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a b s t r a c t

The Green’s function approach for treating quantum transport in nano devices requires the
solution of nonlinearmatrix equations of the form X+(C∗+ iηD∗)X−1(C+ iηD) = R+ iηP ,
where R and P are Hermitian, P + λD∗ + λ−1D is positive definite for all λ on the unit
circle, and η → 0+. For each fixed η > 0, we show that the required solution is the
unique stabilizing solution Xη . Then X∗ = limη→0+ Xη is a particular weakly stabilizing
solution of the matrix equation X + C∗X−1C = R. In nano applications, the matrices R and
C are dependent on a parameter, which is the system energy E . In practice one is mainly
interested in those values of E for which the equation X + C∗X−1C = R has no stabilizing
solutions or, equivalently, the quadratic matrix polynomial P(λ) = λ2C∗ − λR + C has
eigenvalues on the unit circle. We point out that a doubling algorithm can be used to
compute Xη efficiently even for very small values of η, thus providing good approximations
to X∗. We also explain how the solution X∗ can be computed directly using subspace
methods such as the QZ algorithm by determining which unimodular eigenvalues of P(λ)
should be included in the computation. In some applications the matrices C,D, R, P have
very special sparsity structures. We show how these special structures can be exploited to
drastically reduce the complexity of the doubling algorithm for computing Xη .

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study nonlinear matrix equations of the form

X + (C∗ + iηD∗)X−1(C + iηD) = R+ iηP, (1)

where R and P are Hermitian, P + λD∗ + λ−1D is positive definite for all λ on the unit circle T, and η ≥ 0. The special case
where P = I,D = 0 and C, R are real arises in nano research [1–4] and has been studied in [5,6]. We now briefly explain
how the general equation (1) also arises in nano applications.

A main goal of basic research in molecular electronics is to advance the understanding of electron transport through
molecules. In [7], a method for calculating the current is described for a system that consists of a molecule connected
between two semi-infinite metallic electrodes, and is implemented in a program that assumes a local-orbital picture and
requires as input the Hamiltonian and overlap matrix elements between orbitals.
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The system Hamiltonian is a bi-infinite Hermitian matrix of the form

H =

 HL HLM 0
H∗LM HM HMR
0 H∗MR HR


, (2)

where HM ,HL,HR are the Hamiltonians for the molecule, the left electrode, and the right electrode, respectively, and the
overlap matrix is a Hermitian positive definite matrix partitioned in the same way and is given by

S =

 SL SLM 0
S∗LM SM SMR
0 S∗MR SR


.

In [7] the blocks HL and HLM in (2) are shifted by sLSL and sLSLM , respectively, where sL is a proper energy shift, and the
blocks HR and HMR are shifted similarly. These shifts do not change the structure of the matrix H in (2). So we can simply
assume that the matrix H in (2) has already gone through the shifting procedure.

The Green’s function (of the full interacting system) is defined by

G =

(E + i0+)S − H

−1
= lim

η→0+
((E + iη)S − H)−1 ,

where E is energy. We note that for each η > 0 the infinite matrix (E + iη)S −H = ES −H + iηS is known to be invertible
by Bendixson’s theorem (see [8, Lemma 3.3]), but the existence of the above one-sided limit is something assumed. The
molecule Green’s function GM is that part of G corresponding to the block for the molecule and is obtained from

GM =

(E + i0+)SM − HM −ΣL −ΣR

−1
,

where

ΣL = (ESLM − HLM)∗GL(ESLM − HLM), ΣR = (ESMR − HMR)GR(ESMR − HMR)
∗,

with

GL =

(E + i0+)SL − HL

−1
, GR =


(E + i0+)SR − HR

−1
.

Then [7] the net current is determined through a definite integral of the transmission function given by

T (E) = tr(ΓLGMΓRG∗M),

where

ΓL = i(ΣL −Σ∗L ), ΓR = i(ΣR −Σ∗R ),

and tr(·) denotes the trace of a matrix. Note that T (E) is a real function of E since ΓL and ΓR are Hermitian.
We now explain how thematrixΣR is computed. The computation ofΣL is similar. ThematricesHR and SR can bewritten

as [7]

HR =


Hs Hsb
H∗sb Hb Hbb

H∗bb Hb Hbb

H∗bb Hb
. . .

. . .
. . .

 , SR =


Ss Ssb
S∗sb Sb Sbb

S∗bb Sb Sbb

S∗bb Sb
. . .

. . .
. . .

 ,

whereHs, Ss ∈ Cq×q andHb, Sb ∈ Cn×n, andwe suppose thatHM , SM ∈ Cp×p. The size ofHs and Ss has been taken sufficiently
large so that all nonzero elements of the matrices HMR and SMR are in the p × q block on the left. This means that we only
need Gs, the q× q block in the upper-left corner of GR, for the computation of ΣR. It is easy to see [7] that Gs is determined
through

Gs = (Us − UsbGbU ′sb)
−1,

where Us = zSs − Hs,Usb = zSsb − Hsb,U ′sb = zS∗sb − H∗sb with z = E + iη and η → 0+, and Gb is the n × n block in the
upper-left corner of the inverse of

zSb − Hb zSbb − Hbb
zS∗bb − H∗bb zSb − Hb zSbb − Hbb

zS∗bb − H∗bb zSb − Hb
. . .

. . .
. . .

 . (3)
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Note that the above matrix is invertible by Bendixson’s theorem since the matrix

TR =


Sb Sbb
S∗bb Sb Sbb

S∗bb Sb
. . .

. . .
. . .

 (4)

is positive definite when S is positive definite. Note also that TR is positive definite if and only if Sb+λSbb+λ−1S∗bb is positive
definite for all λ on T.

