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Confinement Factors and Modal Volumes of Micro-
and Nanocavities Invariant to Integration Regions

Shu-Wei Chang, Member, IEEE

Abstract—We present a convenient and self-consistent approach
to calculate confinement factors and modal volumes of micro- and
nanocavities, which are important for ultrasmall lasers and cav-
ity quantum electrodynamics. This scheme does not rely on the
numerical integrations related to optical fields and can avoid the
indefinite dependence of physical quantities on integration regions.
As a result of this built-in invariance to integration regions, the field
representation of the confinement factor, in additional to its con-
ventional expression, contains counter terms of volume and surface
integrals, which cancel the effect of arbitrary integration volumes.
This procedure is useful for small open cavities or those without
sharp boundaries that distinguish cavity regions from free spaces.
The uncertainty from different choices of integration regions can
be thus eliminated.

Index Terms—Confinement factor, microcavity, microlaser,
modal volume, nanocavity, nanolaser.

I. INTRODUCTION

THE confinement factor of a laser cavity is one of the impor-
tant parameters which characterize the lasing performance.

This quantity indicates how well the lasing mode profile over-
laps with the active region where the gain medium is present.
In a waveguide, the confinement factor is expressed as the ratio
between two cross-sectional integrals of fields: one in the ac-
tive area, and the other throughout the whole waveguide cross
section [1]–[6]. If the lasing mode is a guided mode, the confine-
ment factor calculated in this way is usually well defined. For
3-D cavities, the generic expression of confinement factors Γ is
often written in an analogous form to the waveguide counterpart
as [2], [7]–[9]

Γ =

∫
Ωa

dr[· · · |E(r)|2 ]
∫

Ω dr[· · · |E(r)|2 + · · · |H(r)|2 ] (1)

where Ωa and Ω are the active region and an integration re-
gion (often set to the whole computation domain), respectively;
E(r) and H(r) are the electric and magnetic field profiles, re-
spectively; and “· · ·” represents some physical quantity such as
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the permittivity or permeability, depending on details of for-
mulations. The expression in (1) has been utilized in numerical
calculations for different cavity structures [7], [9]–[12] and often
leads to reasonable values.

The appearance of confinement factors in (1) is, nevertheless,
loosely defined. Suppose that far away from the cavity region
is the lossless free space. If we adopt an integration region
extending to the far-field zone so that the laser at the steady
state can be approximated as a localized source, the far-field
approximation indicates that magnitudes of optical fields exhibit
an asymptotic behavior of the inverse distance r from the cavity
region [13]:

lim
r→∞

|E(r)| =
fe(θ, φ)

r
lim
r→∞

|H(r)| =
fh(θ, φ)

r
(2)

where θ and φ are the polar and azimuthal angles of the co-
ordinate; and fe(θ, φ) and fh(θ, φ) are the far-field patterns of
E(r) and H(r), depending on the multipole expansion of the
equivalent source to the lasing near field. If we choose the inte-
gration region Ω as a ball with a radius Rb much larger than the
lasing wavelength and keep in mind that the differential volume
dr=r2 sin θdrdθdφ has the r2 dependence, the denominator of
Γ in (1) becomes
∫

Ω
dr[· · · |E(r)|2 + · · · |H(r)|2 ]

≈
∫ R c

0
dr[· · ·] +

∫ Rb

R c

dr

∫ 2π

0
dφ

∫ π

0
dθ sin θ

×
[
· · · |fe(θ, φ)|2 + · · · |fh(θ, φ)|2

]
∝ Rb = O(V1/3) (3)

where Rc is a phenomenological cutoff radius above which the
far-field approximation is applicable; and V is the volume of Ω.
In (3), we drop the radial integral below Rc since it does not
scale with Rb . For a given active region Ωa , the integral of the
numerator in (1) is a fixed number. Therefore, the confinement
factor Γ scales as V −1/3 and ultimately vanishes as V →∞. As a
result, the expression in (1) is improperly defined. Specific con-
straints which bypass this flaw such as carrying out the integral
in (3) in the minimal ball outside which the field is solely com-
posed of outgoing waves [14] were attempted. Common numer-
ical schemes such as the finite-difference-time-domain (FDTD)
method [7], [9], [10], [12] and complex-frequency (complex-ω)
method [7], [15] bare similar problems. In particular, field in-
tegrations in the complex-ω method are more involved due to
divergent far fields [16], [17].

The nonphysical scaling of the confinement factor with the
size of integration region originates from the far-field contri-
bution irrelevant to the lasing action. From this viewpoint, one
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would attempt to adopt an integration region that does not extend
too much outside the cavity region to exclude the unnecessary
contribution from the far field. However, it is not straightfor-
ward to construct such an integration region so that only the
field relevant to the lasing action is included in the confinement
factor. This is especially true for small cavities with low radia-
tive quality Q factors since the lasing mode may easily leak into
the free space. Alternatively, an expression of the confinement
factor invariant to integration regions would be more useful.

In this paper, we present a convenient and self-consistent
approach to calculate the confinement factor. In addition, we
also calculate two types of modal volumes. One is used in the
laser rate equations [8], and the other is often adopted in the
cavity quantum electrodynamics (cavity QED) [15] and Purcell
effect [18]. This method is based on a frequency-domain for-
mulation for reciprocal cavities [17], which has been applied
to experimental data of real devices with satisfactory agree-
ments [19]. An analogous procedure was described in [20] from
the viewpoint of permittivity-induced variations of cavity res-
onances and examined with the complex-ω method. For the
approach presented here, we derive a representation of the con-
finement factor in terms of various field integrals and show that
in addition to the conventional expression in (1), extra counter
terms of volume and surface integrals are present so that the
physical confinement factor does not depend on integration re-
gions. This situation is analogous to cancellations of infinities
for key parameters in the quantum field theory: even though
renormalized quantities do depend on the energy scale of de-
tections, their seeming divergences due to path integrals are
eliminated by the counter terms in the Lagrangian [21]. As
an example, we calculate the confinement factors and modal
volumes of whispering gallery modes (WGMs) in a dielectric
sphere and show how the indefiniteness of the expression in (1)
shows up as the integration region becomes larger.

