
G

W
a

b

a

A
R
R
A
A

K
S
T
T
S
R
M

1

i
t
g
i
t
m
S
n
i
m
c
a
t
L
s
i
s
p
S
[

l

1
h

Applied Soft Computing 12 (2012) 3580–3589

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

enetic algorithms for a two-agent single-machine problem with release time

en-Chiung Leea,∗, Yu-Hsiang Chungb, Mei-Chia Hua

Department of Statistics, Feng Chia University, Taichung, Taiwan
Department of Industrial & Engineering Management, National Chiao Tung University, Hsinchu, Taiwan

 r t i c l e i n f o

rticle history:
eceived 6 February 2012
eceived in revised form 11 May 2012
ccepted 11 June 2012
vailable online 6 July 2012

a b s t r a c t

Scheduling with two competing agents has drawn a lot of attention lately. However, it is assumed that all
the jobs are available in the beginning in most of the research. In this paper, we study a single-machine
problem in which jobs have different release times. The objective is to minimize the total tardiness of jobs
from the first agent given that the maximum tardiness of jobs from the second agent does not exceed an
upper bound. Three genetic algorithms are proposed to obtain the near-optimal solutions. Computational
results show that the branch-and-bound algorithm could solve most of the problems with 16 jobs within a
eywords:
cheduling
otal tardiness
wo-agent
ingle-machine
elease time

reasonable amount of time. In addition, it shows that the performance of the combined genetic algorithm
is very good with mean error percentages of less than 0.2% for all the cases.

© 2012 Elsevier B.V. All rights reserved.
aximum tardiness

. Introduction

Recently, there is a growing interest in multi-agent schedul-
ng where jobs might come from several customers who have
heir own objective functions. For example, Baker and Smith [1]
ave an example of a prototype shop where the manufactur-
ng department might be concerned about finishing jobs before
heir due dates, and the research and development department

ight be more concerned about quick response time. Kubzin and
trusevich [2] presented another example in which the mainte-
ance activities compete with real jobs for machine occupancy

n maintenance planning. Meiners and Torng [3] gave a telecom-
unication example where various types of packets and service

ompete for the radio resource usage. Soomer and Franx [4] gave
 transportation example where the agents own their transporta-
ion resources, and compete for the usage of the infrastructures.
eung et al. [5] pointed out that several important classes of
cheduling problems, such as rescheduling problems or schedul-
ng with availability constraints, can be formulated as two-agent
cheduling problems. Baker and Smith [1] and Agnetis et al. [6]
ioneered the scheduling problems with two competing agents.
ince then, two-agent scheduling has drawn researchers’ attention

7–16].

Recently, Leung et al. [5] generalized the single machine prob-
ems of Agnetis et al. [6] to the case of multiple identical parallel

∗ Corresponding author.
E-mail address: wclee@fcu.edu.tw (W.-C. Lee).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.06.015
machines where job preemption is allowed. They also considered
certain single-machine problems where the jobs may have differ-
ent release dates, and job preemptions may or may not be allowed.
Lee et al. [17] considered a two-agent scheduling problem on a
two-machine permutation flowshop. Their objective is to mini-
mize the total tardiness of jobs from the first agent given that
the number of tardy jobs of the second agent is zero. Liu et al.
[18] brought the aging and learning effects into the two-agent
scheduling. Their objective is to minimize the total completion
time of jobs from the first agent given that the maximum cost of
jobs from the second agent cannot exceed a given upper bound.
Wan et al. [19] considered several two-agent scheduling problems
with controllable job processing times in which two agents have to
share either a single machine or two identical machines in paral-
lel while processing their jobs. Mor and Mosheiov [20] considered
a two-agent scheduling problem on a single-machine problem to
minimize the maximum earliness cost or total (weighted) earli-
ness cost of jobs from one agent, subject to an upper bound on
the maximum earliness cost of jobs from the other agent. They
introduced a polynomial-time solution for the maximum earli-
ness problem and proved NP-hardness for the weighted earliness
case. Lee et al. [21] considered a two-agent problem where the
objective is to minimize the total completion time of jobs from
the first agent given that no tardy job is allowed for the second
agent. Liu et al. [22] developed the optimal solutions for certain

two-agent problems with increasing linear deterioration on a sin-
gle machine. Their goal is to minimize the objective function of the
first agent given that the objective function of the second agent
cannot exceed a given bound. Nong et al. [23] considered a two

dx.doi.org/10.1016/j.asoc.2012.06.015
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:wclee@fcu.edu.tw
dx.doi.org/10.1016/j.asoc.2012.06.015

 Comp

a
i
f
f
a
fi
p
e
c
o
e
t
m
e
s
t
j
s
o
j
t
p
t
t
b

a
H
m
r
e
w
w
t
t
b
b
t
S
t
g
c
m
s

2

j
i
c
S
C
s
f
a
n
1

3

a
t
a

W.-C. Lee et al. / Applied Soft

gent problem on a single machine where the objective is to min-
mize the weighted sum of the maximum completion time of jobs
rom one agent and the total weighted completion time of jobs
rom the other agent. They provided a 2-approximation algorithm
nd showed the case is NP-hard when the number of jobs of the
rst agent is fixed. Yin et al. [24] studied three single-machine
roblems with deteriorating jobs. The objectives are the maximum
arliness cost, total earliness cost, and total weighted earliness
ost, while keeping the maximum earliness cost of jobs from the
ther agent below a fixed level. Mor and Mosheiov [25] consid-
red a single-machine problem with batch scheduling to minimize
he total completion time of jobs from one agent, given that the

aximum completion time of jobs from the other agent does not
xceed an upper bound. Wu et al. [26] studied single-machine
cheduling with learning effects. Their objective is to minimize
he total tardiness of jobs from the first agent, given that no tardy
ob is allowed for the second agent. Cheng et al. [27] considered
ingle-machine scheduling with truncated learning effects. Their
bjective is to minimize the total weighted completion time of
obs from the first agent, given that no tardy job is allowed for
he second agent. Li and Hsu [28] investigated a single-machine
roblem with learning effect where the objective is to minimize
he total weighted completion time of both agents with the restric-
ion that the makespan of either agent cannot exceed an upper
ound.

Most of the research in scheduling with two competing agents
ssumes that jobs are ready to be processed in the beginning.
owever, customer orders might not arrive simultaneously in
any realistic situations. Thus, it is more practical to consider jobs

elease times. Leung et al. [5] were the only authors who consid-
red two-agent scheduling with job release times. In this paper,
e study a two-agent scheduling problem on a single machine
ith release time where the objective is to minimize the total

ardiness of jobs from the first agent given that the maximum
ardiness of jobs from the second agent cannot exceed an upper
ound. To the best of our knowledge, this problem has never
een studied. The rest of this paper is organized as follows. In
he next section, the formulation of our problem is described. In
ection 3, a branch-and-bound algorithm with several elimina-
ion rules and a lower bound is developed. In Section 4, three
enetic algorithms are proposed to solve this problem. In Section 5,
omputational experiments are conducted to evaluate the perfor-
ance of the genetic algorithms. A conclusion is given in the final

ection.