The block Toeplitz structure of the matrix (3) implies that Gb satisfies the matrix equation

Gb = (Ub − UbbGbU ′bb)
−1, (5)

where Ub = zSb − Hb,Ubb = zSbb − Hbb,U ′bb = zS∗bb − H∗bb.
For anyW ∈ Cn×n, we can writeW = WR + iWI , where the Hermitian matrices

WR =
1
2
(W +W ∗), WI =

1
2i

(W −W ∗)

are called the real part and the imaginary part ofW , respectively. We are only interested in E values for which the required
solution Gb of (5) has a nonzero imaginary part (in the limit η → 0+) since otherwise Gb and then Gs would be Hermitian,
which would imply that ΣR is Hermitian and then T (E) = 0 for the transmission function.

Now we let

X = G−1b , C = ES∗bb − H∗bb, D = S∗bb, R = ESb − Hb, P = Sb.

Then Eq. (5) becomes (1).

2. Characterization of the solution Gb

The matrix equation (1) may have many different solutions. So what solution X do we need so that X−1 = Gb is the
required solution of (5)?

Let A = C + iηD, B = C∗ + iηD∗, Q = R+ iηP . Then (1) becomes

X + BX−1A = Q . (6)

As before, R and P are Hermitian and P + λD∗ + λ−1D is positive definite for all λ on T. Let

M =

A 0
Q −I


, L =


0 I
B 0


. (7)

Then X is a solution of (6) if and only if

M

I
X


= L


I
X


X−1A. (8)

Therefore, every solution of (6) can be obtained from a suitable invariant subspace for the pencilM − λL.

Lemma 1. For any η ≠ 0, the matrix pencil M − λL has no eigenvalues on T.

Proof. Suppose that λ ∈ T and (M − λL)x = 0 for a vector x = (x⊤1 , x⊤2 )⊤ with x1, x2 ∈ Cn. Then

Ax1 = λx2, Qx1 − x2 = λBx1. (9)

By eliminating x2 in (9) we have

Wx1 ≡

λB− Q + λ−1A


x1 = 0. (10)

The imaginary part of x∗1Wx1 is−ηx∗1(P−λD∗−λ−1D)x1. Since P−λD∗−λ−1D is positive definite, it follows from (10) that
x1 = 0. By (9) we have x2 = 0. Thus,M − λL has no eigenvalues on T. �

Theorem 2. For any η ≠ 0, the matrix pencil M − λL ∈ C2n×2n has n eigenvalues inside T and n eigenvalues outside T.
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Proof. We consider the matrix pencils

H(t, λ) =


tA 0

tR+ iηP −I


− λ


0 I
tB 0


obtained from the pencilM − λL by replacing C,D, Rwith tC, tD, tR. For each t ∈ [0, 1] and λ ∈ T, P + λ(tD∗)+ λ−1(tD) =
(1 − t)P + t(P + λD∗ + λ−1D) is positive definite. From Lemma 1 we know that H(t, λ) has no eigenvalues on T for all
t ∈ [0, 1]. Hence, H(1, λ) = M − λL and H(0, λ) have the same numbers of eigenvalues inside T. But it is clear that H(0, λ)
has n eigenvalues at 0 and n eigenvalues at∞. �

Note that the pencilM − λL is a linearization of the quadratic polynomial P(λ) = λ2B− λQ + A.
The basic fixed-point iteration for finding a solution of (6) is Xk+1 = F (Xk), where F (X) = Q − BX−1A. The Fréchet

derivative of F at X is the linear map F ′X : C
n×n
→ Cn×n given by F ′X (Z) = (BX−1)Z(X−1A). A solution X of (6) is said to be

stabilizing if ρ(F ′X ) < 1 or, equivalently, ρ(BX−1)ρ(X−1A) < 1, where ρ(·) denotes the spectral radius. Note that the basic
fixed-point iteration is locally convergent at a stabilizing solution.

Let X be any solution of (6). Then we have

P(λ) = (λBX−1 − I)X(λI − X−1A).

So the eigenvalues of X−1A are n eigenvalues of P(λ), and the eigenvalues of BX−1 are the reciprocals of the remaining n
eigenvalues of P(λ). It then follows from Theorem 2 that a solution X of (6) is stabilizing if and only if ρ(X−1A) < 1 and that
there is at most one stabilizing solution.

Let the invariant subspace of M − λL corresponding to its n eigenvalues inside T be spanned by the columns of the
matrix


U
V


, where U, V ∈ Cn×n. Then the existence of a stabilizing solution can be established by showing that U and V are

both invertible. The stabilizing solution is then X = VU−1. For the case where the matrices C,D, R, P in (6) are all real, an
elementary proof for the invertibility of U has already been given in [9] and we note that the invertibility of V can be proved
in the same way. It is also shown in [9] that the imaginary part of the stabilizing solution is positive definite for η > 0. The
proofs can be carried over to the complex case here with only very minor changes.

Here, however, we are going to use an advanced result on linear operators to show the existence of a stabilizing solution
since this approach will also explain that the stabilizing solution is precisely the solution we need for the nano application.
The treatment is very similar to the one in [6] for a special case of Eq. (6). So our presentation here will be very brief.

Recall that Gb = limη→0+ Gb(η), where Gb(η) is the n × n matrix in the upper-left corner of T−1 with T given by (3) for
each η > 0. Using the current notation, we have

T =


Q B
A Q B

A Q
. . .

. . .
. . .