The main factor leading to a physical confinement factor in
this approach lies in that the photon lifetime, which is propor-
tional to the Q factor, and threshold gain are simultaneously
obtained in a physical manner [17]. Other schemes such as the
FDTD and complex-ω methods can provide the photon lifetime
or Q factor but could not access the threshold gain directly.
In those methods, the threshold gain is obtained either from
the region-dependent integration of the confinement factor (the
original problem) or insertions of different gain coefficients into
the active region in search of a value at which the photon life-
time or Q factor of the warm cavity approaches infinity [7], [9].
Thus, the procedure presented here is a convenient and physical
modeling tool for small lasers, particularly those with low ra-
diative Q factors or without clear borders between cavities and
free spaces.

II. CONFINEMENT FACTOR AS THE BALANCE

MEASURE BETWEEN GAIN AND LOSS

We consider the energy confinement factor ΓE ,l of mode
l, which is closely related to the electromagnetic energy in
the dispersive but nonmagnetic material [8], [22]. Without the
spontaneous-emission term in the rate equation of the photon

density, the threshold condition of mode l is

1
τp,l

=
ωl

Ql
= ΓE ,lvg ,a(ωl)gth,l (4)

where τp,l is the photon lifetime; ωl is the resonance frequency
of mode l; Ql is the quality factor; vg ,a(ωl) is the material group
velocity of the gain medium; and gth,l is the threshold material
gain. The material group velocity is inversely proportional to
the material group index ng ,a(ωl) in the active region, which
is related to the frequency derivative of the refractive index
na(ω) ≈

√
εa,R(ω) at ωl [8]:

vg ,a(ωl) =
c

ng ,a(ωl)
(5a)

ng ,a(ωl) =
∂[ωna(ω)]

∂ω

∣
∣
∣
∣
ω=ωl

≈ [εg ,a(ωl) + εa,R(ωl)]
2na(ωl)

(5b)

where εg ,a(ω) = ∂[ωεa,R(ω)]/∂ω is called the group permittiv-
ity of the active region. In (4), it is usually the threshold gain
gth,l that is calculated from the quality factor Ql and energy
confinement factor ΓE ,l . While Ql can be obtained from vari-
ous numerical schemes, ΓE ,l is often estimated in an indefinite
manner from field integrations and leads to the uncertainty in
gth,l . Alternatively, we calculate ΓE ,l from well-defined Ql and
gth,l . The result can reveal what is missing in the conventional
confinement factor calculated from field integrations, and the
information might be useful for other computation schemes.

We utilize the formulation developed in [17] and outline the
necessary information to obtain the confinement factor. The
electric-field profile fl(r, ω) of mode l at a real frequency ω is
the solution of the following generalized eigenvalue problem:

∇×∇× fl(r, ω) −
(ω

c

)2 =
εr(r, ω)fl(r, ω)

= iωμ0js,l(r, ω) =
(ω

c

)2
Δεr,l(ω)U(r)fl(r, ω) (6a)

where
=
εr(r, ω) is the relative permittivity tensor; Δεr,l(ω) is

the relative permittivity variation which makes mode l self-
oscillating at frequency ω; U(r) is the indicator function
which equals unity in the active region but vanishes elsewhere;
js,l(r, ω)=−iωε0Δεr,l(ω)U(r)fl(r, ω) is the equivalent source
current density; ε0 and μ0 are vacuum permittivity and perme-
ability, respectively; and c is the speed of light in vacuum. For
convenience, we define

=
εr,R(r, ω) ≡ Re[

=
εr(r, ω)],

=
εr,I(r, ω) ≡

Im[
=
εr(r, ω)], Δεr,l,R(ω) ≡ Re[Δεr,l(ω)], and Δεr,l,I(ω) ≡

Im[Δεr,l(ω)]. Once fl(r, ω) is obtained, the corresponding
magnetic-field profile is calculated from Faraday’s law:

gl(r, ω) =
1

iωμ0
∇× fl(r, ω). (6b)

The permittivity variation Δεr,l(ω) contains the spectral in-
formation of mode l. The resonance frequency ωl is the one at
which the magnitude |ωΔεr,l(ω)| is the minimum. The qual-
ity factor Ql is obtained from the white-source condition of
js,l(r, ω) [17] and can be expressed as

Ql =
i

2Δεr,l(ωl)
∂[ωΔεr,l(ω)]

∂ω

∣
∣
∣
∣
ω=ωl

. (7)



CHANG: CONFINEMENT FACTORS AND MODAL VOLUMES OF MICRO- AND NANOCAVITIES INVARIANT TO INTEGRATION REGIONS 1773

For a homogeneous and isotopic active region with the rel-
ative permittivity εa(ω) (εa,R(ω) ≡ Re[εa(ω)] and εa,I(ω) ≡
Im[εa(ω)]), the threshold gain gth,l is obtained from the per-
mittivity variation Δεr,l(ωl) at resonance with the cold-cavity
condition [but the contribution from interstate transitions is ex-
cluded from εa(ω)]:

gth,l = −2
(ωl

c

)
Im

[√
εa(ωl) + Δεr,l(ωl) −

√
εa(ωl)

]

≈ −
(ωl

c

) Δεr,l,I(ωl)√
εa,R(ωl)

(8)

where we have assumed that a proper amount of Δεr,l(ωl) is
added into the active region, and |Δεr,l,R(ωl)|, |Δεr,l,I(ωl)|,
and |εa,I(ωl)| are much smaller than εa,R(ωl). Note that the
magnitude |Δεr,l,I(ωl)| reflects how well the mode overlaps
with the active region and how lossy the cavity is. The smaller
magnitude indicates that the gain-field overlap is better, or the
cavity becomes less lossy.

After substituting (5a), (5b), and (8) into (4), the inverse of
the energy confinement factor is expressed as

1
ΓE ,l

≈ − 2QlΔεr,l,I(ωl)
εg ,a(ωl) + εa,R(ωl)

. (9)

We note that Δεr,l,I(ωl) is always negative so ΓE ,l is a positive
quantity. The relative permittivity εg ,a(ωl) and group permit-
tivity εa,R(ωl) in (9) are known in advance. Both the quality
factor Ql [see (7)] and imaginary part Δεr,l,I(ωl) can be ob-
tained with the knowledge of the eigenvalue Δεr,l(ω), and the
direct substitution of them into (9) leads to a well-defined en-
ergy confinement factor, which must be manifestly invariant to
the integration region if this quantity should be numerically cal-
culated with any field integrations. At this stage, it is unclear
how the indefiniteness of the confinement factor from arbitrary
integration regions could come into play. To clarify this point,
we need a field representation for the energy confinement factor
in (9).