. Problem description

The problem formulation is described as follows. There are n
obs, each belongs to either agent AG1 or AG2. For each job j, there
s a processing time pj, a due date dj, a release time rj, and an agent
ode Ij, where Ij = 1 if j ∈ AG1 or Ij = 2 if j ∈ AG2. Under a schedule
, let Cj(S) be the completion time of job j and let Tj(S) = max {0,
j(S) − dj} be the tardiness of job j. In this paper, we consider a
ingle machine problem to minimize the total tardiness of jobs
rom agent AG1 given that the maximum tardiness of jobs from
gent AG2 does not exceed an upper bound M. Using the three-field
otation extended by Agnetis et al. [6], this problem is denoted by
|r1

j
; r2

j
|
∑

Tj; Tmax.

. A branch-and-bound algorithm
When all the jobs are from agent AG1 and the release times
re zero, the problem reduces to the classical single-machine total
ardiness time problem which is NP-hard [29]. Therefore, a branch-
nd-bound algorithm is proposed to derive the optimal solution.
uting 12 (2012) 3580–3589 3581

3.1. Dominance properties

First, we provide a result to speed up the search process. We
then develop several adjacent dominance properties to reduce the
searching scope.

Theorem 1. If there is a job i such that ri + pi ≤ rj for all the remaining
jobs j, then job i is scheduled first in the optimal sequence.

Proof. The proof is omitted since it is straightforward.

Suppose that S and S′ are two schedules of jobs with the only
difference between them a pairwise interchange of two adjacent
jobs i and j. That is, S = (�, i, j, �′) and S′ = (�, j, i, �′), where � and �′

each denote a partial sequence. In addition, let t be the completion
time of the last job in �. The completion times of jobs i and j in S
are

Ci(S) = max{t, ri} + pi (1)

and

Cj(S) = max{Ci(S), rj} + pj (2)

Similarly, the completion times of jobs j and i in S′ are

Cj(S
′) = max{t, rj} + pj (3)

and

Ci(S
′) = max{Cj(S

′), ri} + pi (4)

Depending on whether jobs are from agents AG1 or AG2, we
divide the situation into the following three cases.

Case 1. Both jobs i and j are from agent AG1.

To show that S dominates S′, it suffices to show that
Cj(S) − Ci(S′) ≤ 0, and Ti(S) + Tj(S) < Tj(S′) + Ti(S′) in this case.

Property 1.1. If t ≥ max {ri, rj} and di ≤ t + pi < dj, then S dominates
S′.

Proof. Since t ≥ max {ri, rj}, we have

Ci(S) = t + pi

Cj(S) = t + pi + pj

Cj(S
′) = t + pj

and

Ci(S
′) = t + pj + pi

Therefore, we have Cj(S) ≤ Ci(S′). Since t + pi ≥ di, we have

Ti(S) = t + pi − di (5)

and

Ti(S
′) = t + pj + pi − di (6)

Suppose that Ti(S) is not zero. Note that this is the more restric-
tive case since it comprises the case that Ti(S) is zero. From Eqs. (5)
and (6), we have

Tj(S
′) + Ti(S

′) − Ti(S) − Tj(S) = dj − t − pi > 0

since t + pi < dj. Thus, S dominates S′.
Property 1.2. If t ≥ max {ri, rj} and di < t + pi + pj ≤ dj, then S domi-
nates S′.

Property 1.3. If t ≥ max {ri, rj}, t + pi ≤ di ≤ t + pj + pi, and dj > di, then
S dominates S′.

3 Comp

P
t

P
t

P
S

P
t

P
t

P
n

P
i

C

T

P
n

P
i

P
i

P
S

P
S

C

T

P
d

P
t

P
r

P
t

P
t

t
�
t

P
t

3

a
a
n
A

582 W.-C. Lee et al. / Applied Soft

roperty 1.4. If ri ≤ t ≤ rj ≤ t + pi, dj ≥ t + pi + pj, and di < rj + pj + pi,
hen S dominates S′.

roperty 1.5. If ri ≤ t ≤ rj ≤ t + pi, t + pi ≤ di ≤ rj + pj + pi, and dj > di,
hen S dominates S′.

roperty 1.6. If ri ≤ t ≤ rj ≤ t + pi and di ≤ t + pi ≤ dj, then S dominates
′.

roperty 1.7. If t ≤ ri ≤ rj ≤ ri + pi, ri + pi + pj ≤ dj, and rj + pj + pi > di,
hen S dominates S′.

roperty 1.8. If t ≤ ri ≤ rj ≤ ri + pi ≤ di ≤ rj + pj + pi and ri + di < rj + dj,
hen S dominates S′.

roperty 1.9. If t ≤ ri ≤ rj ≤ ri + pi < dj and ri + pi ≥ di, then S domi-
ates S′.

roperty 1.10. If max {t, ri} + pi ≤ rj and rj + pj + pi > di, then S dom-
nates S′.

ase 2. Job i is from agent AG1, but job j is from agent AG2.

To show that S dominates S′, it suffices to show that Tj(S) ≤ M,
i(S) < Ti(S′) and Cj(S) − Ci(S′) ≤ 0.

roperty 2.1. If t ≥ max {ri, rj} and t + pi + pj − dj ≤ M, then S domi-
ates S′.

roperty 2.2. If ri ≤ t ≤ rj ≤ t + pi and t + pi + pj − dj ≤ M, then S dom-
nates S′.

roperty 2.3. If t ≤ ri ≤ rj ≤ ri + pi and ri + pi + pj − dj ≤ M, then S dom-
nates S′.

roperty 2.4. If t ≥ ri, t + pi ≤ rj, and rj + pj − dj ≤ M, then S dominates
′.

roperty 2.5. If t ≤ ri, ri + pi ≤ rj, and rj + pj − dj ≤ M, then S dominates
′.

ase 3. Both jobs i and j are from agent AG2.

To show that S dominates S′, it suffices to show that Ti(S) ≤ M,
j(S) ≤ M and Cj(S) − Ci(S′) < 0.

roperty 3.1. If t ≥ max {ri, rj}, t + pi − di ≤ M, t + pi + pj − dj ≤ M, and

i < dj, then S dominates S′.

roperty 3.2. If ri ≤ t < rj ≤ t + pi, t + pi − di ≤ M, and
 + pi + pj − dj ≤ M, then S dominates S′.

roperty 3.3. If t ≤ ri < rj ≤ ri + pi, ri + pi − di ≤ M, and

i + pi + pj − dj ≤ M, then S dominates S′.

roperty 3.4. If t ≥ ri, t + pi ≤ rj, t + pi − di ≤ M, and rj + pj − dj ≤ M,
hen S dominates S′.

roperty 3.5. If t ≤ ri, ri + pi ≤ rj, ri + pi − di ≤ M, and rj + pj − dj ≤ M,
hen S dominates S′.