 . (11)

Associated with T is the rational matrix function φ(λ) = λA + Q + λ−1B. We already know from Bendixson’s theorem
(see [8, Lemma 3.3]) that T is invertible for each η > 0. Thus, by a result on linear operators (see [10, Chapter XXIV, Theorem
4.1] and [11]) we know that φ(λ) has a factorization

φ(λ) = (I − λ−1L)X(I − λU) (12)

with X invertible, ρ(L) < 1 and ρ(U) < 1. From (12) we see that

A = −XU, B = −LX, Q = X + LXU .

Thus X + BX−1A = Q and ρ(X−1A) < 1. In other words, X is the unique stabilizing solution of (6).
By [10, Chapter XXIV, Theorem 4.1] the n × n matrix in the upper-left corner of T−1 is precisely X−1. We thus have the

following characterization of Gb(η).

Theorem 3. For any η > 0, the matrix Gb(η) is the inverse of the unique stabilizing solution of (6).

3. Computation of the stabilizing solution

LetM and L be as in (7). Then the stabilizing solution X of (6) satisfies (8) with ρ(X−1A) < 1.
We remark that Eq. (6) with real matrices C,D, R, P also arises in the study of a quadratic eigenvalue problem from the

vibration analysis of fast trains, where the required solution is also the stabilizing solution and a doubling algorithm is used
to find the solution [8]. We can get similar results for our more general equation (6). The situation here is slightly more
complicated since we no longer have B = A⊤ and the stabilizing solution is no longer complex symmetric.
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Starting with the matricesM and L in (7), we define the sequences {Mk} and {Lk}, where

Mk =


Ak 0
Qk −I


, Lk =


−Pk I
Bk 0


,

by the following structure-preserving doubling algorithm if no breakdown occurs.

Algorithm 1. Let A0 = A, B0 = B,Q0 = Q , P0 = 0.
For k = 0, 1, . . . , compute

Ak+1 = Ak(Qk − Pk)−1Ak,

Bk+1 = Bk(Qk − Pk)−1Bk,

Qk+1 = Qk − Bk(Qk − Pk)−1Ak,

Pk+1 = Pk + Ak(Qk − Pk)−1Bk.

The above algorithm is the SDA-2 as presented in [12]. The next result shows that the doubling algorithm has some nice
properties. In particular, it can compute the stabilizing solution X of (6) efficiently.

Theorem 4. Let X be the stabilizing solution of (6) andX be the stabilizing solution of the dual equationX + AX−1B = Q .

Then
(a) The sequences {Ak}, {Bk}, {Qk}, {Pk} in Algorithm 1 are well-defined.
(b) Qk converges to X quadratically, Ak and Bk converge to 0 quadratically, Q − Pk converges toX quadratically, with

lim sup
k→∞

2k

∥Qk − X∥ ≤ ρ(X−1B)ρ(X−1A), lim sup

k→∞

2k

∥Ak∥ ≤ ρ(X−1A),

lim sup
k→∞

2k

∥Bk∥ ≤ ρ(X−1B), lim sup

k→∞

2k

∥Q − Pk −X∥ ≤ ρ(X−1B)ρ(X−1A),

where ∥ · ∥ is any matrix norm.
Proof. The proof is very similar to that of [8, Theorem 4.1]. Although the statement of that theorem and the beginning of
its proof refer to the specific problem under consideration in [8], the proof there is valid for this theorem after some minor
changes. Herewe onlymention the following differences. In [8],Q⊤ = Q and B = A⊤ (this would be true here if thematrices
C,D, R, P were all real), and in that case we can conclude that Bk = A⊤k ,Q⊤k = Qk, P⊤k = Pk, and ρ(X−1B) = ρ(X−1A). �

Remark 1. Although we no longer have ρ(X−1B) = ρ(X−1A) in general, we always have ρ(X−1B) = ρ(X−1B). In fact, the
eigenvalues ofX−1B are those ofP(λ) = λ2A − λQ + B inside T. We have mentioned earlier that the eigenvalues of BX−1
are the reciprocals of those eigenvalues of P(λ) = λ2B − λQ + A outside T. However, the reciprocals of the eigenvalues
of P(λ) outside T are precisely the eigenvalues ofP(λ) inside T. It is also well known that BX−1 and X−1B have the same
eigenvalues.

Remark 2. As in [6], we can show that the basic fixed-point iteration (FPI)

Xk+1 = Q − BX−1k A, X0 = Q

is also convergent and X2k−1 = Qk. So the convergence of the FPI is much slower than the doubling algorithm. However, we
can use an averaging procedure for the FPI to speed up its convergence and for the nano applicationwe can use the computed
solution for one energy value as an initial guess for the solution for the next nearby energy value [7]. For the special case
where P = I,D = 0 and C, R are real, convergence results for methods based on these ideas have been proved in [5] using
the Earle–Hamilton theorem [13,14]. The proofs there can be carried over to Eq. (6), with some minor changes, as long as
D = 0 still holds (so C is any complex matrix, R is any Hermitian matrix, and P is any Hermitian positive definite matrix).
However, when D ≠ 0 we are unable to prove any non-local convergence results for those methods. The Earle–Hamilton
theorem is not applicable since we no longer have B = A∗.

To emphasize its dependence on η, the stabilizing solution of (6) will be denoted by Xη . For the nano application,
Gb = limη→0+ Gb(η) and Gb(η) = X−1η . So Gb = X−1

∗
with X∗ = limη→0+ Xη . It is easy to see that X∗ is a particular weakly

stabilizing solution of the matrix equation

X + C∗X−1C = R, (13)
with ρ(X−1

∗
C) ≤ 1 and ρ(C∗X−1

∗
) ≤ 1. The solution X∗ can be approximated by computing Xη by the doubling algorithm for

a sufficiently small η, but can also be computed directly by subspacemethods, as we shall see in Section 5. For now, wewrite
X∗ = X∗,R+ iX∗,I , where the Hermitianmatrices X∗,R and X∗,I are the real part and the imaginary part of X∗, respectively, and
we will examine the rank of X∗,I . Since the imaginary part of Xη is positive definite for η > 0, we know that X∗,I is positive
semi-definite.
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4. Rank of X∗,I

We now denote the matrices A, B,Q in (6) by Aη, Bη,Qη , respectively. So

Aη = C + iηD, Bη = C∗ + iηD∗, Qη = R+ iηP, (14)

with C,D, R, P as before. Let

Pη(λ) = λ2Bη − λQη + Aη.