III. FIELD REPRESENTATION OF CONFINEMENT FACTOR

The computation domain of a generic laser cavity is shown
in Fig. 1. The integration region Ω contains the active region
Ωa . The surfaces of Ω and Ωa are denoted as S and Sa , respec-
tively. For simplicity, we consider an active region filled with
the homogeneous and isotropic gain medium. Other parts of the
cavity could be anisotropic.

We first write the quality factor Ql in terms of various field
integrals. From (7), Ql is related to the frequency derivative
of ωΔεr,l(ω) at ωl , and therefore the frequency derivatives of
fields are required. We define two analogous fields pl(r) and
ql(r) from fl(r, ω) and gl(r, ω) as follows:

pl(r) ≡ ωl
∂fl(r, ω)

∂ω

∣
∣
∣
∣
ω=ωl

(10a)

ql(r) ≡
1

iωlμ0
∇× pl(r) =

∂[ωgl(r, ω)]
∂ω

∣
∣
∣
∣
ω=ωl

. (10b)

Fig. 1. Computation domain of a cavity structure. The integration region Ω
contains the active region Ωa . The surfaces of Ω and Ωa are denoted as S and
Sa , respectively.

We then take the frequency derivative ω[∂/∂ω] at two sides of
(6a), set ω = ωl , and utilize the expression of Ql in (7). In this
way, the wave equation for pl(r) is written as

∇×∇× pl(r) −
(ωl

c

)2 [
=
εr(r, ωl) +Δεr,l(ωl)U(r)

=
I
]
pl(r)

=
(ωl

c

)2
[

=
ε
(c)
g (r, ωl) +

=
εr(r, ωl)

+ (1 − 2iQl)Δεr,l(ωl)U(r)
=
I

]

fl(r, ωl) (11)

where
=
ε
(c)
g (r, ω) ≡ ∂[ω

=
εr(r, ω)]/∂ω is called the complex

group permittivity tensor. Next, we dot-product both sides of
(11) with the field f ∗l (r, ωl) and integrate over the integration
region Ω. With a similar procedure to the integration by parts
and applications of divergence theorem, we obtain the following
integral identity:

iωlμ0

∮

S

da · [ql(r) × f ∗l (r, ωl) − pl(r) × g∗
l (r, ωl)]

+
∫

Ω
dr

{

∇×∇× fl(r, ωl)

−
[

=
εr(r, ωl)+Δεr,l(ωl)U(r)

=
I
]
fl(r, ωl)

}∗
·pl(r)

− 2i
(ωl

c

)2
∫

Ω
drf ∗l (r, ωl) ·

=
εr,I(r, ωl)pl(r)

− 2i
(ωl

c

)2
Δεr,l,I(ωl)

∫

Ωa

drf ∗l (r, ωl) · pl(r)

=
(ωl

c

)2
∫

Ω
drf ∗l (r, ωl) ·

[
=
ε
(c)
g (r, ωl) +

=
εr(r, ωl)

]

fl(r, ωl)

+ (1 − 2iQl)
(ωl

c

)2
Δεr,l(ωl)

∫

Ωa

dr|fl(r, ωl)|2 (12)

where we have utilized the fact that
=
εr(r, ω) on the third line

is a symmetric tensor in reciprocal environments. The volume
integral on the second and third lines of (12) is zero due to the
wave equation of fl(r, ωl) in (6a). Taking the real parts at both
sides of (12), we then express Ql in terms of various integrals
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of fields as

Ql = −

∫
Ω drf ∗l (r, ωl) ·

[
=
εg(r, ωl) +

=
εr,R(r, ωl)

]
fl(r, ωl)

2Δεr,l,I(ωl)
∫

Ωa
dr|fl(r, ωl)|2

− Δεr,l,R(ωl)
2Δεr,l,I(ωl)

+

∫
Ω drIm

[
f ∗l (r, ωl) ·

=
εr,I(r, ωl)pl(r)

]

Δεr,l,I(ωl)
∫

Ωa
dr|fl(r, ωl)|2

+

∫
Ωa

drIm [f ∗l (r, ωl) · pl(r)]
∫

Ωa
dr|fl(r, ωl)|2

−
1

ωl ε0

∮
S da · Im[ql(r)×f ∗l (r, ωl)− pl(r)×g∗

l (r, ωl)]

2Δεr,l,I(ωl)
∫

Ωa
dr|fl(r, ωl)|2

(13)

where
=
εg(r, ω) = Re[

=
ε
(c)
g (r, ω)] (

=
εg(r, ω) will be referred as the

group permittivity tensor). After the substitution of (13) into (9),
the field representation of ΓE ,l is obtained as follows:

1
ΓE ,l

≈

∫
Ω drf ∗l (r, ωl) · ε0

4

[
=
εg(r, ωl) +

=
εr,R(r, ωl)

]
fl(r, ωl)

∫
Ωa

dr ε0
4 [εg ,a(ωl) + εa,R(ωl)]|fl(r, ωl)|2

+
Δεr,l,R(ωl)

[εg ,a(ωl) + εa,R(ωl)]

−

∫
Ω dr ε0

2 Im
[
f ∗l (r, ωl) ·

=
εr,I(r, ωl)pl(r)

]

∫
Ωa

dr ε0
4 [εg ,a(ωl) + εa,R(ωl)]|fl(r, ωl)|2

−
Δεr,l,I(ωl)

∫
Ωa

dr ε0
2 Im [f ∗l (r, ωl) · pl(r)]

∫
Ωa

dr ε0
4 [εg ,a(ωl) + εa,R(ωl)]|fl(r, ωl)|2

+
1

4ωl

∮
S da · Im[ql(r)×f ∗l (r, ωl)− pl(r)×g∗

l (r, ωl)]
∫

Ωa
dr ε0

4 [εg ,a(ωl) + εa,R(ωl)]|fl(r, ωl)|2
.

(14)

The first line on the right-hand side (RHS) of (14) is the inverse
of the conventional energy confinement factor Γ(old)

E ,l (Ω):

1

Γ(old)
E ,l (Ω)

≡

∫
Ω drf ∗l (r, ωl)· ε0

4

[
=
εg(r, ωl)+

=
εr,R(r, ωl)

]
fl(r, ωl)

∫
Ωa

dr ε0
4 [εg ,a(ωl) + εa,R(ωl)]|fl(r, ωl)|2

. (15)

In addition to this conventional term, other counter terms, which
maintain the invariance of ΓE ,l to an arbitrary integration region
Ω, are also present. Since Ω can be any regions containing Ωa ,
the uncertainty on the first line on the RHS of (14) has to be
removed by the presence of other terms. Among these counter
terms, the one proportional to the surface integral on the last line
of (14) is of particular importance because it is this term that
eliminates the indefiniteness brought by Γ(old)

E ,l (Ω) in the lossless
free space, namely, the exclusion of the irrelevant contribution
from the far field.