To further facilitate the search process, we provide a proposition
o determine the feasibility of a partial schedule. Assume that (�,
c) is a sequence of jobs where � is the scheduled part and �c is

he unscheduled part.

roposition 1. If there is a job j ∈ �c ∩ AG2 such that t + pj > dj + M,
hen (�, �c) is not a feasible sequence.

.2. A lower bound

In this subsection we develop a lower bound for the branch-

nd-bound algorithm. Let PS be a partial sequence in which s jobs
re scheduled. Suppose that, among the unscheduled set US with

 − s jobs, there are n1 jobs from agent AG1 and n2 jobs from agent
G2, where n1 + n2 = n − s. For these unscheduled jobs, we have
uting 12 (2012) 3580–3589

p(s+1) ≤ p(s+2) ≤ · · · ≤ p(n) when they are arranged in non-decreasing
order of their processing times and r(s+1) ≤ r(s+2) ≤ · · · ≤ r(n) when
they are arranged in the non-decreasing order of their release
times. Note that p(i) and r(i) may not be from the same job. Fur-
thermore, the due dates of the n1 (n2) unscheduled jobs from agent
AG1 (AG2) are denoted as d1

(1) ≤ d1
(2) ≤ · · · ≤ d1

(n1) (d2
(1) ≤ d2

(2) ≤ · · · ≤
d2

(n2)) when they are in non-decreasing order of their due dates. The
idea of the proposed lower bound is that we first derive a lower
bound on the completion times of the unscheduled jobs based on
the SPT rule, and then we assign them to agents AG1 and AG2 with-
out violating the constraint that the maximum tardiness of jobs
from agent AG2 does not exceed the upper bound M. In the first
step, the completion time of the (s + 1)th job is

C[s+1] = max{C[s], r[s+1]} + p[s+1] ≥ C[s] + p(s+1)

By induction, the completion time of the (s + i)th job is

C[s+i] ≥ C[s] +
i∑

l=1

p(s+l) (7)

On the other hand, this lower bound might not be tight if
the release times are large. Thus, C[s+1] = max {C[s], r[s+1]} + p[s+1]
≥r(s+1) + p(s+1).

By induction, we have

C[s+i] = max
1≤k≤i

{
r[s+k] +

i−k+1∑
l=1

p[s+k+l]

}
≥ max

1≤k≤i

{
r(s+k) +

i−k+1∑
l=1

p(s+l)

}
(8)

From Eqs. (7) and (8), a lower bound on the completion time of
the (s + i)th job is

C[s+i] ≥ max{t +
i∑

l=1

p(s+l), max
1≤k≤i

{r(s+k) +
i−k+1∑

l=1

p(s+l)}}

for i = 1, 2, . . ., n − s. In the second step, the remaining task is to
assign the estimated completion times to the jobs from agent AG1
or AG2. The principle is to assign the completion times to the jobs
from agent AG2 as late as possible without violating the assumption
that the maximum tardiness of the jobs of agent AG2 cannot exceed
the upper bound. In addition, let C1

(1) ≤ C1
(2) ≤ · · · ≤ C1

(n1) and C2
(1) ≤

C2
(2) ≤ · · · ≤ C2

(n2) denote the estimated completion times of the jobs
from agents AG1 and AG2, respectively, when they are arranged in
non-decreasing order. The assignment procedure is in a backward
manner starting from the job with the remaining largest due date
until all the jobs are assigned. The details are given as follows:

Algorithm of the lower bound:

Step 1: Set ic = n − s, i1 = n1, i2 = n2, and C(s+i) = max{t +
i∑

l=1

p(s+l), max
1≤k≤i

{r(s+k) +
i−k+1∑

l=1

p(s+l)}} for i = 1, 2, . . ., n − s.

Step 2: If C(s+ic) ≤ d2
(i2) + M, then set C2

(i2) = C(s+ic) and i2 = i2 − 1.

Otherwise, set C1
(i1) = C(s+ic) and i1 = i1 − 1.

Step 3: Set ic = ic − 1. If ic ≥ 1, then go to Step 2.

Therefore, a lower bound on the total tardiness of jobs from
agent AG1 for PS is
LB =
∑

j ∈ AG1

Tj(PS) +
n1∑
j=1

max{0, C1
(j) − d1

(j)}

 Computing 12 (2012) 3580–3589 3583

3

f
d
i
e
f

4

a
p
d
o
a
r
s
t
t
t
c
m
c
a

4

[
u
g
r
c
s

4

G
b
s

4

t
v
t

Parent1 0.45 0.32 0.15 0.78 0.53 0.36

Offspring 0.45 0.32 0.27 0.49 0.18 0.72

A good initial sequence might be useful to facilitate the conver-
gence of the process or to obtain a better approximate solution. In
this paper, three methods are implemented. In the first GA (GA1),

Offspring 0.45 0.32 0.1 5 0.78 0.53 0.36
W.-C. Lee et al. / Applied Soft

.3. Description of the branch-and-bound algorithms

A depth-first search is used in the branching procedure starting
rom the first position. We choose a branch and systematically work
own the tree until we either eliminate it or reach its final node,

n which case this sequence either replace the initial solution or is
liminated. The outline of the branch-and-bound algorithm is as
ollows.

Step 1. {Initialization} Implement the genetic algorithms (dis-
cussed in the next section) to obtain a sequence as the initial
incumbent solution.
Step 2. {Branching} Apply Theorem 1, Properties 1.1 to 3.5, and
Proposition 1 to eliminate the dominated partial sequence.
Step 3. {Bounding} For the non-dominated nodes, compute the
lower bound of the total tardiness of jobs from agent AG1 of
the unfathomed partial sequences or that of the completed
sequences. If the lower bound on the objective function for the
partial sequence is greater than the initial solution, eliminate that
node and all the nodes beyond it in the branch. If the objec-
tive function of the completed sequence is less than the initial
solution, replace it as the new solution. Otherwise, eliminate
it.

. Genetic algorithms

Evolutionary algorithms have become popular in obtaining good
pproximate solutions for many NP-hard problems [30–35]. In this
aper, we utilize the genetic algorithm (GA). It is an intelligent ran-
om search strategy which has been used successfully to find near
ptimal solutions to many complex problems [36–38]. The GA usu-
lly starts with a population of feasible solutions and iteratively
eplaces the current population by a new population until certain
topping condition is reached. It requires a suitable encoding for
he problem and a fitness function that represents a measure of
he quality of each encoded solution (chromosome). The reproduc-
ion mechanism selects the parents and recombines them using a
rossover operator to generate offspring which are submitted to a
utation operator in order to alter them locally to avoid premature

onvergence. The components of the GA applied to our problem are
s follows.

