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Abstract:

The solution describing the wellbore flow rate in a constant-head test integrated with an optimization approach is commonly used
to analyze observed wellbore flow-rate data for estimating the hydrogeological parameters of low-permeability aquifers. To our
knowledge, the wellbore flow-rate solution for the constant-head test in a two-zone finite-extent confined aquifer has never been
reported so far in the literature. This article is first to develop a mathematical model for describing the head distribution in the
two-zone aquifer. The Laplace domain solutions for the head distributions and wellbore flow rate in a two-zone finite confined
aquifer are derived using the Laplace transform, and their corresponding time domain solutions are then obtained using the
Bromwich integral method and residue theorem. These new solutions are expressed in terms of an infinite series with Bessel
functions and not straightforward to calculate numerically. A large-time solution for the wellbore flow rate is therefore developed
by employing the relationship of small Laplace variable versus large time variable and L’Hospital’s rule. The result shows that
the large-time solution is identical to the steady-state solution obtained after applying the Tauberian theorem into the Laplace
domain solution. This large-time solution can reduce to the Thiem equation in the case of no skin. Finally, the newly developed
solution is used to investigate the effects of outer boundary distance and conductivity ratio on the wellbore flow rate. Copyright
© 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

The observed data of wellbore flow rate from a constant-
head test is commonly analyzed to determine the aquifer
hydrogeological parameters of low-permeability aquifers.
The analysis of wellbore flow rate data usually relies upon
an approach which includes the analytical solution of the
wellbore flow rate coupled with an optimization scheme
(see, e.g. Yeh et al., 2007a,b; Yeh and Chen, 2007). A
number of studies have been presented the wellbore flow-
rate models for describing field constant-head tests (e.g.
Mishra and Guyonnet, 1992; Markle et al., 1995; Chen and
Chang, 2002). Interestingly, the transient solution for the
wellbore flow rate expressed in slightly different formats
also appears in a variety of disciplines such as heat transfer
(Carslaw and Jaeger, 1959) and electrochemistry (e.g. Aoki
et al., 1985; Szabo et al., 1987; Fang et al., 2009; Britz et al.
2010; Bieniasz, 2011). Based on the heat conduction
solution of Smith (1937), Jacob and Lohman (1952)
presented an analytical expression for the wellbore flow
rate to a constant-head test in an infinite aquifer. Moreover,
the transmissivity and storativity were determined by
plotting the ratio of flow rate to the constant drawdown at
the test well against time to squared well radius. Later,
Carslaw and Jaeger provided a formula for the heat flux
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across the inner boundary in a radial heat conduction
problem (1959, p. 336, Equation (8)) which can also be used
to describe the groundwater flow problems of the constant-
head test. Van Everdingen and Hurst (1949) developed the
transient pressure head and wellbore flow rate solutions for
the constant-flux and constant-head tests in finite and
infinite confined aquifers without considering the skin zone.
For the well surrounded by a skin, Uraiet and Raghavan
(1980) examined the transient flow rate at a well and
pressure behavior in finite and infinite aquifers when the test
well maintains at a constant drawdown. They demonstrated
the concepts of the infinitesimally thin skin and effective
wellbore radius are applicable to describe the skin region
around a well producing at constant pressure. In addition,
they also plotted the simulation results obtained from a finite
differencemodel to demonstrate the effects of skin thickness
and permeability ratio between the skin and formation zones
on the wellbore flow rate. Yang andYeh (2002) provided an
analytical solution of the wellbore flow rate for the constant-
head test performed in an infinite-extent aquifer with
considering the effects of the finite well radius and skin
zone. They further developed the transient analytical
solution of the hydraulic head distributions in the patch
and outer regions for the constant-head test in a patchy
aquifer of infinite extent (Yang and Yeh, 2006). To
our knowledge, the transient analytical solution for the
head distribution or the wellbore flow rate in a two-zone
finite-extent aquifer has never been reported so far in
the literature.
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The objective of this article is first to develop a
mathematical model to describe the groundwater flow in
the skin and formation zones for the constant-head test in
two-zone finite confined aquifers. The head solution of
the model is obtained by applying the Laplace transform
technique, Bromwich integral method, and residue
theorem. The wellbore flow rate solution is obtained by
first applying Darcy’s law to the Laplace-domain head
solution in the skin zone and then transforming the result
to the time domain using the Bromwich integral method
and residue theorem. In addition, a large-time solution for
the wellbore flow rate is also developed by employing the
relationship of small Laplace-domain variable p with a
large time-domain variable t and L’Hospital’s rule. The
result of large-time wellbore flow happens to be the
steady-state solution which can reduce to the Thiem
equation if neglecting the skin effect. Finally, the
dimensionless forms of the solutions for hydraulic head
and well bore flow rate are also presented for practical
uses or engineering applications. The wellbore flow-rate
solution is also used to study the effects of boundary
distance and conductivity ratio on the estimated flow rate
for confined aquifers of finite extent.
The solutions for the head distribution and wellbore flow