Still, specific constraints need to be imposed on the fields
pl(r) and ql(r) because their solutions are not unique. This fact
can be observed from (11). The operator acting on pl(r) on
the left-hand side (LHS) of (11) has the homogeneous solution

of fl(r, ωl). The addition of any terms proportional to fl(r, ωl)
to the particular solution of pl(r) remains a solution to the
wave equation in (11). This additional degree of freedom can be
utilized to simplify the field representation of ΓE ,l if one would
calculate it from (14) rather than (9). The detail is presented in
Appendix A for interested readers.

The invariance of ΓE ,l can be inferred from the RHS of (9)
because the quantities there are all well defined. However, this
property is less obvious from the field representation in (14).
As a consistency check, a proof for the invariance of the field
representation in (14) to the integration regions containing Ωa is
provided in Appendix B based on the generalized Poynting the-
orem. The proof also makes the origin of counterterm integrals
clearer.

IV. MODAL VOLUMES

The self-consistent energy confinement factor in (9) can be
utilized to define modal volumes of cavity modes invariant to
integration regions. When ΓE ,l is adopted in the laser rate equa-
tions [8], the effective modal volume Veff ,l used in photon-
density calculations is written as

Veff ,l ≡
Va

ΓE ,l
=

Va

Γ(old)
E ,l (Ω)

+ [counter terms] (16a)

where Va is the volume of the active region. On the other hand,
for the cavity QED and Purcell effect, another modal volume
VQM ,l of the cavity mode is often preferred (slightly modified
from the expression for nondispersive cavities [18]):

VQM ,l ≡
1

ΓE , l

∫
Ωa

dr ε0
4 [εg ,a(ωl) + εa,R(ωl)]|fl(r, ωl)|2

f ∗l (rp , ωl) · ε0
4

[
=
εg(rp , ωl) +

=
εr,R(rp , ωl)

]
fl(rp , ωl)

=

∫
Ω drf ∗l (r, ωl) · ε0

4

[
=
εg(r, ωl) +

=
εr,R(r, ωl)

]
fl(r, ωl)

f ∗l (rp , ωl) · ε0
4

[
=
εg(rp , ωl) +

=
εr,R(rp , ωl)

]
fl(rp , ωl)

+ [counter terms] (16b)

where rp is the position at which |fl(r, ωl)|2 is the peak value.
The two modal volumes Veff ,l and VQM ,l in (16a) and (16b),
respectively, are physical because they are calculated from fi-
nite and well-defined quantities rather than their conventional
counterparts [the expressions other than the counter terms in
(16a) and (16b)] . The effect of far field has been removed from
these expressions by the counter terms.

V. APPLICATION TO WGMS IN DIELECTRIC SPHERE

We apply this self-consistent method to WGMs of a lossless
dielectric microsphere in Fig. 2, and show how the indefiniteness
of the integration region comes into play. The sphere has a radius
R of 5 μm. Outside the sphere is the free space of vacuum
(unity relative permittivity). The active region Ωa is chosen as
the whole region inside the sphere, and its permittivity εa is
independent of the frequency and set to 2.25.

For each angular momentum (AM) mode number L ∈ Z
+ ,

we consider the radially fundamental and second-order WGMs
(radial mode number N =1, 2) consisting of the profiles with
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Fig. 2. Dielectric spherical cavity (radius R = 5 μm) which supports WGMs.
Outside the sphere is the free space of vacuum with the unity relative permittivity
while the inner is the dielectric with a relative permittivity εa = 2.25.

the largest magnitude of AM in the z direction (azimuthal
mode number M =±L). In addition to these mode numbers,
the modes can be further classified as radially transverse mag-
netic (TMr ) or radially transverse electric (TEr ). Thus, the mode
label l contains a set of indices l=(l̃, |M |, β)=(l̃, L, β), where
l̃=(α,N,L); α = 1(0) represents TMr (TEr ); and β=±1 in-
dicates two possibilities for the azimuthal dependence except
for M =0. The mode profiles fl(r, ω) of the WGMs are written
as

•TMr[l̃ = (α,N,L) = (1, N, L)]

fl(r, ω) = r̂fl̃,‖(r, ω)
[YLL (θ, φ) + βY ∗

LL (θ, φ)]√
2i(1−β )/2

+ θ̂fl̃,⊥(r, ω)
∂

∂θ

[YLL (θ, φ) + βY ∗
LL (θ, φ)]√

2i(1−β )/2L(L + 1)

+ φ̂fl̃,⊥(r, ω)
i[YLL (θ, φ) − βY ∗

LL (θ, φ)]√
2i(1−β )/2(L + 1) sin θ

(17a)

•TEr[l̃ = (α,N,L) = (0, N, L)]

fl(r, ω) = θ̂fl̃,⊥(r, ω)
∂

∂θ

[YLL (θ, φ) + βY ∗
LL (θ, φ)]√

2i(1−β )/2L(L + 1)

+ φ̂fl̃,⊥(r, ω)
i[YLL (θ, φ) − βY ∗

LL (θ, φ)]√
2i(1−β )/2(L + 1) sin θ

(17b)

where fl̃,‖(r, ω) [fl̃,⊥(r, ω)] is the field amplitude parallel (per-
pendicular) to the radial direction; and YLL (θ, φ) is the spheri-
cal harmonic with M =L. Inside (outside) the sphere, the field
amplitudes fl̃,‖(r, ω) and fl̃,⊥(r, ω) are closely related to the

spherical Bessel (Hankel) function jL [h(1)
L ] of the first kind.

After matching the boundary conditions of the fields at r = R,
we obtain the following transcendental equation for the TMr

(α=1) and TEr (α=0) WGMs:

[εa + Δεr,l(ω)](1−2α)/2
{

1
xjL (x)

d[xjL (x)]
dx

}

x=ka R

=

{
1

xh
(1)
L (x)

d[xh
(1)
L (x)]
dx

}

x=k0 R

(18)

where k0 =ω/c and ka =k0
√

εa + Δεr,l(ω) are the propagation
constants in the vacuum and sphere, respectively. The permit-

Fig. 3. (a) Comparison between the theoretical resonance energies �ωl and
corresponding analytical approximations [23] for the fundamental TMr and
TEr WGMs. The theoretical and analytical results match well. (b) Comparison
between the theoretical quality factors Ql and corresponding analytical approx-
imations [24] for the same modes. There are significant deviations for the TEr

WGMs.

tivity variation Δεr,l(ω) is numerically calculated for a range
of frequency ω. The parameters ωl , Ql , and Δεr,l,I(ωl) are then
obtained from the spectral information of Δεr,l(ω), as described
in Section II.