.1. Encoding

In this study, we adopt the random number encoding method
39]. For a problem of n jobs, we generate a chromosome with n
niform random real numbers between 0 and 1 to represent the
enes, where each gene corresponds to a job. The order of these
andom numbers represents the job sequence. For instance, the
hromosome of a 5-job problem (0.33, 0.78, 0.13, 0.94, 0.26) would
tand for the sequence (3, 5, 1, 2, 4).

.2. Population size

The population size is an important factor in the performance of
A. For a large population size, it is easier to obtain a better solution,
ut it consumes more time. After a preliminary trial, the population
ize N is set at 500 in our computational experiment.

.3. Fitness function
In order to mimic the natural process of the survival of the fittest,
he fitness function assigns to each member of the population a
alue reflecting their relative superiority. In this paper, we adopt
he idea by Homaifar et al. [40] of adding a penalty function to the
Parent2 0.18 0.87 0.27 0.49 0.18 0.72

Fig. 1. One cut-point crossover.

infeasible solution. Thus, the objective function of chromosome k
is

objk =
∑

j ∈ AG1

Tj + ˛maxj ∈ AG2
max{Tj − M, 0}, where ̨ is set at

5000 in this study. In addition, we use the reciprocal of the objective
value as the fitness value for each chromosome, and the probability
that a chromosome is selected as the parent is proportional to its
fitness value. That is, the probability of selecting chromosome i is
fi = hi/

∑N
j=1hj , where hi = 1/obji, i = 1,. . ., N, is the reciprocal of the

objective value of chromosome i in a population of size N. This is to
ensure that the probability of selection for a sequence with lower
value of the objective function is higher.

4.4. Crossover

Crossover is an operation to generate new offspring from two
parents. It is the main operator in GA. In this study, we use the one
cut-point crossover as shown in Fig. 1 and the rate Pc was chosen
at 95% after some pretests.

4.5. Mutation

Mutation is another main operator to prevent premature con-
vergence and fall into local optimum. Such an operation can be
viewed as a transition from a current solution to its neighborhood
solution in a local search algorithm. In this study, we use the one-
point mutation as shown in Fig. 2 and the mutation rate Pm is set
at 80% based on our preliminary experiment.

4.6. Selection

It is a procedure to select offspring from parents to the next
generation. In our study, the population size is fixed at 500 from
generation to generation. In our study, we choose the best 50
chromosomes (10%) from the parent population and the best 450
chromosomes (90%) from the offspring to form the next generation.

4.7. Termination

After some pretests, we terminate the proposed GA after 20n
generations, where n is the number of jobs.

4.8. Initial sequences
Offspring 0.45 0.32 0.38 0.78 0.53 0.36

Fig. 2. One-point mutation.

3584 W.-C. Lee et al. / Applied Soft Computing 12 (2012) 3580–3589

Find a job j from Uwith

a minimal release time.

Can job j be

scheduled in

position?

thk

Set

1,, kjjk kprC = +=+

\{j}, SUSS = Ω=∪

Remove job j from U.

Is k larger than n?

Set
1{r kj AG}jCV ∈≤=

Is Vempty?

Find a job j from Vwith

a minimal due date.

Can job j be

scheduled in

position?

thk

Set

1 1,, },rmax{C

\{j},

jjkk kkpC

SUSS
− +=+=

Ω=∪=

Set
2}{r kj AGjCW ∈≤=

Is Wempty?

Find a job j from Wwith

a minimal due date.

Can job j be

scheduled in

position?

thk

Output the job sequence

Yes No

Yes

No

Yes

No

No

Yes

Yes

No

YesNo

k diag

t
o
a
d
o
i

Fig. 3. Bloc

he first generation consists of 500 random sequences. In the sec-
nd GA (GA2), the first generation consists of 499 random sequences

nd one designated sequence from the heuristic algorithm (HA) as
escribed below. In the third GA (GA3), the first generation consists
f 51 random sequences and 441 designated sequences. The des-
gnated sequences sort jobs according to the non-decreasing order
ram for HA.

of w1rj + w2pj + (1 − w1 − w2)dj , where w1 = 0, 1/60,. . ., 20/60 and
w2 = 0, 1/60,. . ., 20/60. The algorithm is given below and shown in

Fig. 3.

Heuristic algorithm (HA)

Step 1. Set k = 1, S = �, U = {1, · · · , n} , Ck = 0, ̋ = {1, · · · , n}.

W.-C. Lee et al. / Applied Soft Computing 12 (2012) 3580–3589 3585

Table 1
The performance of the branch-and-bound algorithm with n = 12, P = 50%, � = 1, and
M = 30n.

� R Number of nodes CPU time

Mean Max Mean Max

0.25 0.25 52.32 474 0.001 0.016
0.50 71.59 1314 0.001 0.016
0.75 46.37 328 0.001 0.016

0.50 0.25 117.22 1889 0.001 0.016
0.50 121.95 776 0.001 0.016
0.75 156.68 1870 0.002 0.016

4

u
a
w
u
f
g
n
[
o
w
�
f
t
f

fi
p
j
r
n
(
0
a
t
r
t
t
t

iments. In addition, three different values of R (0.25, 0.5, 0.75), of P
(0.25, 0.5, 0.75), and of M (10n, 30n, 50n) are chosen. The mean and
the maximum numbers of nodes and the mean and the maximum
0.75 0.25 107.12 583 0.001 0.016
0.50 27.37 698 0.001 0.016

Step 2. Find a job j from U with a minimal release time.
Step 3. If job j can be scheduled in the kth position without causing
the violation of the constraint, put job j in the kth position, set
Ck = rj + pj, k = k + 1, S = S ∪ {j} , U = ̋ \ S. Otherwise, delete {j} from
U and go to Step 2.
Step 4. If k > n, go to Step 8. Otherwise, form the set
V = {rj ≤ Ck and j ∈ AG1}, and if V is empty, go to Step 6.
Step 5. Find a job j from V with a minimal due date. If job j can be
scheduled in the kth position without causing the violation of the
constraint, set job j in the kth position, set Ck = max {Ck−1, rj} + pj,
k = k + 1, S = S ∪ {j} , U = ̋ \ S, and go to Step 4.
Step 6. Form the set W = {rj ≤ Ck and j ∈ AG2} . If W is empty, go to
Step 2.
Step 7. Find a job j from W with a minimal due date. If job j can
be scheduled in the kth position without causing the violation of
the constraint, set job j in the kth position, Ck = max {Ck−1, rj} + pj,
k = k + 1, S = S ∪ {j} , U = ̋ \ S, and go to Step 4. Otherwise, go to Step
2.
Step 8. Output the job sequence.