We already know that Pη has no eigenvalues on T for η ≠ 0. For η = 0 we get

P0(λ) = λ2C∗ − λR+ C .

It is quite possible that P0(λ) has some eigenvalues on T. As wewill see later, this is the case of primary interest for the nano
application.

Theorem 5. The number of eigenvalues (counting multiplicities) of P0(λ) on T must be even, say 2m. Moreover, we have rank
(X∗,I) ≤ m.

Proof. Thematrix polynomial P0(λ) is ∗-palindromic. Thusµ is an eigenvalue of P0(λ) if and only if 1/µ is so, and they have
the same algebraic, geometric, and partial multiplicities [15]. It follows that the total number of eigenvalues of P0(λ) on T
must be even.

By Xη + (C∗ + iηD∗)X−1η (C + iηD) = R+ iηP we have

Xη + C∗X−1η C = R+ ηWη, (15)

where

Wη = iP − iD∗X−1η C − iC∗X−1η D+ ηD∗X−1η D.

Taking imaginary parts on (15), we get

Kη − F∗ηKηFη = ηTη, (16)

where Kη = Im(Xη), Tη = Im(Wη), Fη = X−1η C . Let F = limη→0+ Fη = X−1
∗

C . Then the eigenvalues of F consist of all n− m
eigenvalues of P0(λ) inside T plus m eigenvalues of P0(λ) on T. Let

F = V0


R0,1 0
0 R0,2


V−10 (17)

be a spectral resolution of F , where R0,1 ∈ Cm×m and R0,2 ∈ C(n−m)×(n−m) are upper triangular with σ(R0,1) ⊆ T and
σ(R0,2) ⊆ D ≡ {λ ∈ C||λ| < 1}. It follows from [16, Chapter V, Theorem 2.8] that there is a nonsingular matrix Vη such that

Fη = Vη


Rη,1 0
0 Rη,2


V−1η , (18)

and Rη,1 → R0,1, Rη,2 → R0,2, and Vη → V0, as η→ 0+.
From (16) and (18) we have

V ∗η KηVη −


R∗η,1 0
0 R∗η,2


V ∗η KηVη


Rη,1 0
0 Rη,2


= ηV ∗η TηVη. (19)

Let

V ∗η KηVη =


Hη,1 Hη,3
H∗η,3 Hη,2


, V ∗η TηVη =


Zη,1 Zη,3
Z∗η,3 Zη,2


. (20)

Then (19) becomes

Hη,1 − R∗η,1Hη,1Rη,1 = ηZη,1, (21a)

Hη,2 − R∗η,2Hη,2Rη,2 = ηZη,2, (21b)

Hη,3 − R∗η,1Hη,3Rη,2 = ηZη,3. (21c)

As η→ 0+, Rη,1 → R0,1 with ρ(R0,1) = 1, Rη,2 → R0,2 with ρ(R0,2) < 1, and Zη,2 and Zη,3 are bounded by the convergence
of Tη . So we have Hη,2 → 0 from (21b) and Hη,3 → 0 from (21c). Since X∗,I = limη→0+ Kη , it follows from (20) that
rank(X∗,I) ≤ m. �
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We conjecture that equality holds in Theorem 5 when all eigenvalues of P0(λ) on T are simple.
For the nano application, the matrices C and R in P0(λ) are given by

C = ES∗bb − H∗bb, R = ESb − Hb.

If P0(λ) has no eigenvalues on T for an energy value E , then X∗ is Hermitian by Theorem 5 and Gb = X−1
∗

is also Hermitian.
We then know that the transmission function T (E) takes zero value, without solving any nonlinear matrix equations. So we
are only interested in those E values for which P0(λ) has some eigenvalues on T. The next simple result is thus relevant,
where Sb − λSbb − λ−1S∗bb is positive definite for all λ on T.

Theorem 6. For λ ∈ T, let the eigenvalues of

(Sb − λSbb − λ−1S∗bb)
−1(Hb − λHbb − λ−1H∗bb)

be µ1(λ) ≤ · · · ≤ µn(λ). Let

∆i =


min
|λ|=1

µi(λ), max
|λ|=1

µi(λ)


,

and ∆ =
n

i=1 ∆i. Then the quadratic pencil P0(λ) = λ2(ESbb − Hbb)− λ(ESb − Hb)+ (ES∗bb − H∗bb) has some eigenvalues on
T if and only if E ∈ ∆.