Fig. 3(a) shows the comparison between the theoretical res-
onance energies �ωl and analytical approximations based on
the asymptotic expansions of spherical Bessel functions [23]
for the radially fundamental TMr and TEr WGMs (the corre-
sponding wavelengths roughly cover the range of 1.1–1.55 μm).
The theoretical results agree well with those calculated from
the analytical expressions. On the other hand, in Fig. 3(b), the
theoretical quality factors Ql calculated from (7) exhibit devi-
ations from analytical approximations based on the asymptotic
expansions [24]. The deviations are more significant for the
TEr WGMs and can be as large as 45%. The same observa-
tions had been reported in calculations based on the complex-ω
method [25], indicating that the asymptotic expansion is accu-
rate in the order of magnitude rather than the absolute value for
Q factors.

In fact, the resonance energies and Q factors obtained from
the spectral information of Δεr,l(ω) almost coincide with those
from the complex-ω method, but the divergent far field is absent
in the former. We also believe that the Q factors calculated from
the current scheme are more physical than those estimated from
the asymptotic expansions because they lead to sensible mag-
nitudes of the energy confinement factors and modal volumes.
The energy confinement factors ΓE ,l in Fig. 4(a) are calculated
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Fig. 4. (a) Energy confinement factors ΓE , l of WGMs with different Ls. The
magnitudes of ΓE , l s are lower than unity. (b) Modal volumes Veff , l of the
same modes. Reflecting the fact that ΓE , l ≤ 1, Veff , l s are larger than Va . (c)
Modal volumes VQM , l , which are small fractions of Va due to the localization
of fundamental WGMs near the surface of the sphere.

from Ql in (7) and Δεr,l,I(ωl) [see (9)] and exhibit magnitudes
less than unity. This behavior reflects the imperfect overlaps
between the WGMs and the active region Ωa . If the analytical
approximation of the Q factor based on the asymptotic expan-
sions of spherical Bessel functions were used, ΓE ,l of the TEr

WGMs would be well above unity—unreasonable overlaps be-
tween the mode profiles and gain medium. While the fundamen-
tal TEr WGMs are better confined than the TMr counterparts,
both types of modes exhibit increasing ΓE ,l as the AM mode
number L becomes larger, indicating the less leakage into the
free space and better field-gain overlaps. In Fig. 4(a) and (b),
we show the modal volumes Veff ,l and VQM ,l [(16a) and (16b)],
respectively, in the unit of Va = 4πR3/3. The modal volumes
Veff ,l of the WGMs are larger than Va and decrease with the AM
mode number L, reflecting the trend of Γ−1

E ,l in (16a). Contrary to
Veff ,ls, the modal volumes VQM ,l of these fundamental WGMs
are small fractions of Va because they are a measure of how
well the modes are localized around the respective field peaks,
which are located near the surface of the sphere. Analogous to
the trend of Veff ,ls, VQM ,ls of various WGMs decrease with the
AM mode number L due to the more enhanced confinement
near the surface. In addition, the fundamental TEr WGMs are
better localized than their TMr counterparts because disconti-
nuities of the radial components fl̃,‖(r, ωl) at r=R bring about
the more significant tails of the fields resident in the free space.

Fig. 5. Square magnitudes of the mode profiles for the radially (a) fundamental
(N = 1) TMr , (b) second-order (N = 2) TMr , (c) fundamental (N = 1) TEr ,
and (d) second-order (N = 2) TEr WGMs. The upper and lower graphs in each
figure represent the profiles of WGMs with L = 25 and L = 15, respectively.
The corresponding resonance energies and Q factors are marked inside the
graphs. In general, Q factors of the TEr WGMs are higher. The same trend
applies to WGMs with the larger L or smaller N .

To see how the indefiniteness due to different choices of inte-
gration regions comes into play, we consider the mode profiles
and energy confinement factors Γ(old)

E ,l (Ω) of the TMr and TEr

WGMs with the AM mode number L = 15, 25 and radial mode
number N = 1, 2 as a function of the integration region Ω. The
region Ω is set to a ball concentric to the microsphere and has
a radius Rb (integration boundary) larger than R. The square
magnitudes (|fl̃,‖(r, ωl)|2 and |fl̃,⊥(r, ωl)|2) of the TMr mode
profiles are shown in Fig. 5(a) (N = 1) and (b) (N = 2), and
those of the TEr modes (|fl̃,⊥(r, ωl)|2) are presented in Fig. 5(c)
(N = 1) and (d) (N = 2). In each figure, the upper and lower
graphs indicate the mode profiles for L = 25 and L = 15, re-
spectively. The corresponding resonance photon energies and Q
factors are also marked in the graphs. In general, the Q factors of
the TEr WGMs are higher than those of the TMr counterparts,
as reflected in the less conspicuous tails of the TEr modes ex-
tending into the free space. Similarly, the modes with the larger
AM mode numbers L have the higher Q factors (the upper graph
versus lower one in each figure) because the formers are better
confined in the peripheral of the sphere and less leakier into the
free space. On the other hand, the opposite trend takes place for
modes with the higher radial mode number N [Fig. 5(a) versus
(b); and Fig. 5(c) versus (d)]. For these modes, the more nodes
(or more oscillatory behaviors) on the mode profiles along the
radial direction indicate that the radial momentum is more sig-
nificant. Photons coupled to these modes leave the cavity more
easily, which results in the lower Q factors.

