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ABSTRACT

A method constructed on the basis of the Rayleigh-Ritz method and the first Rayleigh integral is pre-
sented for the vibro-acoustic analysis of elastically restrained shear deformable stiffened rectangular
orthotropic plates. In the proposed method, the displacement fields of the plate and stiffeners are formu-
lated on the basis of the first-order shear deformation theory. The theoretical sound pressure level (SPL)
curve of the plate is constructed using the responses at different excitation frequencies and the first Ray-
leigh integral. The experimental SPL curve of an elastically restrained stiffened orthotropic plate was
measured to verify the accuracy of the theoretical SPL curve of the plate. The effects of Young's modulus
ratio E;/E; on the sound radiation characteristics of elastically restrained stiffened orthotropic plate with
different aspect ratios are studied using the proposed method. It has been shown that the effects of

Young’s modulus ratio become more prominent as the plate aspect ratio gets larger.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Because of their many advantages, composite plates have been
used in different industries such as aero-space, aircraft, automo-
bile, and audio industries to fabricate structures or sound radiators
of high performance and reliability. In general, these plates are
flexibly restrained at their edges or connected at their edges to
members which can be treated as elastic restraints. Since the vibra-
tion of a plate is susceptible to sound radiation, the vibro-acoustic
behaviors of plate structures have thus become an important topic
of research. Recently, many papers [1-7] have been devoted to the
vibro-acoustics of plates with regular boundary conditions sub-
jected to various loads. In order to increase the stiffness of
thin-walled structures without obvious increases in their weights,
stiffeners are often used to reinforce the structures in some specif-
ically chosen patterns. Because of their broad applications, the
mechanical performance analysis of stiffened structures has be-
come an important topic of research [8-16]. In particular, the
vibro-acoustics of stiffened plates has been studied by a number
of researchers [11-16]. Since, in practical applications, elastically
restrained plates are important structural parts, a number of
researchers have formulated some general methods for the vibro-
acoustic analysis of elastically restrained rectangular thin isotropic
plates [17-22]. As for the vibro-acoustics of elastically restrained
stiffened composite plates, though important, not much attention
has been drawn in this area.
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In this paper, the vibro-acoustics, especially, the SPL curves of
elastically restrained shear deformable stiffened orthotropic plates
are studied via both theoretical and experimental approaches. The
Rayleigh—-Ritz method together with the first Rayleigh integral is
used to study the vibro-acoustic behaviors and construct the SPL
curves of elastically restrained shear deformable stiffened ortho-
tropic plates. The accuracy of the proposed method will be verified
by the experimental results obtained in this paper.

2. Plate vibration analysis

The stiffened rectangular orthotropic plate of size a (length) x b
(width) xh, (thickness) is elastically restrained along the plate
periphery by distributed springs with translational and rotational
spring constant intensities Ki; and Kg;, respectively, and at the cen-
ter by a spring of spring constant K. as shown in Fig. 1. The x-y
plane of the reference coordinate is located at the mid-plane of
the plate. It is noted that the plate is stiffened asymmetrically in
x and y directions by a number of beams on the top and bottom
surfaces of the plate. Herein, the displacements of the plate and
stiffeners are modeled based on the first-order shear deformation
theory. The displacement field of the plate is expressed as

Up = Uop(X,y, 1) + Zp0xp (X, Y, 1)
Z/p = Vop(X;J’vt)"‘Zppr(XvJ/:t) (1)
WP = WOP(X1y7 t)

where uj, v, and wy, are the displacements in x, y, and z directions,
respectively; Uop, Uop, Wop are mid-plane displacements; 0y, 0y, are
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Fig. 1. Elastically restrained stiffened plate.

shear rotations. It is assumed that both the plate and stiffeners have Qy — E,
same shear rotation. The strain-displacement relations of the plate 271 V12021
are expressed as
P Quq = G23 (4)
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2
+ Q551<Ph130)2(p + 204 i + <0WGP>

ox OX
5 ow, MWop 2
+ QuKyhy |65, + 20y, 8;" + 8;" dx dy (6)

where K, is shear correction factor.
The kinetic energy, Tp, of the plate is

1 0
szj/‘/Ppp(u§+v§+w§)dvp (7)

where p, is plate mass density. In view of Eq. (1), the above equa-
tion can be rewritten as

1 P oup\2 1 h (90, 0o\ 2
ez, /ﬁv{”ﬂ(ar) +113 (7 ) (%)

h3 A 2
0 - <{90yp> +hy (C)gl/t()P) :| dx dy (8)

Regarding the stiffeners, the displacement field of a typical
stiffener, for instance, a bottom stiffener oriented in x-direction is:

hy
Up, = Ugp(X, ) +=- 5 P 0o (X, ) + Zp0yp (X, £)