rate developed herein are mainly for a two-zone aquifer
which can also be called as patchy aquifer (Baker and
Herbert, 1988), nonuniform aquifer (Butler, 1988), com-
posite formation (Novakowski, 1989), or aquifer with a skin
zone (Yang and Yeh, 2002). It is well recognized that the
groundwater flow is analogous to the heat flow. Therefore,
the solutions developed in this paper can naturally be
regarded as an extension of the work in Carslaw and Jaeger
(1959, p. 333, Equation (10) for the case thatk1 ¼ k’1= 0) for
heat flow in a composite hollow cylinder.

MATHEMATICAL DEVELOPMENT

Mathematical model for a two-zone confined aquifer

The assumptions for the mathematical model describing
the head distribution for the constant-head test in a two-zone
Figure 1. Schematic diagram of the consta

Copyright © 2011 John Wiley & Sons, Ltd.
confined aquifer are: (1) the test well is of a finite radius and
fully penetrates the aquifer thickness; (2) the well has a
finite-thickness skin zone with different hydrogeological
properties from the formation zone; (3) the aquifer is
homogeneous in each zone and bounded by a finite outer
boundary in the formation zone; and (4) the water level in
the test well is maintained constant.
Figure 1 shows the schematic diagram of the two-zone

aquifer. The governing equations describing the hydraulic
head h(r, t) for the skin zone and formation zone are
(Yang and Yeh, 2002), respectively,

@2h1
@r2

þ 1
r

@h1
@r

¼ S1
T1

@h1
@t

rw < r < r1 (1)

and

@2h2
@r2

þ 1
r

@h2
@r

¼ S2
T2

@h2
@t

r1 < r < R (2)

where subscripts 1 and 2 denote the skin and formation
zones, respectively, the variable r is the radial distance from
the central line of the test well, rw is the well radius, r1 is the
radial distance from the central line to the outer boundary of
the skin zone, R is the distance from the central line to the
outer boundary of the formation zone, t is the time, S is the
storage coefficient, and T is the transmissivity.
The initial hydraulic head of the aquifer is considered

to be zero. The initial head conditions for Equations (1)
and (2) are therefore

h1 r; 0ð Þ ¼ h2 r; 0ð Þ ¼ 0 (3)

The hydraulic head is assumed to equal zero at the
outer boundary. On the other hand, a constant well water
level (or hydraulic head) hw is maintained at the wellbore.
Thus, the hydraulic heads at the outer and inner
boundaries are given, respectively, as

h2 R; tð Þ ¼ 0 (4)
nt-head test in a finite confined aquifer
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and

h1 rw; tð Þ ¼ hw (5)

The continuity conditions for the hydraulic head and
flow rate at the interface between the skin and formation
zones require, respectively,

h1 r1; tð Þ ¼ h2 r1; tð Þ (6)

and

T1
@h1 r1; tð Þ

@r
¼ T2

@h2 r1; tð Þ
@r

(7)