Corresponding to the profiles in Fig. 5, the conventional en-
ergy confinement factors Γ(old)

E ,l (Ω) of the WGMs as a function
of the integration boundary near the sphere radius are shown
in Fig. 6. In addition to Γ(old)

E ,l (Ω) calculated from the profiles
in (17a) and (17b) and definite counterparts ΓE ,l , we also show

Γ(old)
E ,l (Ω) obtained from the profiles based on the complex-ω
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Fig. 6. Various energy confinement factors in the range of Rb � R for (a) TMr

WGMs with N = 1, (b) TMr WGMs with N = 2, (c) TEr WGMs with N = 1,

and (d) TEr WGMs with N = 2 (black solid: Γ(old)
E , l

(Ω) based on the current
scheme; red dash: the counterpart based on the complex-ω method; and blue
dash–dotted: ΓE , l ). For the high-Q WGMs in (a) and (c) [(N, L) = (1, 25)],

Γ(old)
E , l

(Ω)s are close to ΓE , l s in a considerable range. On the other hand, these
ranges are narrower for other low-Q WGMs.

method. For Rb � R, the conventional energy confinement fac-
tors based on the current scheme and complex-ω method do not
differ much since their near-field profiles resemble each other.
We note that the differences on the field leakage lead to distinct
behaviors of Γ(old)

E ,l (Ω) for these WGMs. From the upper graphs
in Fig. 6(a) and (c), the conventional energy confinement factor
Γ(old)

E ,l (Ω) of the TMr and TEr WGMs with (N,L) = (1, 25)
are close to their definite counterparts over a considerable range
around Rb ≈ 1.21R and Rb ≈ 1.23R, respectively. This char-
acteristic is common to both radially fundamental TMr and TEr

WGMs with large AM mode numbers L. Thus, it can be inferred
that for modes with high radiative Q factors, Γ(old)

E ,l (Ω) obtained
from field integrations should be close to ΓE ,l if the integration
region Ω is decently but not excessively large. On the other hand,
for other modes with the much lower Q factors, the condition
Γ(old)

E ,l (Ω) ≈ ΓE ,l is valid in a much narrower range. Above a

certain integration boundary, Γ(old)
E ,l (Ω) quickly drops below its

definite counterpart ΓE ,l , indicating that Γ(old)
E ,l (Ω) is sensitive to

the integration region Ω. The observation applies to resonance
modes with low radiative Q factors in various cavity structures.
This situation may take place in small lasers such as those made
of nanocrystals [26]–[28] or those without sharp borders or feed-
back reflectors at which photons leave the cavity [29]. Care is
required in the choice of integration region Ω when modeling
these cavity structures. Also, the radiative Q factor and energy
confinement factor ΓE ,l are not always positive correlated. From
the lower graphs in Fig. 6, both of the TMr and TEr WGMs
with (N,L) = (2, 15) have the larger ΓE ,ls than their counter-
parts with (N,L) = (1, 15) do, but the corresponding Q factors
behave the other way around. Comparing the profiles of TMr

(TEr ) WGMs with (N,L) = (1, 15) and (N,L) = (2, 15) in the

Fig. 7 Various energy confinement factors in the wider range of Rb for (a)
TMr WGMs with N = 1, (b) TMr WGMs with N = 2, (c) TEr WGMs with
N = 1, and (d) TEr WGMs with N = 2 (identical line styles to those in Fig. 6).

All Γ(old)
E , l

(Ω)s of the WGMs ultimately deviate from the respective ΓE , l s in

the large Rb limit. In addition, Γ(old)
E , l

(Ω)s based on the complex-ω method
decrease exponentially as Rb increases.

lower graphs of Fig. 5(a) and (b) [Fig. 5(c) and (d)], the higher
order modes are distributed closer to the sphere center despite
the more significant field tails into the free space. In fact, the
higher ΓE ,ls of WGMs with (N,L) = (2, 15) than those of the
modes with (N,L) = (1, 15) reflect the exclusion of far-field
contributions from ΓE ,l so that the fields inside/near the sphere
play the more important role in lasing and modal volumes.

Although the valid integration range for high-Q WGMs is
wider, the corresponding conventional energy confinement fac-
tors Γ(old)

E ,l (Ω) ultimately deviate from their definite counter-
parts ΓE ,l and approach zero as the integration region extends

to infinity. The behaviors of Γ(old)
E ,l (Ω)s are shown in Fig. 7 for

sufficiently large integration boundaries. For all Γ(old)
E ,l (Ω)s in

Fig. 7, the uncertainty due to the integration region Ω shows
up as Rb becomes large, even though practical computations
do not often reach this regime. From the comparison between
Γ(old)

E ,l (Ω)s of the high-Q WGMs with (N,L) = (1, 25) [upper
graphs of Fig. 7(a) and (c)] and those of other low-Q modes,
although the conventional energy confinement factors of high-Q
modes do drop less rapidly than those of low-Q modes, this trend
does not prevent Γ(old)

E ,l (Ω)s of high-Q modes from vanishing at
the larger Rb . In addition, while for high-Q modes the depen-
dences of Γ(old)

E ,l (Ω)s on Rb using mode profiles from the cur-
rent scheme and complex-ω method are similar [upper graphs
of Fig. 7(a) and (c)], the counterparts of other low-Q modes
behave distinctly. The conventional energy confinement factor
based on the current scheme has an asymptotic dependence of
R−1

b , but that based on the complex-ω method decreases expo-
nentially due to the divergent far field. These divergent far fields
of lower-Q WGMs exhibit the more rapid exponential growth
exp[ωlr/(2cQl)] toward the free space. Therefore, the applica-
ble range of the integration boundary Rb of the conventional
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Fig. 8. The modal volume VQM , l and its indefinite counterparts as a function
of Rb for (a) TMr WGMs with N = 1, (b) TMr WGMs with N = 2, (c) TEr

WGMs with N = 1, and (d) TEr WGMs with N = 2 (identical line styles to
those in Fig. 6). The indefinite counterparts of VQM , l s diverge as Rb increases.
For the complex-ω method, the effect of divergence takes place at the smaller
Rb than that based on the current scheme. The discrepancy is more significant
for the low-Q modes.

energy confinement factors based on the complex-ω method is
more stringent for low-Q modes.

The modal volume VQM and its indefinite counterparts as a
function of the integration boundary [see (16b)] are shown in
Fig. 8. The trends of indefinite modal volumes are opposite to
those of conventional energy confinement factors Γ(old)

E ,l (Ω). For
high-Q WGMs, the deviations of indefinite modal volumes from
VQM ,l [upper graphs of Fig. 8(a) and (c)] are milder than those
of low-Q modes. Quantitatively, in the range of Rb considered
here, the indefinite modal volumes based on the mode profiles
from the current scheme and complex-ω method are similar for
high-Q modes, but those of the low-Q modes are significantly
different. With the complex-ω method, the indefinite modal vol-
ume diverges more rapidly as the Q factor becomes lower due to
the exponential growth exp[ωlr/(2cQl)] of the field in the free
space. These features indicate that estimations of VQM based on
field integrations and complex-ω method [15] are acceptable if
(1) the target mode has a high radiative Q factor, and (2) the
integration does not extend much into the far-field zone. How-
ever, the uncertainty due to integration regions is never fully
eliminated and may become significant as radiative Q factors
decrease. On the other hand, without the knowledge of radiative
Q factors and specification of integration regions, the indefinite-
ness can be always eliminated with the calculations of ΓE ,l in
(9) [together with (7) and Δεr,l,I(ωl)], Veff ,l in (16a), and VQM ,l

in (16b).