Proof. The quadratic P0(λ) has some eigenvalues on T if and only if det(P0(λ)) = 0 for some λ ∈ T or, equivalently,

det(−λ−1P0(λ)) = det

E(Sb − λSbb − λ−1S∗bb)− (Hb − λHbb − λ−1H∗bb)


= 0

for some λ ∈ T, the latter is equivalent to E ∈ ∆. �

5. Direct computation of X∗

The solution X∗ can be computed directly by subspace methods. We will need to include all eigenvalues of

P(λ) = λ2C∗ − λR+ C (22)

inside T and half of its eigenvalues on T—the half that would be perturbed to the inside of T when P(λ) is perturbed to

Pη(λ) = λ2(C∗ + iηD∗)− λ(R+ iηP)+ (C + iηD). (23)

Let

M =


C 0
R −I


, L =


0 I
C∗ 0


. (24)

Then the pencil M − λL, also denoted by (M, L), is a linearization of the quadratic matrix polynomial P(λ). It is easy to
check that y and z are the right and left eigenvectors, respectively, corresponding to an eigenvalue λ of P(λ) if and only if

y
Ry− λC∗y


,


z
−λz


(25)

are the right and left eigenvectors of (M, L), respectively.
The following result is a generalization of [5, Theorem 3.1] for the special case where P = I,D = 0 and C, R are real. It

shows which invariant subspace corresponding to unimodular eigenvalues of P(λ) should be used in the computation of X∗,
assuming they are all semi-simple.

Theorem 7. Suppose that λ0 is a semi-simple eigenvalue of P(λ) onTwithmultiplicitym0 and Y ∈ Cn×m0 forms an orthonormal
basis of right eigenvectors corresponding to λ0. Then iY ∗(2λ0C∗ − R)Y is a nonsingular Hermitian matrix. Let dj, j = 1, . . . , ℓ,
be the distinct eigenvalues of

Y ∗(P − λ0D∗ − λ−10 D)Y

iY ∗(2λ0C∗ − R)Y

−1
with multiplicities mj

0, and let ξj ∈ Cm0×m
j
0 form an orthonormal basis of the eigenspace corresponding to dj. Then for η > 0

sufficiently small and j = 1, . . . ℓ

λ
(k)
j,η = λ0 − λ0djη + O(η2), k = 1, . . . ,mj

0,

and

yj,η = Y

Y ∗(P − λ0D∗ − λ−10 D)Y

−1
ξj + O(η) (26)

are perturbed eigenvalues and a basis of the corresponding invariant subspace of Pη(λ), respectively.
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Proof. Since P(λ0)Y = 0 with Y ∗Y = Im0 and |λ0| = 1, we have

0∗ = (P(λ0)Y )∗ = λ
2
0Y
∗(λ2

0C
∗
− λ0R+ C).

It follows that Y forms an orthonormal basis for left eigenvectors of P(λ) corresponding to λ0. From (25), we obtain that the
column vectors of

YR =


Y

RY − λ0C∗Y


and YL =


Y
−λ0Y


form a basis of left and right eigenspaces of M − λL corresponding to λ0, respectively. Since λ0 is semi-simple, the matrix

[Y ∗,−λ0Y ∗]L


Y
RY − λ0C∗Y


= −Y ∗(2λ0C∗ − R)Y = −Y ∗P ′(λ0)Y

is nonsingular. LetYR = −YR

Y ∗P ′(λ0)Y

−1
, YL = YL.

Then we haveY∗LLYR = Im0 and Y∗LMYR = λ0Im0 . (27)

For η > 0 sufficiently small, we let

Mη =


C + iηD 0
R+ iηP −I


, Lη =


0 I

C∗ + iηD∗ 0


.

Then Mη−λLη is a linearization of Pη(λ). By (27) and [16, Chapter VI, Theorem 2.12] there are YR and YL such that
YR YR


and

YL YL

are nonsingular andY∗LY∗L


M

YR YR

=


λ0Im0 0
0 M


,

Y∗LY∗L


L
YR YR


=


Im0 0
0 L


.

Then, by [16, Chapter VI, Theorem2.15] the columnvectors ofYR+O(η) span the right eigenspace of (Mη, Lη) corresponding
to (Λ, Im0), where

Λ =

λ0Im0 + ηE11 + O(η2)

 
Im0 + ηF11 + O(η2)

−1
with

E11 = Y∗L 
iD 0
iP 0

 YR = Y ∗(λ0iP − iD)Y

Y ∗P ′(λ0)Y

−1
,

F11 = Y∗L 
0 0
iD∗ 0

 YR = Y ∗(λ0iD∗)Y

Y ∗P ′(λ0)Y

−1
.

Thus

Λ = λ0Im0 + η(E11 − λ0F11)+ O(η2) = λ0Im0 − ηλ0W + O(η2),

where

W = Y ∗(P − λ0D∗ − λ−10 D)Y

iY ∗P ′(λ0)Y

−1
. (28)

The matrix Z = iY ∗P ′(λ0)Y = iY ∗(2λ0C∗ − R)Y in (28) is Hermitian since

Z − Z∗ = iY ∗(2λ0C∗ + 2λ0C − 2R)Y = 2iλ0Y ∗P(λ0)Y = 0.

Since Y ∗(P −λ0D∗−λ−10 D)Y is positive definite, all eigenvalues ofW in (28) are real and there arem0 linearly independent

eigenvectors. Let dj for j = 1, . . . , ℓ be the distinct eigenvalues of W with multiplicities mj
0, and let ξj ∈ Cm0×m

j
0 form an

orthonormal basis of the eigenspace corresponding to dj. Then we have

Φ−1ΛΦ = λ0Im0 − ηλ0diag

d1Im1

0
, . . . , dℓImℓ

0


+ O(η2)

where Φ = [ξ1, . . . , ξℓ] ∈ Cm0×m0 . Then for each j ∈ {1, 2, . . . , ℓ}, the perturbed eigenvalues λ
(k)
j,η , k = 1, . . . ,mj

0, and a

basis of the corresponding invariant subspace of Mη − λLη with λ
(k)
j,η |η=0 = λ0 can be expressed by

λ
(k)
j,η = λ0 − λ0djη + O(η2), k = 1, . . . ,mj

0, (29a)
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and

ζj,η = YR

Y ∗(P − λ0D∗ − λ−10 D)Y

−1
ξj + O(η). (29b)

The equation in (26) follows from (29b). �

For the pencil (M, L) given by (24), the relation M

I
X


= L


I
X


X−1A shows that the weakly stabilizing solution X∗ of

(13) is obtained by X∗ = X2X−11 , where the columns of

X1
X2


form a basis for the invariant subspace of (M, L) corresponding

to its eigenvalues inside T and its eigenvalues on T that would be perturbed to the inside of T when (M, L) is perturbed to
(Mη, Lη) with η > 0.