- ©
Wp, = Wop(X, )

where up, 15, W, are stiffener displacements. Here the lateral dis-
placement of the stiffener is neglected and treated as zero. The
strains and strain energy of the stiffener are given, respectively, as

U Ouy | hy 96y 00y
BT ox T2 ox P ox
& =0
& =0
(10)

yyz:0

_ou  ow OWop
T = g T T O T
yxy:
and

Mgp\> 1. 5 0p\> 1 .3 a@x,,

Ub: "'b |: Ephpty ( ) +§Ebhphbtb<8x +€Ebhbfb

1 Oy (00x 00xp 1 8u0,, 00xp
+2Ebhpfbhb< x )< x ) + ( X thbhb o

dx (11)

+ - Ebh tbh2<89;p) +%Kbitbhb9 +Kbitbhb0 (

1 MWop
+= 5 Kbitbhb ( ox )

where E, is stiffener Young’s modulus, L, length, h;, height, t, thick-
ness, G, shear modulus, and K}, shear correction factor. Here, it is as-
sumed that K, = K, = 0.85. The kinetic energy of the stiffener is

Doy _p Ny 005\° (W)
T, = 2/ {( ot Tt + ot avy (12)

where p,, is stiffener mass density.
The strain energy, Us, stored in the elastic restraints is written
as

K2 5

dy +22 [ w Kis 2
0

dy+ w
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2 Jo

2 /) dx

y=0
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y=

The total strain energy U and total kinetic energy T of the elas-
tically restrained stiffened plate are written, respectively, as

N, Ne

U=Uy+Y Ui+ > Up+Us (14)
i1 i1

and
N, Ne

T=T,+ ZTbi + ZTbi (15)
p p

where N,, N; are numbers of bottom and top stiffeners, respectively.

The Rayleigh-Ritz method is used to study the free vibration of
the elastically restrained stiffened plate. The displacements of the
plate are expressed as

up(x,y,t) = U(x,y) sin wt

vo(x,y,t) = V(x,y)sin wt

wo(x,y,t) = W(x,y) sin wt (16)
Oc(x,y,t) = Ok(x,y) sin wt

Oy(x,y,t) = Oy(x,y) sin wt

with

Z Z Cygil& (17)

i= 1+C] 1+D

M N
O (Em =32 > Citl ;)

i=1+1j=14J

P Q
0/ &m = 3. > Cit(Oein)

i=1+Mj=1+N

where G; are unknown constants. Legendre’s polynomials are used
to represent the characteristic functions, { and V. Let & =2x/a — 1
and #n =2y/b — 1. The normalized characteristic functions, for in-
stance, (&), are given as
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¢1 (é) =1,
(18)
(O =¢ -1<¢é<1
forn > 3,
$n(S) = [(2n = 3)E x ¢y 1(&) — (= 2) x Py »(O)]/(N—1)
with the satisfaction of the following orthogonality condition:
1 0, ifn=m
[ au@omerac - { . (19)
-1 2/2n—-1, ifn=m

Extremization of the functional IT=T — U gives the following
eigenvalue problem.

K- »*M|C=0 (20)

where K and M are structural stiffness and mass matrices; w is cir-
cular frequency. The solution of the above eigenvalue problem can
lead to the determination of the natural frequencies and mode
shapes of the stiffened plate. The terms in K and M are listed in
the appendix.

3. Plate sound radiation analysis

The modal characteristics obtained in the previous section can
be used to study the force vibration and sound radiation of the
elastically restrained stiffened plate. For a sound radiation panel
excited by an electro-magnetic transducer with a cylindrical voice
coil, the harmonic driving force F(t) = F,sinwt is distributed uni-
formly around the periphery of the voice coil.

The equations of motion for the sound radiation plate subjected
to forced vibration can be expressed as

MC +DC + KC=F (21)

where F is the force vector containing the following terms

F 2m 2rc 2rc .
Fon = e /0 Om (T cos (9) @, (T cos 6) do sin wt,

~ - — ~ (22)
form=1+C,...,I; n=1+D,....]
= 0 for other m,n
The damping matrix D is
[D] = a[M] + S[K] (23)

with o = éw, B =2&/w where ¢ is damping ratio at the first resonant
frequency of the elastically restrained plate. Eq. (23) can be solved
using the modal analysis method.

Fig. 2. Sound pressure measurement of baffled plate.

Referring to the baffled plate with area S shown in Fig. 2, if the
effects of air loading on the plate vibration are neglected, the sound
pressure p(r,t) resulting from the vibration of the plate can be
determined using the first Rayleigh integral.