VI. CONCLUSION

We have presented a self-consistent approach to calculate
confinement factors and modal volumes. This scheme does not
require numerical integrations of fields and is free from the in-
definiteness originated from choices of integration regions. The

field representations of confinement factors and modal volumes
derived from this method indicate that the irrelevant contribution
to matter–field interactions from the far field is automatically
eliminated by the built-in counter terms. This feature is particu-
larly suitable for modes with low radiative Q factors and small
cavities without sharp borders or optical feedback structures.
The simple formulae for these physical parameters are useful
for applications of micro- and nanocavities such as lasers, cavity
QED, and Purcell effect.

APPENDIX A
SIMPLIFICATION FOR FIELD REPRESENTATION

OF CONFINEMENT FACTOR

Some arbitrariness needs to be fixed for the fields pl(r) and
ql(r). If fl(r, ω) is the solution of the generalized eigenvalue
problem in (6a), the field f̂l(r, ω) defined as

f̂l(r, ω) ≡ hl(ω)fl(r, ω) (19a)

also satisfies the same generalized eigenvalue problem with
the same permittivity variation Δεr,l(ω), where hl(ω) is a
frequency-dependent complex number for mode l. If we de-
fine a new set of fields ĝl(r, ω), p̂l(r), and q̂l(r) for gl(r, ω),
pl(r), and ql(r), respectively, as follows:

ĝl(r, ω) ≡ hl(ω)gl(r, ω) (19b)

p̂l(r) ≡ ωl
∂ f̂l(r, ω)

∂ω

∣
∣
∣
∣
∣
ω=ωl

= hl(ωl)pl(r) + ωlh
′
l(ωl)fl(r, ωl) (19c)

q̂l(r) ≡
1

iωlμ0
∇× p̂l(r)

= hl(ωl)ql(r) + ωlh
′
l(ωl)gl(r, ωl) (19d)

where h′
l(ω) = dhl(ω)/dω, it can be shown that with the real

part of Poynting’s theorem at ωl :

0 =
∮

S

da · Re
[
fl(r, ωl) × g∗

l (r, ωl)
2

]

+
ωlε0

2

∫

Ω
drfl(r, ωl) ·

=
εr,I(r, ωl)f ∗l (r, ωl)

+
ωlε0Δεr,l,I(ωl)

2

∫

Ωa

dr|fl(r, ωl)|2 . (20)

Ql and ΓE ,l in (13) and (14), respectively, are invariant to the
transformation in (19a) to (19d). The solution of pl(r) is not
unique unless some constraint is specified. This situation re-
flects that the differential operator in (11) has the homogeneous
solution of fl(r, ωl).

In fact, we can fix the fields in (19a)–(19d) by imposing
particular normalization schemes to fl(r, ω) and simplify the
field representations of Ql and ΓE ,l . For example, we may pick
up the following pair of conditions:

∫

Ωa

dr|fl(r, ω)|2 = ζl(ω) ∈ R
+ (21a)
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∫

Ωa

drf ∗l (r, ωl) · fl(r, ω) = ξl(ω) ∈ R
+ (21b)

where ζl(ω) is a positive and frequency-dependent factor given
in advance; and ξl(ω) is determined after the positiveness of
(21a) is enforced [note that ζl(ωl) = ξl(ωl)]. The condition in
(21b) simplifies the field representations of Ql and ΓE ,l in (13)
and (14), respectively. We first take the frequency derivative on
both sides of (21b):

ω
d
dω

[∫

Ωa

drf ∗l (r, ωl) · fl(r, ω)
]

ω=ωl

=
∫

Ωa

drf ∗l (r, ωl) · pl(r) = ωlξ
′
l(ωl) ∈ R

+ . (22)

After taking the imaginary part on the second line of (22), we
obtain a useful null identity:

∫

Ωa

drIm[f ∗l (r, ωl) · pl(r, ωl)] = 0. (23)

The LHS of (23) appears on the third line of (13) (Ql) and the
fourth line of (14) (ΓE ,l). With the normalization conditions in
(21a) and (21b), we can drop these terms in (13) and (14). If we
further set Ω = Ωa and S = Sa , we may drop more terms due
to the homogeneous and isotropic active region and (23), and
compactly express Ql and ΓE ,l as

Ql = − [εg ,a(ωl) + εa,R(ωl)]
2Δεr,l,I(ωl)

− Δεr,l,R(ωl)
2Δεr,l,I(ωl)

−
1

ωl ε0

∮
Sa

da·Im[ql(r)×f ∗l (r, ωl)− pl(r)×g∗
l (r, ωl)]

2Δεr,l,I(ωl)
∫

Ωa
dr|fl(r, ωl)|2

(24)

1
ΓE ,l

≈ 1 +
Δεr,l,R(ωl)

[εg ,a(ωl) + εa,R(ωl)]

+
1

4ωl

∮
Sa

da·Im[ql(r)×f ∗l (r, ωl)− pl(r)×g∗
l (r, ωl)]

∫
Ωa

dr ε0
4 [εg ,a(ωl) + εa,R(ωl)]|fl(r, ωl)|2

.

