [0,1] (cf. Eq. (24)). In Fig. 4a the horizontal
and vertical axes represent the normalized elastic constants of PE
and PM phases in logarithmic scale, respectively. It is observed that
the ME voltage coefficient increases when either the fiber or ma-
trix’s elastic constant decreases. Therefore, softer PM and PE mate-
rials are preferred for improving the ME voltage coefficients of
composites of PE fibers in a PM matrix. Fig. 4b shows the contours
of the maximum ME voltage coefficients o, versus the piezoelec-
tric and piezomagnetic constants in linear scale. For a fixed piezo-
electric coefficient e;5, the ME voltage coefficient increases
monotonically as the piezomagnetic coefficient q,5 increases. How-
ever, for a fixed normalized piezomagnetic coefficient g5 and as
the piezoelectric coefficient e;s increases, the ME voltage coeffi-
cient increases first and decreases after certain optimal e;s.

f11,PE

Fig. 5. The contour plots of the maximum effective ME voltage coefficients o, versus different material parameters for composite of PM fibers in a PE matrix. The unit for
ME voltage coefficient is 0.0245 V/cmOe and the horizontal and vertical axes represent: (a) normalized elastic constants C44 pe and C44 rv; (b) normalized piezoelectric
coefficient of PE phase é;5pr and normalized piezomagnetic coefficient of PM phase §ispm; (¢) normalized dielectric permittivities K11 pr and &1 pw; (d) normalized magnetic

permeabilities jii1pr and fiyq py.
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Fig. 6. The predicted ME voltage coefficients. P(VDF-TrFE) is the fiber phase and TD/epoxy is the matrix phase for (a). TD/epoxy is the fiber phase and P(VDF-TrFE) is the

matrix phase for (b).

Therefore, a large piezomagnetic coefficient gq,5; but a nontrivial
optimal piezoelectric coefficient e;; are preferred for improving
the ME voltage coefficients of composites of PE fibers in a PM ma-
trix. Fig. 4c shows the contours of the maximum ME voltage coef-
ficient o, versus the normalized electric permittivities of PE and
PM phases in logarithmic scale. We observe that smaller PE per-
mittivity 11 pr gives rise to larger ME voltage coefficient. However,
the PM permittivity #i;py does not influence ME effect much.
Fig. 4d shows the contours of the maximum ME voltage coefficient
o1, versus the normalized magnetic permeabilities of the PE and
PM phases in logarithmic scale. We observe that increasing the
PE’s magnetic permeability largely enhances the ME voltage coef-
ficient, and on the contrary, increasing the PM’s magnetic perme-
ability lowers the ME voltage coefficient. Therefore, a large
magnetic permeability of the PE phase and a small magnetic per-
meability of the PM phase are preferred for improving the ME volt-
age coefficient for composites of PE fibers in a PM matrix.

We now turn to the case of PM fibers (with isotropic shape ma-
trix Q =I/2) in a PE matrix. Fig. 5 shows the contours of the max-
imum ME voltage coefficients ojf;; at the optimal fibrous volume
fraction f,, where the maximum ME voltage coefficients
o 11.croinsto = 0.0245 V/cmOe of CFO fibers in a BTO matrix is cho-
sen as the unit for the ME voltage coefficient for ease of compari-
son. The optimal volume fractions f,, of PM phase are also
computed by numerically maximizing the effective ME voltage
coefficient over f € [0, 1] (cf. Eq. (24)). From Fig. 5a we observe that
the elastic constant of the PE phase has a much stronger influence
on the ME voltage coefficient than that of the PM phase. Again, soft
PM and PE phases are preferred for improving the ME voltage coef-
ficient. We also notice that the optimal volume fraction of the PM
phase fop; is roughly a constant of 0.98 though the elastic constants
of the PM and PE phases change orders of magnitude. From Fig. 5b
we observe that the ME voltage coefficient increases monotonically
as the piezomagnetic coefficient g5 of the PM phase increases and
there is an optimal piezoelectric coefficient e;5 of PE phase for
maximum ME voltage coefficient of composites of PM fibers in a
PE matrix. We also notice that the optimal volume fraction of the
inclusion f,, is roughly a constant of 0.98. Fig. 5¢ and d shows that
to improve the ME voltage coefficient of composites of PM fibers in
a PE matrix, we shall engineer the PM fibers and PE matrix such
that the electric permittivity 1 py of the PM phase is enhanced
and the magnetic permeability pt;; p, is reduced, and on the con-
trary, the electric permittivity i, pr of the PE phase is reduced
and the magnetic permeability u,, p; is enhanced. The optimal vol-
ume fraction f,p; varies from 0.92 to 0.98 for cases shown in Fig. 5¢
and d.

Motivated by the above study, we study ME composites of
P(VDF-TrFE) and Terfenol-D/epoxy TD/epoxy since they have much

lower elastic constants, electric permittivity, and magnetic
permeability. Further, a particulate ME composite made of
P(VDF-TrFE) and TD was also studied by Nan et al. (2001a,b) which
shows that the flexible composite exhibits markedly larger cou-
pling effect. For P(VDF-TrFE) in a TD/epoxy matrix, the maximum
is attained at volume fraction f = 0.34 where ME voltage coeffi-
cient agq1 = 0.1051 V/cmOe (Fig. 6a). For TD/epoxy in a P(VDF-
TrFE) matrix, the maximum occurs at the volume fraction
f=0.87 where the coupling effect ogq; =0.9221V/cmOe
(Fig. 6b). Both of them are around 3.5 times enhancement of the
coupling coefficients compared to their BTO/CFO counterparts.

5. Summary and discussion

The coexistence of magnetic and electric ordering and their
interaction in magnetoelectric materials have stimulated consider-
able scientific and technological interest in recent years for poten-
tial applications in actuators, sensors and storage devices. By
considering a simple model of periodic two-phase composites of
piezoelectric and piezomagnetic materials, we derive a closed-
form solution to the effective properties of the composite in terms
of material properties of the constituent phases and simple geo-
metric parameters: the volume fraction f of the fiber phase and
the shape matrix Q which characterizes the anisotropy of the
microstructure. The predicted effective properties are realizable
by microstructures of periodic E-inclusions.

Based on this closed-form solution, we study the dependence of
a particular material property of interest, the ME voltage coeffi-
cient, on the volume fraction of the fiber phase and the material
properties of the PE and PM phases. In particular, we obtain the fol-
lowing design principles for ME fibrous composites of PE and PM
phases:

(1) There exists an optimal volume fraction for maximum ME
voltage coefficient which can be obtained by maximizing
Eq. (24) over volume fraction f € (0,1). This is probably
the most important conclusion of our study since the vol-
ume fraction is the easiest controllable design parameters.

(2) Softer materials are desirable for improving the ME voltage
coefficient.

(3) For composites of PE fibers in a PM matrix and PM fibers in a
PE matrix (cf. Figs. 4 and 5), it is desirable to have larger
piezomagnetic coefficient but smaller magnetic permeabil-
ity in the PM phase, smaller electric permittivity but larger
magnetic permeability in the PE phase. Further, there exists
an optimal value of the piezoelectric coefficient of the PE
fibers for maximum ME voltage coefficient.
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(4) The dielectric permittivity of PM phase has a much stronger
effect on the ME voltage coefficient for composites of PM
fibers in a PE matrix than for composites of PE fibers in a
PM matrix (cf. Figs. 4c and 5c) and is preferably large.
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