We can use the QZ algorithm to determine this invariant subspace, with the aid of Theorem 7 when all unimodular
eigenvalues of (M, L) are semi-simple. In practice, these unimodular eigenvalues are likely to be simple and the statements
in our Theorem 7 can be simplified significantly. However, if 1 (or−1) happens to be an eigenvalue of (M, L), then it must
have even multiplicity because (counting multiplicity) half of eigenvalues at 1 (or −1) will be perturbed to the inside of T
and the other half to the outside. Typically 1 (or−1) will be a double eigenvalue of partial multiplicity 2, and the eigenvector
corresponding to it should be used in the computation of X∗.

6. Exploiting sparsity

Subspace methods for finding X∗ may be more efficient than the doubling algorithm that finds Xη for a sufficiently small
η. However, it is possible for the doubling algorithm to exploit certain sparsity structures in thematrices A, B,Q in (6) while
subspace methods could not.

For the nano application here and for other applications, the matrices A, B,Q are from a semi-infinite block tridiagonal
and block Toeplitz matrix, as given in the matrix T in (11). In some situations, the matrix T is block tridiagonal with the
matrices on the three diagonals having some periodicity, but is not block Toeplitz when the submatrices in T are of the
given sizes. To make T a block tridiagonal and block Toeplitz matrix, we would have to partition the matrix T into larger
submatrices. To be more precise, the matrix T is given as in (11), and the matrices A, B,Q ∈ Cn×n have the following
structures:

Q =


K1,1 K1,2 0

K2,1 K2,2
. . .

. . .
. . . Kp−1,p

0 Kp,p−1 Kp,p

 , A =

0 Kp+1,p
0 0


, B =


0 0

Kp,p+1 0


, (30)

where Kj,j ∈ Cnj×nj , Kp+1,p ∈ Cn1×np , Kp,p+1 ∈ Cnp×n1 .
We now use Algorithm 1 to compute the stabilizing solution Xs of (6). We remark that Eq. (6) here is more general than

the one studied in [8]. That equation arises in the vibration analysis of fast trains.
As in [8], the complexity of Algorithm 1 can be reduced drastically by using the special structures of the matrices Q , A, B

given by (30). Write Qk = Q −Pk. Then it is easily seen from Algorithm 1 that the matrices Ak, Bk,Pk and Pk have the special
forms

Ak =


0 Ek
0 0


, Bk =


0 0
Fk 0


, Pk = 

0 0
0 Gk


, Pk =


Gk 0
0 0


,

where Ek, Fk,Gk and Gk are n1 × np, np × n1, np × np and n1 × n1 matrices, respectively. Algorithm 1 can be rewritten as the
following simplified algorithm.

Algorithm 2. Let E0 = Kp+1,p, F0 = Kp,p+1, G0 = 0, G0 = 0.
For k = 0, 1, . . . , compute


Sk,1
Sk,2
...

Sk,p

 =
Q −


Gk

0
. . .

0 Gk



−1 

Ek
0
...
0

 , (31)


Tk,1
Tk,2
...

Tk,p

 =
Q −


Gk

0
. . .

0 Gk



−1 

0
...
0
Fk

 , (32)
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where Sk,i ∈ Cni×np and Tk,i ∈ Cni×n1 , and then compute

Ek+1 = EkSk,p, Fk+1 = FkTk,1, Gk+1 =Gk + FkSk,1, Gk+1 = Gk + EkTk,p. (33)

The main task of Algorithm 2 is to solve the large sparse linear systems in (31) and (32). This could be done by using
the Sherman–Morrison–Woodbury formula, as in [8]. But here we present a new approach that is both simpler and less
expensive.

Let

P =

In1 0 0
0 0 Inp
0 In−n1−np 0


be a permutation matrix and note that

P

Q −


Gk

0
. . .

0 Gk


 P⊤ =

 K1,1 − Gk 0
0 Kp,p −Gk

V

U C

 ,

where

V =


K1,2 0 · · · 0
0 · · · 0 Kp,p−1


, (34)

U =


K2,1 0

0
...

... 0
0 Kp−1,p

 , C =


K2,2 K2,3 0

K3,2 K3,3
. . .

. . .
. . . Kp−2,p−1

0 Kp−1,p−2 Kp−1,p−1

 . (35)

Then the matrices Sk,1, Sk,p, Tk,1 and Tk,p of the solutions of (31) and (32) satisfy
K1,1 − Gk 0

0 Kp,p −Gk


− VC−1U

 
Sk,1 Tk,1
Sk,p Tk,p


=


Ek 0
0 Fk


. (36)

Note that the matrix VC−1U is independent of k. Since Qk = Q −Pk and limk→∞ Qk = Xs, we know that Xs is obtained from
Q by replacing Kp,p in the lower-right corner with Kp,p −G∗, whereG∗ = limk→∞Gk.

The following algorithm gives a more detailed implementation of Algorithm 2 and computes the stabilizing solution Xs
of (6).

Algorithm 3. Computation of Xs.

Input: Kj,j ∈ Cnj×nj , Kj,j+1 ∈ Cnj×nj+1 , Kj+1,j ∈ Cnj+1×nj , j = 1, . . . , n, where np+1 = n1; tolerance τ .