(25)

APPENDIX B
INVARIANCE OF FIELD REPRESENTATION OF CONFINEMENT

FACTOR TO INTEGRATION REGIONS

We prove the invariance of the field representation in (14) by
showing that Γ−1

E ,ls evaluated with any integration regions that
contain Ωa are all identical to a single value. For an arbitrary inte-
gration region Ω1 (Ωa ⊆ Ω1) and its surface S1 , let us check the
difference of Γ−1

E ,ls which are evaluated with (Ω, S) = (Ω1 , S1)
and (Ω, S) = (Ωa , Sa) in (14), respectively:

1
ΓE ,l

∣
∣
∣
∣
(Ω ,S )=(Ω1 ,S1 )

− 1
ΓE ,l

∣
∣
∣
∣
(Ω ,S )=(Ωa ,Sa )

=
1

ωl

∫
Ωa

dr ε0
2 [εg ,a(ωl) + εa,R(ωl)]|fl(r, ωl)|2

×
{

ωl

∫

Ω ′
1

drf ∗l (r, ωl) ·
ε0

2

[
=
εg(r, ωl) +

=
εr,R(r, ωl)

]
fl(r, ωl)

− ωl

∫

Ω ′
1

drε0Im
[
f ∗l (r, ωl) ·

=
εr,I(r, ωl)pl(r)

]

+
1
2

∮

S ′
1

da · Im[ql(r)×f ∗l (r, ωl)− pl(r)×g∗
l (r, ωl)]

}

(26)

where Ω′
1 = Ω1 − Ωa is the region of Ω1 excluding Ωa ; and

S ′
1 = S1 ∪ Sa is the union of the two surfaces.
From (11), the wave equation of pl(r) in Ω′

1 becomes

∇×∇× pl(r) −
(ωl

c

)2 =
εr(r, ωl)pl(r) = iωlμ0jeff ,l(r)

(27a)
where the effective source jeff ,l(r) is defined as

jeff ,l(r) = −iωlε0

[
=
ε
(c)
g (r, ωl) +

=
εr(r, ωl)

]

fl(r, ωl). (27b)

As indicated in (10b), (27a), and (27b), the fields pl(r) and
ql(r) and effective source jeff ,l(r) satisfy Maxwell’s equations
in Ω′

1 . On the other hand, the fields fl(r, ωl) and gl(r, ωl) are
solutions of the source-free Maxwell’s equations in Ω′

1 . With
the generalized Poynting theorem in the frequency domain:

∇· 1
2
(E1×H∗

2)=
iω

2
(H∗

2 · B1−E1 · D∗
2)−

1
2
E1 ·J∗

s,2 (28a)

∇· 1
2
(E2×H∗

1)=
iω

2
(H∗

1 · B2−E2 · D∗
1)−

1
2
E2 ·J∗

s,1 (28b)

where (E1 ,H1 ,D1 ,B1) are the electric, magnetic, electric dis-
placement, and magnetic flux fields in the presence of source
Js,1 , respectively; and (E2 ,H2 ,D2 ,B2) are the counterparts
in the presence of Js,2 ; we first add the complex conjugate of
(28a) to (28b) and then integrate the outcome over Ω′

1 . After
utilizing the divergence theorem and taking the imaginary part
of the resulted integral, we obtain the following identity:

0 = −
∫

Ω ′
1

dr
1
2
Im

[
E∗

1 · Js,2 + E2 · J∗
s,1

]

−
∫

Ω ′
1

dr
ω

2
Re [H2 · B∗

1 − H∗
1 · B2 ]

+
∫

Ω ′
1

dr
ω

2
Re [E∗

1 · D2 − E2 · D∗
1 ]

+
∮

S ′
1

da · 1
2
Im [H2 × E∗

1 − E2 × H∗
1 ] . (29)

If we set ω = ωl and assign the fields and sources in Ω′
1 as

⎧
⎪⎨

⎪⎩

E1 = fl(r, ωl)

H1 = gl(r, ωl)

Js,1 = 0

{
D1 = ε0

=
εr(r, ωl)fl(r, ωl)

B1 = μ0gl(r, ωl)
(30a)

⎧
⎪⎨

⎪⎩

E2 = pl(r)

H2 = ql(r)

Js,2 = jeff ,l(r)

{
D2 = ε0

=
εr(r, ωl)pl(r)

B2 = μ0ql(r)
(30b)
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the RHS of (29) turns into the content inside the curly brackets
of (26), which vanishes according to (29) (the second line on
the RHS of (29) does not have a corresponding term in (26)
because H∗

2 · B1 − H∗
1 · B2 vanishes in this case). Therefore,

the inverse energy confinement factors Γ−1
E ,l evaluated with ar-

bitrary integration regions which contain Ωa are all identical to
that evaluated with Ω = Ωa . This indicates that the field repre-
sentation of Γ−1

E ,l in (14) is indeed invariant to integration regions
Ω that contain Ωa .

The field representation of Γ−1
E ,l in (14) can also be derived

using the integral identity in (29) over an arbitrary integration
region Ω containing Ωa . With analogous field and source as-
signments in (30a) and (30b) based on full wave equations of
fl(r, ω) and pl(r) in (6a) and (11), respectively, one first derives
the field representation of Ql and then obtains that of Γ−1

E ,l from
(9). Comparing the derivation of Γ−1

E ,l through this approach and
aforementioned proof, we see the key to the invariance of Γ−1

E ,l

that the source js,l(r, ω) of fl(r, ωl) in (6a) and its frequency
derivative ∂js,l(r, ω)/∂ω are merely present in Ωa but vanish
elsewhere.
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Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength
plasmonic waveguides,” Opt. Exp., vol. 17, no. 13, pp. 11 107–11 112,
Jun. 2009.

Shu-Wei Chang (M’09) received the B.S. degree
in electrical engineering from the National Taiwan
University, Taipei, Taiwan, in 1999, and the M.S.
and Ph.D. degrees from the University of Illinois
at Urbana-Champaign, Urbana, in 2003 and 2006,
respectively.

From 2008 to 2010, he was a Postdoctorate As-
sociate at the Department of Electrical and Com-
puter Engineering, University of Illinois at Urbana-
Champaign. Since 2010, he has been an Assistant
Research Fellow at the Research Center for Applied

Sciences, Academia Sinica, Taipei. In 2011, he joined the faculties of the De-
partment of Photonics, National Chiao-Tung University, Hsinchu, Taiwan, as
an Adjunct Assistant Professor. His current research interests are fundamental
and applied physics of semiconductor photonics including tunneling-injection
quantum-dot-quantum-well coupled system, slow and fast light in semiconduc-
tor nanostructures, spin relaxation in strained [1 1 0] and [1 1 1] semiconductor
quantum wells, group-IV direct-bandgap semiconductor lasers, active and pas-
sive plasmonic devices, semiconductor nanolasers, applications of metamateri-
als, both chiral and nonchiral, to semiconductor active devices, and computa-
tional schemes for both reciprocal and nonreciprocal cavities.

Dr. Chang is a member of the Optical Society of America. He was the recipient
of the John Bardeen Memorial Graduate Award from the Department of Elec-
trical and Computer Engineering, University of Illinois at Urbana-Champaign,
in 2006.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