AS;

p(r t) = izpo ZAie)'(ZUJH{}i,kRi) (24)
2n 4 R

1

where py is air density; k is wave number (=w/c) with ¢ being speed
of sound; r, is the distance between the plate center and the point
of measurement; R; = |r, — ;| the distance between the observation
point and the position of the surface element at r;; 0 is phase angle;
j=+/—1 . For air at 20°C and standard atmospheric pressure,
po=1.2kg/m> and c = 344 m/s. The SPL produced by the plate is cal-
culated as

SPL = 20log,, <#T05> dB (25)
with

1 . 12
Pons = [T /o) dr} (26)

It is noted that both Egs. (24) and (26) are solved numerically.

4. Experimental investigation

The sound radiation characteristics of the plate of size
26.6 mm x 20.8 mm x 1 mm, peripherally suspended by a flexible
surround, and excited at the plate center by an electro-magnetic
type exciter of 8 Q impedance were investigated experimentally.
On the top surface, the plate was stiffened by four beams in two
different stiffening patterns, namely, Types I and II. For Type I

Table 1
Properties of parts of elastically restrained stiffened plate.
Material constants Plate Surround Stiffener
Eq (GPa) 3.7 70
E, (GPa) 0.055
Vi2 0.03 0.33
Va3 0.2
Vi3 0.03
G2 (GPa) 0.05
Ga3 (GPa) 0.05/6
Gi3 (GPa) 0.05
p (kg/m?3) 300 2790
Kc (N/m?) 1654.4
K; (N/m?) 4744.7
Kg (N) 0
| A
1 1
SPL spectrum : :
1 1
1 1
—
1 Mic. 1
1 1 !
Il | 1 1
=1 . J | 1
= = E ! !
7 T N -

LMS system
Composite panel

Fig. 3. Sound measurement apparatus.
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stiffening pattern, the end points of the stiffeners of height (h;;)
2.1 mm and thickness (t;) 2.5 mm were located at [6.25,3.25],
[-6.25,3.25], [6.25,—3.25], and [-6.25,—3.25]mm, respectively.
For Type II stiffening pattern, the end points of the stiffeners of
height 1.33mm and thickness 2.5mm were Ilocated at
[8.25,6.75], [-8.25,6.75], [8.25,—6.75], and [-8.25,—6.75] mm,
respectively. The voice coil of the exciter was adhesively attached
to the bottom surface of the plate. The properties of the voice coil
of dimensions 9.35 (inner radius) x 6 (height h;,) x 0.05 (thickness
tp) mMm are given as

E=0.129GPa, v=033, p=4403Kg/m’ (27)

The properties of the plate, spring constant intensity of the sur-
round (elastic restraint), and stiffeners are listed in Table 1. The
experimental setup for measuring the sound radiation of the plate
is shown schematically in Fig. 3 and the test was conducted in a
semi-anechoic chamber. The sound pressure generated from the
plate using one Watt power was measured by a microphone placed
at the location one meter directly from the front surface of the
plate. The sound pressure signals were then processed by LMS
[24] to produce the SPL curve of the plate.

5. Results and discussions

The proposed method is first applied to study the free vibra-
tion of the elastically restrained orthotropic plate (aspect ratio
a/b=1.25) which has been tested. In this study, the stiffeners
on the top surface of the plate are removed from the plate. On
the other hand, the voice coil is modeled by four stiffeners with
their end points located, respectively, at [7.34,7.34],
[-7.34,7.34], [7.34,-7.34], and [-7.34,-7.34] mm. It is noted
that the perimeter of the voice coil is the same as the total length
of the four beams. The convergence test has shown that the use of
10 terms of the characteristic functions for each displacement
components can produce acceptable results. The first five natural
frequencies and mode shapes of the plate stiffened by the voice
coil are then determined using the present method. For compar-
ison purpose, the finite element code ANSYS [25] is also used to
determine the natural frequencies and mode shapes of the plate.
In the finite element model, the element type Shell 99 is used to
model the plate as well as the cylindrical voice coil. The results
obtained using the present method and ANSYS are listed in
Table 2 for comparison. It is noted that the present method and
ANSYS have produced results in fairly good agreement and the
maximum frequency difference between the two sets of results
is less than 5%.

Next consider the effects of stiffening pattern on the sound
radiation characteristics of the elastically restrained stiffened
plate in the frequency range of 20 Hz-20 kHz. The theoretical
SPL curves predicted using the present method are in comparison
with the experimental ones for the plate with different stiffening
patterns as shown in Figs. 4 and 5. It is noted that the theoretical
and experimental SPL curves are in fairly good agreement. The
discrepancies between the theoretical and experimental SPL
curves, especially in the frequency range from 2 k to 20 kHz, are
likely induced by the uncertainties involved in material damping,
excitation force, imperfection of the semi-anechoic chamber, and
material homogeneity of the orthotropic plate. The SPL curve of
Type I stiffening pattern has two major SPL dips at around the
frequencies of 1 kHz where the SPL drop is around 10dB and
2 kHz where the SPL drop is around 7 dB. In general, such SPL
dips are undesirable in the design of a high quality sound radia-
tor. As for Type II stiffening pattern, except in the high frequency
range, for instance, beyond 5 kHz, the SPL curve is relatively
smooth comparing to that of Type I. The present method is then

Table 2

Modal characteristics of elastically restrained orthotropic plate.