Output: The stabilizing solution Xs of (6), where A, B,Q are given by (30).

Take V, U and C in (34) and (35);

Compute W =

K1,1 0
0 Kp,p


− VC−1U;

E0 = Kp+1,p, F0 = Kp,p+1,G0 = 0, G0 = 0;

For k = 0, 1, . . .
Sk,1 Tk,1
Sk,p Tk,p


=


W −


Gk 0
0 Gk

−1 
Ek 0
0 Fk


;

Ek+1 = EkSk,p, Fk+1 = FkTk,1, Gk+1 =Gk + FkSk,1,
Gk+1 = Gk + EkTk,p;

If ∥FkSk,1∥ ≤ τ∥Gk∥ and ∥EkTk,p∥ ≤ τ∥Gk∥, then
Xs ← Q , Xs(n− np + 1 : n, n− np + 1 : n)← Kp,p −Gk+1,
and stop.
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In nano applications, we typically need the n1 × n1 matrix in the upper-left corner of T−1, where T is given by (11). We
also know that X−1s is the n × n matrix in the upper-left corner of T−1. So we are mainly interested in the n1 × n1 matrix
Y1 in the upper-left corner of X−1s . Note that Y1 is the same as the matrix Sk,1 in (31) when Gk,Gk, Ek in (31) are replaced by
0,G∗, In1 , respectively. Thus

Y1 =

In1 , 0

 
W −


0 0
0 G∗

−1 
In1
0


,

where the matrix W has already been computed in Algorithm 3.

7. Numerical results

In this section we present some numerical results. We use the doubling algorithm to compute the stabilizing solution Xη

of the equation

X + BηX−1Aη = Qη, (37)

where Aη, Bη,Qη are given in (14). If these matrices have the special sparsity structures in (30), then Algorithm 3 is used. To
measure the accuracy of a computed stabilizing solution Xη to (37), we use the relative residual

RResη =
∥Xη + BηX−1η Aη − Qη∥

∥Xη∥ + ∥Aη∥∥Bη∥∥X−1η ∥ + ∥Qη∥
,

where ∥ · ∥ is the spectral norm. To see whether Xη is a good approximation to the weakly stabilizing solution X∗ of the
equation X + C∗X−1C = R, we compute

RRes =
∥Xη + C∗X−1η C − R∥

∥Xη∥ + ∥C∥2∥X−1η ∥ + ∥R∥
. (38)

We also use the QZ algorithm to compute X∗ directly, and the relative residual RRes0 is defined as in (38), with the computed
Xη replaced by the computed X∗.

Example 1. We randomly generate two complex matrices C , D and two complex Hermitian matrices R, P of dimension 6.
Let ϱ be the minimal eigenvalue of P and set

P := P + (2∥D∥ − ϱ)I6.

We verify that P + λD∗ + λ−1D is positive definite for all λ ∈ T. We then compute the stabilizing solution Xη of (37) with
η = 10−4, 10−8, 10−12, respectively, by usingAlgorithm1. In each case, Algorithm1 is stoppedwhenmax{∥Ak+1∥, ∥Bk+1∥} <
10−10 and Qk+1 is taken to be the computed Xη . When η = 0, P0(λ) = λ2C∗ − λR+ C has 2m = 4 eigenvalues on T, given
by

Λ = {−0.9026+ 0.4304i, 0.5687− 0.8226i, 0.9891+ 0.1472i, 0.1960+ 0.9806i}.

By Theorem 7 we determine that

Λs
= {0.5687− 0.8226i, 0.9891+ 0.1472i}

is such that the perturbed eigenvalues of Pη(λ) (η > 0) associated with each λs
∈ Λs are inside T. Then we compute the

weakly stabilizing solution X∗ of (37) by using the invariant subspace corresponding to stable eigenvalues and eigenvalues
in Λs (the QZ algorithm). The numerical results are shown in Table 1.

Table 1
Relative residuals.

η 10−4 10−8 10−12 0

RResη 3.36× 10−16 4.03× 10−15 4.24× 10−15 3.09×10−16

We know that Xη,I =
1
2i (Xη − X∗η ) is positive definite for η > 0 and we know from Theorem 5 that rank(X∗,I) ≤ m = 2.

These are confirmed by the numerical results shown in Table 2, where X0,I = X∗,I .
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Table 2
The eigenvalues of Xη,I .

η The eigenvalues of Xη,I

10−4 2.3555, 1.2676, 5.87× 10−3, 1.89× 10−3, 1.21× 10−3, 1.10× 10−3

10−8 2.3510, 1.2639, 5.91× 10−7, 1.89× 10−7, 1.21× 10−7, 1.10× 10−7

10−12 2.3510, 1.2639, 5.91× 10−11, 1.89× 10−11, 1.21× 10−11, 1.10× 10−11

0 2.3510, 1.2639, 5.41×10−15, 1.61×10−15, −5.12×10−16, −4.18×10−15

Example 2. We consider a semi-infinite Hamiltonian operator of the transverse magnetic (TM) mode for the two-
dimensional photonic crystal of the form [17]

H(u, k⃗, x⃗) = −
1

ε(x⃗)


∇ + ik⃗


·


∇ + ik⃗


u(x⃗)

= −
1

ε(x⃗)


∆+ 2ik⃗ · ∇ − ∥k⃗∥2


u(x⃗), (39)

where k⃗ = (k1, k2) is a wave number in the first Brillouin zone Ω∗ = (−π, π]2, x⃗ ∈ Ω = [−0.5,∞) × [−0.5, 0.5] =
Ω1 ∪Ω2 with

Ω1 =

∞
j=0

Bρ(j),

Ω2 =

∞
j=0

([−0.5+ j, 0.5+ j] × [−0.5, 0.5]) \ Bρ(j)

and Bρ(j) = {(x1, x2)|(x1 − j)2 + x22 ≤ ρ2
}, 0 < ρ < 0.5, and ε(x⃗) is the dielectric function with

ε(x⃗) =

ε1 x⃗ ∈ Ω1,
ε2 x⃗ ∈ Ω2.