.9. Computational experiments

A computational experiment is conducted in this section to eval-
ate the performance of the branch-and-bound and the GAs. All the
lgorithms are coded in Fortran 90 and run on a personal computer
ith AMD Athlon(tm) 64 Processor 3500+, 2.21 GHz and 1 GB RAM
nder Windows XP. The processing times are generated from a uni-
orm distribution over the integers 1–100. The job release times are
enerated from uniform distributions between 0 and 50.5n� where

 is the number of jobs and � is a control variable, as suggested in
41]. The due date of job j is generated from a uniform distribution
ver the integers between rj + T(1 − � − R/2) and rj + T(1 − � + R/2),
here rj is the due date of job j, T is the total job processing times,

 is the tardiness factor, and R is the due date range. To ensure the
easibility of the instance, jobs from agent AG2 are placed based on
he EDD rule, and it is regenerated if the maximum tardiness of jobs
rom agent AG2 exceeds the upper bound M.

The computational experiments are divided into four parts. The
rst part is to test the impact of the due date factors � and R to the
erformance of the branch-and-bound algorithm. The number of

obs is 12, and P, the proportion of jobs from agent AG1, is 50%. The
elease time factor � is 1 and the upper bound of maximum tardi-
ess is 30n, where n is the number of jobs. Eight combinations of
�, R) values are used, i.e. (0.25, 0.25), (0.25, 0.50), (0.25, 0.75), (0.5,
.25), (0.5, 0.50), (0.5, 0.75), (0.75, 0.25), and (0.75, 0.50). The mean
nd maximum numbers of nodes and the mean and maximum CPU
imes (in seconds) are reported for the branch-and-bound algo-
ithm. 100 instances are randomly generated for each case and

he results are presented in Table 1 and Fig. 4. It is seen that the
ardiness factor � is more significant than the range factor R to
he performance of the branch-and-bound algorithm. Problems are
Fig. 4. The mean numbers of nodes of the branch-and-bound algorithm with n = 12,
P = 50%, � = 1, and M = 30n.

more difficult to solve when � = 0.5. Moreover, the case (�, R) = (0.5,
0.75) has the most mean number of nodes among the 8 cases.

The second part of the experiment is to test the impacts of the job
release time (�), the proportion of jobs from agent AG1 (P), and the
upper bound of the maximum tardiness (M) to the performance of
the branch-and-bound algorithm. The number of jobs is 12, and the
value of (�, R) is (0.5, 0.5). Three values of � (0.2, 1.0, 3.0), of P (0.25,
0.50, 0.75) and of M (10n, 30n, 50n, where n is the number of jobs)
are tested. As a result, 27 cases are considered and 100 instances
are randomly generated for each case. The results are presented
in Table 2 and Figs. 5–7. It is seen that the job release time (�) is
the most significant factor among these three factors. In addition,
problems are more difficult to solve when the value of � is smaller.
The proportion of jobs from agent AG1 (P) is the second most sig-
nificant factor, and problems tend to be harder when the value of
P is smaller. On the other hand, the upper bound of the maximum
tardiness (M) seems to have little influence on the performance of
the branch-and-bound algorithm.

The third part of the experiment is to study the performance
of the branch-and-bound algorithm and the accuracy of the three
proposed genetic algorithms when the number of jobs is 16. We fix
� = 0.5 and � = 0.2 since problems are the most difficult to solve as
shown in the results of the first and the second parts of the exper-
Fig. 5. The mean numbers of nodes of the branch-and-bound algorithm with n = 12,
� = 1, � = 0.5, and R = 0.5.

3586 W.-C. Lee et al. / Applied Soft Computing 12 (2012) 3580–3589

Table 2
The performance of the branch-and-bound algorithm with n = 12, � = 0.5, and R = 0.5.

� P M Number of nodes CPU time

Mean Max Mean Max

0.20 0.25 10n 7181.83 60,051 0.060 0.469
30n 19,012.42 166,562 0.155 1.172
50n 14,122.12 159,389 0.118 1.000

0.50 10n 3253.14 21,118 0.025 0.156
30n 1210.51 27,201 0.010 0.172
50n 971.36 9635 0.008 0.063

0.75 10n 932.56 9003 0.008 0.063
30n 852.61 7611 0.005 0.063
50n 889.96 12,724 0.005 0.078

1.00 0.25 10n 339.41 4462 0.002 0.031
30n 154.73 2084 0.001 0.016
50n 230.49 3733 0.001 0.016

0.50 10n 114.85 1012 0.001 0.016
30n 121.95 776 0.001 0.016
50n 152.39 1790 0.001 0.016

0.75 10n 79.14 531 0.001 0.016
30n 89.12 736 0.001 0.016
50n 74.93 350 0.001 0.016

3.00 0.25 10n 15.71 51 0.000 0.000
30n 17.01 181 0.000 0.016
50n 14.33 28 0.001 0.016

0.50 10n 15.19 43 0.000 0.016
30n 14.42 45 0.001 0.016
50n 14.43 46 0.000 0.016

0.75 10n 14.67 37 0.001 0.016
.26

.94

C
a
a
s

w
a
b
a
b
e
t

F
P

30n 15
50n 13

PU times (in seconds) are reported for the branch-and-bound
lgorithm, while only the mean and the maximum error percent-
ges of the GAs are given. For instance, the error percentage of the
olution produced by GA1 is calculated as

(V − V∗)
V∗ × 100%

here V is the objective function of the sequence generated by GA1
nd V* is the objective function of the optimal sequence from the
ranch-and-bound algorithm. For each case, 100 random instances

re generated and the results are given in Table 3. Note that the
ranch-and-bound algorithm is terminated if the number of nodes
xplored is over 108, which was approximately 0.5 h in terms of
he execution time. The instance with number of nodes over 108 is

ig. 6. The mean numbers of nodes of the branch-and-bound algorithm with n = 12,
 = 50%, � = 0.5, and R = 0.5.
54 0.000 0.016
41 0.000 0.016

denoted as an asterisk in Table 3. It is observed that the branch-and-
bound algorithm can solve most of the problems with 16 jobs in a
reasonable amount of time. Among the 2700 problems, there are
only 4 unsolvable problems. A closer look reveals that, among the
three factors considered, the proportion of jobs from agent AG1 (P)
is the most significant one, and problems tend to be harder when
P is smaller. The due date range (R) is the second significant, and
problems are more difficult when R is smaller. As to the perfor-
mance of GAs, it is noticed that the performance of all the three GAs
is quite good. In addition, it is seen that GA with more designated
initial sequences tends to have better overall solutions. However,

there is an instance in which GA1 yields an objective value of 3 but
the total tardiness is 0 for the optimal sequence. Thus, we would

Fig. 7. The mean numbers of nodes of the branch-and-bound algorithm with n = 12,
M = 30n, � = 0.5, and R = 0.5.

W
.-C.

 Lee
 et

 al.
 /

 A
pplied

 Soft
 Com

puting
 12

 (2012)
 3580–3589

3587

Table 3
The performance of the proposed algorithms with n = 16, � = 0.2, and � = 0.5.