Mode number

Method

Mode shape

Present

412.2 426.9 873.4 2595

292.5

Natural frequency

Mode shape

FEM

P,
S

2716

393.874 410.883

280.834

Natural frequency

4.65 3.90 1.15 4.46

4.15

Difference (%)
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Fig. 4. Theoretical and experimental SPL curves of plate with Type I stiffening pattern.
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Fig. 5. Theoretical and experimental SPL curves of plate with Type II stiffening pattern.
used to study the effects of top stiffener’s thickness on the SPL [9.25,7.75], [-9.25,7.75], [9.25,-7.75], and [-9.25,-7.75],

curve of the plate with Type II stiffening pattern. The SPL curves
of the plate for different top stiffener heights are shown in Fig. 6.
It is noted that as expected, when the stiffener height increases,
the sensitivity of the SPL curve will decrease. The decrease of
SPL curve is mainly due to the increase in the plate weight. The
increase in the stiffener’s moment of inertia, however, has negli-
gible effects on the shape of the SPL curve.

Finally, the effects of the ratio of the plate Young’s moduli
(E1/E2) on the SPL curve of the stiffened plate are studied by
means of a number of numerical examples. Now the end points
of the top stiffeners for the plate of a/b=1.25 are located at

respectively. The height and thickness of the stiffeners are
1.17 mm and 2.5 mm, respectively. Setting E,=0.055GPa, the
SPL curves for Eq/E; =1, 2, and 3 are shown in Fig. 7 for compar-
ison. On the other hand, setting E; = 3.7 GPa, the SPL curves for
Ei/[E;=1, 1/2, and 1/3 are shown in Fig. 8 for comparison. It is
noted that for both cases, the small variations of the SPL curves
in the high frequency range for these cases have demonstrated
the fact that E,/E, has negligible effects on the sound radiation
characteristics of the plate with a/b = 1.25 when the top stiffeners
are at the optimal locations. To study the effects of a/b on the
sound radiation characteristics of orthotropic plates, the present
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Fig. 6. SPL curves for Type II stiffening pattern with different top stiffener thicknesses (a/b = 1.25).
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stiffened orthotropic plates
b=26 mm and h,=1.3 mm. The voice coil of radius 12.7 mm is

modeled as
[20.03,20.03],

four

stiffeners
[-20.03,20.03],
—20.03] mm. Setting E, = 0.055 GPa, the SPL curves for E/E; =1,
1/2, and 1/3 are shown in Fig. 9 for comparison. It is noted that
the first major SPL dip at 850 Hz for E;/E; = 1 moves to lower fre-
quency range as E;/E; becomes less than 1. The frequency shift of
the first major SPL dip is mainly due to the stiffness decrease in
the x-direction. Since the mode shape for the first major SPL dip

of a/b=292 with a=76mm,

50 100 200 500 1K 2K 5K

Fig. 7. SPL curves of stiffened plate with different E;/E(a/b = 1.25, E; = 0.055 GPa).

with end points located at 6. Conclusion

[20.03,-20.03], and [-20.03,

10K

20K

remains the same, the mere decrease or increase in E;/E, cannot
completely remove the SPL dip.

A method based on the Rayleigh-Ritz method and the Rayleigh
first integral has been developed for the vibro-acoustic analysis of
elastically restrained stiffened rectangular plates. The accuracy of
the proposed method in predicting the SPL curve of an elastically
restrained stiffened orthotropic plate of aspect ratio a/b=1.25
has been verified by the measured SPL curve. The effects of Young’s
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modulus ratio E;/E, and aspect ratio a/b on the SPL curves of elas- Appendix A
tically restrained stiffened rectangular orthotropic plates have
been studied using the proposed method. It has been shown that 0 12 13 1
the effects of Young’s modulus ratio on the SPL curve of the plate Kﬂ K22 K23 (;4 25 M 022 0 0 025
of aspect ratio a/b = 1.25 is negligible. On the contrary, the decrease K™ K™ K™ K™ K " 0 M 0 0 M
in Young’s modulus ratio can move the frequency of the mid-fre- KV KZ KB KK -0 0 0 M2 M0
quency range dip to lower frequency range for the plate of aspect 0 K*¥® K® K* Kk*® 0 0 M2 M* o0
ratio a/b = 2.92. 0 K2 K K* K*® 0 M2 0 0 M®
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