See Fig. 1 for an illustration of the domain Ω . By Bloch’s theorem, we assume that the boundary conditions are given by
u(x⃗) = 0, x⃗ ∈ {(−0.5, x2)|x2 ∈ [−0.5, 0.5]},
u(x1, 0.5) = eik2u(x1,−0.5), x1 ∈ [−0.5,∞].

Fig. 1. The domain Ω = Ω1 ∪Ω2 .

We use the classical five-point central finite difference method to discretize the operator (39) on the uniform grid points
in Ω with mesh size h = 1/n. So n is the number of grid points on the x2 axis in [−0.5, 0.5). Let Tn be the tridiagonal matrix
of dimension n with 4 on the main diagonal and −1 on the two adjacent diagonals and let Dn be the tridiagonal matrix of
dimension nwith 0 on the main diagonal and−1 and 1 on the super-diagonal and the sub-diagonal, respectively. Let

Φ =
1
h2

(Tn − δe1e⊤n − δ̄ene⊤1 )−
ik2
h

(Dn + δe1e⊤n − δ̄ene⊤1 )+ (k21 + k22)In

and

Ψ =


−

1
h2
−

ik1
h


In,

where δ = eik2 and ej denotes the jth column vector of the identitymatrix. Then the systemHamiltonianH from the operator
(39) is a semi-infinite block tridiagonal matrix with Hb on the main diagonal and Hbb and H∗bb on the super-diagonal and the
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Fig. 2. RResη , RRes and the number of iterations of Algorithm 3.

sub-diagonal, respectively. The block matrices Hb and Hbb are of the forms

Hb =


H1,1 H1,2

H∗1,2 H2,2
. . .

. . .
. . . Hn−1,n

H∗n−1,n Hn,n

 , Hbb =


0 0

Hn,n+1 0


∈ Cn2×n2 ,

where

Hj,j = ΓjΦΓj, Hj,j+1 = ΓjΨ Γj+1, j = 1, . . . , n,

and Γj = diag(Υ (:, j)), Υ = [Υij] ∈ Rn×n with
Υij =


1
ε1

, (−0.5+ jh, 0.5− ih) ∈ Bρ(0),

Υij =


1
ε2

, (−0.5+ jh, 0.5− ih) ∉ Bρ(0).

We now apply the Green’s function approach to the system Hamiltonian H with the overlap matrix being the identity. So
we need to determine the n2

× n2 block (particularly the n × n block) in the upper-left corner of the inverse of the matrix
(3) (now with Sb = I and Sbb = 0). This is done by solving the matrix equation (37). The matrices Aη, Bη, Qη ∈ Cn2×n2 in
(37) now have the structures in (30), with nj = p = n and

Kj,j = zIn − Hj,j, Kj,j+1 = −Hj,j+1, Kj+1,j = −H∗j,j+1, j = 1, . . . , n,

where z = E + iη with E ∈ R and 0 ≤ η ≪ 1. We remark that the matrix equation here is a special case of (1) with P = I ,
D = 0, C = Aη = B∗η and R = E I − Hb.

We now use Algorithm 3 to compute the solution Xη of (37). In our test we take n = 50, ρ = 0.3, ε1 = 1, ε2 = 10
and (k1, k2) = (0.5, 0.7). We divide [0, 15] into κ subintervals using κ + 1 equally spaced nodes Ei, i = 0, 1, . . . , κ .
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Fig. 3. The number of eigenvalues on T and interested energy interval between 0 and 15.

We now choose κ = 500 and run Algorithm 3 with η = 10−8 and τ = 10−8 for each Ei. In Fig. 2, we plot the relative
residuals (RResη, RRes) and the number of iterations of Algorithm 3. We see that very good approximations to Xη and X∗ are
obtained in no more than 33 iterations. We also determine the interested energy interval ∆ =

n
i=1 ∆i, where ∆i are given

in Theorem 6. The energy values in ∆ are precisely those for which the pencil (M, L), where M and L are given in (24), has
eigenvalues on T. In Fig. 3, we plot the number of eigenvalues of (M, L) on T and∆


[0, 15]. For this example, the number

of such eigenvalues for E ∈ [0, 15] is 0, 2, or 4. For some larger values of E , we find the number of such eigenvalues to be
6, which turns out to be the maximal number for any energy value. As expected from our convergence results, Algorithm 3
requires more iterations when (M, L) has unimodular eigenvalues, but it does not matter too much whether the actual
number of unimodular eigenvalues is 2, 4, or any other positive even integer.

8. Conclusion

We have introduced a class of nonlinear matrix equations that is wider than those studied earlier in the literature. The
main motivation for studying this wider class is from the Green’s function approach for treating quantum transport in nano
devices. We have characterized the special solution of practical interest. We have shown how the doubling algorithm and
subspace methods like the QZ algorithm can be used to find good approximations to the required solution. We have also
shown how some special sparsity structures in the coefficientmatrices of the equation can be exploited to drastically reduce
the complexity of the doubling algorithm for computing the desired solution. Thematrix equation from the nano application
involves a parameter. At present it is not clear whether the solution computed for one value of the parameter can be used
to reduce the computational work of some iterative methods in computing the solution for a nearby value of the parameter,
with guaranteed convergence. This could be a topic for further research.
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