R P M Branch-and-bound algorithm Error percentages

Number of nodes CPU time GA1 GA2 GA3 GA*

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

0.25 0.25 10n 7,733,551.02 88,667,901** 104.54 1256.59 0.10 4.41 0.06 2.54 0.06 2.54 0.06 2.54
30n 7,419,256.32 86,013,946 103.43 1255.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50n 7,355,622.14 83,886,484* 109.69 1246.44 0.05 5.30 0.00 0.00 0.00 0.00 0.00 0.00

0.50 10n 689,226.16 9,501,342 7.79 113.78 0.38 20.18 0.29 16.94 0.15 7.44 0.01 1.18
30n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50n 10,060.48 594,503 0.15 8.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 10n 137,298.25 1,636,596 1.63 18.66 0.84 83.66 0.84 83.66 0.13 12.99 0.00 0.00
30n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.50 0.25 10n 2,760,314.24 37,327,750 35.86 449.00 0.27 15.29 0.08 5.61 0.19 7.44 0.00 0.00
30n 1,492,637.44 33,707,790 19.67 361.89 0.02 1.56 0.02 1.56 0.02 1.56 0.02 1.56
50n 737,745.28 11,652,452 10.35 153.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.50 10n 281,446.60 4,129,379 3.44 51.52 0.53 36.40 0.55 36.40 0.21 16.07 0.16 16.07
30n 3015.02 301,502 0.04 3.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50n 3230.40 197,842 0.04 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 10n 37,923.48 513,825 0.46 6.39 0.00 0.00 0.00 0.00 0.08 8.08 0.00 0.00
30n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 0.25 10n 906,273.05 32,881,824* 11.56 388.05 0.22 13.88 10.23 1000.00 0.18 8.47 0.05 4.55
30n 233,616.08 7,809,830 2.90 104.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50n 187,185.72 11,482,136 2.34 137.83 0.00 0.00 0.00 0.00 0.50 50.00 0.00 0.00

0.50 10n 52,821.20 696,483 0.68 9.20 0.37 35.22 2.61 200.00 0.01 0.68 0.01 0.68
30n 1254.95 94,666 0.02 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50n 43.32 3826 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 10n 11,824.61 282,636 0.15 3.31 0.61 56.25 0.05 5.19 0.14 8.33 0.05 5.19
30n 70.48 5561 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

An asterisk means an instance with number of nodes over 100,000,000.

3588 W.-C. Lee et al. / Applied Soft Computing 12 (2012) 3580–3589

Table 4
The performance of the genetic algorithms with n = 50, � = 0.2, and � = 0.5.

R P M GA1 GA2 GA3

RDP CPU time RDP CPU time RDP CPU time

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

0.25 0.25 10n 1.05 10.60 11.53 11.92 1.55 14.73 11.65 12.00 0.67 10.44 11.52 11.91
30n 0.07 5.87 5.53 12.06 0.00 0.00 5.42 12.11 0.15 8.74 5.56 12.25
50n 0.22 11.74 6.79 11.98 0.13 11.74 6.66 12.17 0.09 5.18 6.81 12.13

0.50 10n 2.66 38.94 11.39 11.80 2.73 51.34 11.50 12.02 1.65 51.34 11.33 11.81
30n 0.00 0.00 0.16 0.25 0.00 0.00 0.00 0.02 0.00 0.00 0.15 0.25
50n 0.00 0.00 0.15 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.27

0.75 10n 1.99 56.07 10.88 11.83 1.57 57.10 10.90 11.81 1.21 28.87 10.72 11.69
30n 0.00 0.00 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.16
50n 0.00 0.00 0.04 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.11

0.50 0.25 10n 3.35 79.15 10.95 12.06 3.48 110.54 11.05 12.22 0.50 12.44 10.89 12.06
30n 0.00 0.00 0.88 12.05 0.00 0.00 0.63 12.06 0.00 0.00 0.76 12.05
50n 0.00 0.00 1.18 11.98 0.00 0.00 0.85 11.98 0.00 0.00 1.08 11.84

0.50 10n 2.17 108.71 6.29 11.69 2.46 96.83 6.27 11.89 0.90 46.24 6.00 11.61
30n 0.00 0.00 0.18 0.34 0.00 0.00 0.00 0.03 0.00 0.00 0.12 0.27
50n 0.00 0.00 0.15 0.25 0.00 0.00 0.00 0.02 0.00 0.00 0.11 0.22

0.75 10n 0.52 27.97 2.58 11.53 0.00 0.00 2.29 11.61 1.01 54.09 2.12 11.41
30n 0.00 0.00 0.06 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.13
50n 0.00 0.00 0.05 0.09 0.00 0.00 0.00 0.02 0.00 0.00 0.06 0.11

0.75 0.25 10n 1.61 127.27 4.53 12.16 0.78 47.91 4.53 12.53 0.26 22.71 4.24 12.16
30n 0.00 0.00 0.53 12.00 0.00 0.00 0.34 11.91 0.00 0.00 0.27 11.89
50n 0.04 4.00 0.49 12.13 0.00 0.00 0.14 12.00 0.04 4.00 0.26 12.05

0.50 10n 0.08 7.52 1.31 11.44 0.03 2.62 1.21 11.63 0.00 0.00 0.80 11.41
30n 0.00 0.00 0.23 0.48 0.00 0.00 0.01 0.27 0.00 0.00 0.07 0.22
50n 0.00 0.00 0.16 0.31 0.00 0.00 0.00 0.03 0.00 0.00 0.06 0.14

0

0

0

r
G
a
l

T
T

0.75 10n 0.00 0.00 0.49 1.38 0.0
30n 0.00 0.00 0.09 0.25 0.0
50n 0.00 0.00 0.06 0.11 0.0
ecommend to use the best sequence from three GAs,
A* = min {GA1, GA2, GA3}, as the approximate solution, since they
re all finished within a second and its mean error percentages are
ess than 0.2% for all the tested cases.

able 5
he performance of the genetic algorithms with n = 100, � = 0.2, and � = 0.5.

R P M GA1 GA2

RDP CPU time RDP

Mean Max Mean Max Mean

0.25 0.25 10n 2.72 14.55 73.68 76.53 4.13

30n 0.19 15.79 24.28 75.70 0.25

50n 3.89 216.67 20.89 76.47 0.00

0.50 10n 3.44 40.27 72.93 75.45 2.80

30n 0.00 0.00 1.26 1.73 0.00

50n 0.00 0.00 1.13 1.55 0.00

0.75 10n 2.59 36.81 70.56 75.08 1.61

30n 0.00 0.00 0.56 1.23 0.00

50n 0.00 0.00 0.45 0.69 0.00

0.50 0.25 10n 13.64 813.85 71.68 76.97 13.00

30n 0.00 0.00 3.08 4.66 0.00

50n 0.00 0.00 2.76 5.02 0.00

0.50 10n 2.52 90.38 26.04 74.42 3.72

30n 0.00 0.00 1.53 2.22 0.00

50n 0.00 0.00 1.19 1.63 0.00

0.75 10n 0.02 1.54 5.26 70.39 0.00

30n 0.00 0.00 0.80 1.50 0.00

50n 0.00 0.00 0.48 0.78 0.00

0.75 0.25 10n 2.13 124.38 21.55 77.30 1.90

30n 0.00 0.00 3.07 5.25 0.00

50n 0.00 0.00 2.68 7.19 0.00

0.50 10n 0.00 0.00 4.77 17.44 0.00

30n 0.00 0.00 1.95 2.89 0.00

50n 0.00 0.00 1.28 2.02 0.00

0.75 10n 0.00 0.00 3.41 5.69 0.00

30n 0.00 0.00 1.13 2.06 0.00

50n 0.00 0.00 0.60 1.25 0.00
0.00 0.26 4.13 0.00 0.00 0.06 0.36
0.00 0.01 0.11 0.00 0.00 0.04 0.08
0.00 0.00 0.02 0.00 0.00 0.04 0.06
The last part of the computational experiments is to test the
performance of GAs when the number of jobs is large. The num-
ber of jobs is set at 50 and 100. A set of 100 instances is tested,
and the results are presented in Tables 4 and 5. The mean and the

GA3

CPU time RDP CPU time

Max Mean Max Mean Max Mean Max

44.99 73.76 75.97 1.24 9.41 73.69 76.33
12.31 22.96 75.31 0.22 15.79 23.69 75.92

0.00 18.08 74.33 0.00 0.00 20.46 75.95
40.27 72.50 75.55 1.77 31.56 72.11 75.17

0.00 0.00 0.05 0.00 0.00 1.18 1.84
0.00 0.00 0.02 0.00 0.00 1.05 1.59

48.99 69.80 74.70 1.95 36.81 69.63 74.55
0.00 0.00 0.02 0.00 0.00 0.53 0.95
0.00 0.00 0.02 0.00 0.00 0.48 0.77

726.15 71.54 76.33 5.14 97.06 71.29 76.48
0.00 1.59 4.39 0.00 0.00 1.88 3.48
0.00 0.08 0.23 0.00 0.00 1.75 3.44

90.38 23.81 73.97 7.68 432.82 22.28 73.95
0.00 0.00 0.00 0.00 0.00 0.87 1.52
0.00 0.00 0.02 0.00 0.00 0.74 1.19
0.00 2.51 69.06 0.00 0.00 1.34 70.03
0.00 0.00 0.00 0.00 0.00 0.39 0.92
0.00 0.00 0.02 0.00 0.00 0.36 0.77

107.72 21.00 75.75 0.19 7.38 17.48 76.13
0.00 2.31 5.98 0.00 0.00 0.82 2.00
0.00 0.06 0.23 0.00 0.00 0.74 3.72
0.00 2.45 7.20 0.00 0.00 0.58 2.78
0.00 0.05 2.86 0.00 0.00 0.43 1.48
0.00 0.01 0.05 0.00 0.00 0.36 0.78
0.00 0.98 4.66 0.00 0.00 0.22 0.97
0.00 0.51 27.25 0.00 0.00 0.18 0.50
0.00 0.01 0.08 0.00 0.00 0.18 0.39

 Comp

m
m
t
a

f
G
s
t
T
1

5

a
t
i
g
a
j
t
w
C
t
e

A

c
t
o

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
ORSA Journal of Computing 6 (1994) 154–160.
W.-C. Lee et al. / Applied Soft

aximum relative deviation percentages, and the mean and the
aximum CPU time (in second) are recorded. The relative devia-

ion percentage (RDP) of the solution produced by GAi is calculated
s

(Vi − min{V1, V2, V3})
min{V1, V2, V3} × 100%

or i = 1, 2, 3 where Vi is the objective value of the sequence from
Ai. It is observed that the execution times of the GAs are about the
ame. It is seen that GA3 has the best overall performance and the
rend becomes more significant when the number of jobs increases.
he execution times of the GAs are about the same. It takes about
2 s for an instance of 50 jobs and 75 s for an instance of 100 jobs.

. Conclusion

In this paper, we studied a two-agent scheduling problem on
 single machine with release time. The objective is to minimize
he total tardiness of jobs from the first agent given that the max-
mum tardiness of jobs from the second agent cannot exceed a
iven upper bound. Computational results show that the branch-
nd-bound algorithm could solve most of the problems with 16
obs within a reasonable amount of time. In addition, it shows that
he performance of the combined genetic algorithm is very good
ith mean error percentages of less than 0.2% for all the cases.
onsidering objective functions, other than the two examined in
his paper or extending the single-machine case to other machine
nvironments would be an interesting topic for future research.

cknowledgements

The authors are grateful to the editor and the referees, whose
onstructive comments have led to a substantial improvement in
he presentation of the paper. This work was supported by the NSC
f Taiwan, ROC, under NSC 100-2221-E-035-029-MY3.

eferences

[1] K.R. Baker, J.C. Smith, A multiple-criterion model for machine scheduling, Jour-
nal of Scheduling 6 (2003) 7–16.

[2] M.A. Kubzin, V.A. Strusevich, Planning machine maintenance in two-machine
shop scheduling, Operations Research 54 (2006) 789–800.

[3] C.R. Meiners, E. Torng, Mixed criteria packet scheduling, Proceedings of the
Third International Conference on Algorithmic Aspects in Information and
Management, Lecture Notes in Computer Science 4508 (2009) 120–133.

[4] M.J. Soomer, G.J. Franx, Scheduling aircraft landings using airlines’ preferences,
European Journal of Operations Research 190 (2008) 277–291.

[5] J.Y.T. Leung, M. Pinedo, G.H. Wan, Competitive two agents scheduling and its
applications, Operations Research 58 (2010) 458–469.

[6] A. Agnetis, P.B. Mirchandani, D. Pacciarelli, A. Pacifici, Scheduling problems with
two competing agents, Operations Research 52 (2004) 229–242.

[7] J.J. Yuan, W.P. Shang, Q. Feng, A note on the scheduling with two families of
jobs, Journal of Scheduling 8 (2005) 537–542.

[8] C.T. Ng, T.C.E. Cheng, J.J. Yuan, A note on the complexity of the problem of two-
agent scheduling on a single machine, Journal of Combinatorial Optimization
12 (2006) 387–394.

[9] T.C.E. Cheng, C.T. Ng, J.J. Yuan, Multi-agent scheduling on a single machine to
minimize total weighted number of tardy jobs, Theoretical Computer Science
362 (2006) 273–281.

10] A. Agnetis, D. Pacciarelli, A. Pacifici, Multi-agent single machine scheduling,
Annals of Operations Research 150 (2007) 3–15.

11] T.C.E. Cheng, C.T. Ng, J.J. Yuan, Multi-agent scheduling on a single machine
with max-form criteria, European Journal of Operational Research 188 (2008)
603–609.
12] P. Liu, L. Tang, Two-agent scheduling with linear deteriorating jobs on a single
machine, Lecture Notes in Computer Science 5092 (2008) 642–650.

13] A. Agnetis, G. Pascale, D. Pacciarelli, A Lagrangian approach to single-machine
scheduling problems with two competing agents, Journal of Scheduling 12
(2009) 401–415.

[

[

uting 12 (2012) 3580–3589 3589

14] K.B. Lee, B.C. Choi, J.Y.T. Leung, M.L. Pinedo, Approximation algorithms for
multi-agent scheduling to minimize total weighted completion time, Infor-
mation Processing Letters 109 (2009) 913–917.

15] P. Liu, L. Tang, X. Zhou, Two-agent group scheduling with deteriorating jobs on
a single machine, International Journal of Advanced Manufacturing Technology
47 (2010) 657–664.

16] W.C. Lee, W.J. Wang, Y.R. Shiau, C.C. Wu, A single-machine scheduling problem
with two-agent and deteriorating jobs, Applied Mathematical Modelling 34
(2010) 3098–3107.

17] W.C. Lee, S.K. Chen, C.C. Wu, Branch-and-bound and simulated annealing algo-
rithms for a two-agent scheduling problem, Expert Systems with Applications
37 (2010) 6594–6601.

18] P. Liu, X. Zhou, L. Tang, Two-agent single-machine scheduling with position-
dependent processing times, International Journal of Advanced Manufacturing
Technology 48 (2010) 325–331.

19] G. Wan, S.R. Vakati, J.Y.T. Leung, M. Pinedo, Scheduling two agents with control-
lable processing times, European Journal of Operational Research 205 (2010)
528–539.

20] B. Mor, G. Mosheiov, Scheduling problems with two competing agents to mini-
mize minmax and minsum earliness measures, European Journal of Operational
Research 206 (2010) 540–546.

21] W.C. Lee, S.K. Chen, C.W. Chen, C.C. Wu, A two-machine flowshop problem with
two agents, Computers and Operations Research 38 (2011) 98–104.

22] P. Liu, N. Yi, X. Zhou, Two-agent single-machine scheduling problems under
increasing linear deterioration, Applied Mathematical Modelling 35 (2011)
2290–2296.

23] Q.Q. Nong, T.C.E. Cheng, C.T. Ng, Two agent scheduling to minimize the total
cost, European Journal of Operational Research 215 (2011) 39–44.

24] Y.Q. Yin, S.R. Cheng, C.C. Wu, Scheduling problems with two agents and a lin-
ear non-increasing deterioration to minimize earliness penalties, Information
Sciences (2011), http://dx.doi.org/10.1016/j.ins.2011.11.035.

25] B. Mor, G. Mosheiov, Single machine batch scheduling with two competing
agents to minimize total flowtime, European Journal of Operational Research
215 (2011) 524–531.

26] C.C. Wu, S.K. Huang, W.C. Lee, Two-agent scheduling with learning considera-
tion, Computers & Industrial Engineering 61 (2011) 1324–1335.

27] T.C.E. Cheng, S.R. Cheng, W.H. Wu, P.H. Hsu, C.C. Wu, A two-agent single-
machine scheduling problem with truncated sum-of-processing-times-based
learning considerations, Computers & Industrial Engineering 60 (2011)
534–541.

28] D.C. Li, P.H. Hsu, Solving a two-agent single-machine scheduling problem
considering learning effect, Computers & Operations Research 39 (2012)
1644–1651.

29] J. Du, J.Y.T. Leung, Minimizing total tardiness on one machine is NP-hard, Math-
ematics of Operations Research 15 (1990) 483–495.

30] K. Li, Y. Shi, S.L. Yang, B.Y. Cheng, Parallel machine scheduling problem to min-
imize the makespan with resource dependent processing times, Applied Soft
Computing 11 (2011) 5551–5557.

31] B. Yua, Z. Yang, X. Sun, B. Yao, Q. Zeng, E. Jeppesen, Parallel genetic algo-
rithm in bus route headway optimization, Applied Soft Computing 11 (2011)
5081–5091.

32] R. Yusof, M. Khalid, G.T. Hui, S.M. Yusof, M.F. Othman, Solving job shop schedul-
ing problem using a hybrid parallel micro genetic algorithm, Applied Soft
Computing 11 (2011) 5782–5792.

33] T.J. Hsieh, H.F. Hsiao, W.C. Yeh, Forecasting stock markets using wavelet
transforms and recurrent neural networks: an integrated system based
on artificial bee colony algorithm, Applied Soft Computing 11 (2011)
2510–2525.

34] C.Y. Low, C.J. Hsu, C.T. Su, A modified particle swarm optimization algorithm
for a single-machine scheduling problem with periodic maintenance, Expert
Systems with Applications 37 (2010) 6429–6434.

35] J. Behnamian, S.M.T.F. Ghomi, F. Jolai, O. Amirtaheri, Minimizing makespan
on a three-machine flowshop batch scheduling problem with trans-
portation using genetic algorithm, Applied Soft Computing 11 (2012)
768–777.

36] P.C. Chang, S.H. Chen, Integrating dominance properties with genetic algo-
rithms for parallel machine scheduling problems with setup times, Applied
Soft Computing 11 (2011) 1263–1274.

37] D. Lei, Simplified multi-objective genetic algorithms for stochastic job shop
scheduling, Applied Soft Computing 11 (2011) 4991–4996.

38] O. Engin, G. Ceran, M.K. Yilmaz, An efficient genetic algorithm for hybrid flow
shop scheduling with multiprocessor task problems, Applied Soft Computing
11 (2011) 3056–3065.

39] J.C. Bean, Genetic algorithms and random keys for sequencing and optimization,
40] A. Homaifar, C. Qi, S. Lai, Constrained optimization via genetic algorithms, Sim-
ulation 36 (1994) 242–254.

41] C.B. Chu, A branch-and-bound algorithm to minimize total flow time with
unequal release dates, Naval Research Logistics 39 (1992) 859–875.

dx.doi.org/10.1016/j.ins.2011.11.035

	Genetic algorithms for a two-agent single-machine problem with release time
	1 Introduction
	2 Problem description
	3 A branch-and-bound algorithm
	3.1 Dominance properties
	3.2 A lower bound
	3.3 Description of the branch-and-bound algorithms

	4 Genetic algorithms
	4.1 Encoding
	4.2 Population size
	4.3 Fitness function
	4.4 Crossover
	4.5 Mutation
	4.6 Selection
	4.7 Termination
	4.8 Initial sequences
	4.9 Computational experiments

	5 Conclusion
	Acknowledgements
	References