The Laplace-domain solutions for head distribution and
wellbore flow rate

The Laplace-domain solution for head distributions in the
skin and formation zones obtained by applying the Laplace
Transform to Equations (1) and (2) with Equations (3–7) are

�h1 ¼ 1
p

hw Φ1I0 q1rð Þ�Φ2K0 q1rð Þð Þ
Φ1I0 q1rwð Þ �Φ2K0 q1rwð Þ

� �
(8)

and

�h2 ¼ hw
p

Φ1I0 q1r1ð Þ �Φ2K0 q1r1ð Þ
Φ1I0 q1rwð Þ �Φ2K0 q1rwð Þ½ �

� I0 q2Rð ÞK0 q2rð Þ � K0 q2Rð ÞI0 q2rð Þ
I0 q2Rð ÞK0 q2r1ð Þ � I0 q2r1ð ÞK0 q2Rð Þ

� �
(9)

where p is the Laplace variable, q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pS1=T1

p
, q2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pS2=T2
p

, I0 and K0 are the modified Bessel functions of
the first and second kinds of order zero, respectively, and I1
and K1 are the modified Bessel functions of the first and
second kinds of order first, respectively. The variables Φ1

and Φ2 in Equations (8) and (9) are defined as
h1ðr; tÞ ¼ hw
lnðr1=rÞ þ T1=T2 ln R=r1ð Þ
lnðr1=rwÞ þ T1=T2 ln R=r1ð Þ þ p

X1
n¼1

J0 að½
xn2 zAð

h
8<
:

h2 r; tð Þ ¼ hw

(
T1=T2 ln R=rð Þ

lnðr1=rwÞ þ T1=T2 ln R=r1ð Þ

þp
X1
n¼1

J0 anrwð ÞY0 anr1ð Þ � Y0 anrwð ÞJ0 anr1ð Þ½ � � ½
xn2 zAnð Þ2 þ B2

n þ z BnCnðð
hn
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Φ1 ¼ f

ffiffiffiffiffiffiffiffiffi
S2T2
S1T1

r
K0 q1r1ð ÞK0 q2r1ð Þ�K1 q1r1ð ÞK0 q2r1ð Þ

(10)

and

Φ2 ¼ f

ffiffiffiffiffiffiffiffiffi
S2T2
S1T1

r
I0 q1r1ð ÞK0 q2r1ð ÞþI1 q1r1ð ÞK0 q2r1ð Þ (11)

with

f ¼ I0 q2Rð ÞK1 q2r1ð Þ þ I1 q2r1ð ÞK0 q2Rð Þ
I0 q2Rð ÞK0 q2r1ð Þ � I0 q2r1ð ÞK0 q2Rð Þ (12)

Applying Darcy’s law to Equation (8) and setting r= rw,
the Laplace-domain solution for the wellbore flow rate can
then be obtained as

�Q rwð Þ ¼ 2prwT1
q1hw
p

Φ1I1 q1rwð Þ þΦ2K1 q1rwð Þ
Φ2K0 q1rwð Þ �Φ1I0 q1rwð Þ

� �
(13)

If the outer boundary distance approaches infinity, i.e.
R!1, Equation (12) becomes f=K1(q2r1)/K0(q2r1).
Equations (10) and (11) can then reduce to the correspond-
ing equations given in Yang and Yeh (2002, Equations (10)
and (11)). Equations (8) and (9) for the head distribution
therefore reduce to the solutions represented in Yang and
Yeh (2002, Equations (8) and (9)) for the infinite aquifer. In
addition, Equation (13) for the wellbore flow rate reduces to
the one given inYang andYeh (2002, Equation (12)) for the
infinite aquifer.

Time-domain solution

The time-domain solution for the head distributions in
the skin and formation zones can be obtained by applying
the Bromwich integral method and residue theorem to
Equations (8) and (9). The detailed derivation is shown in
Appendix A, and the results are
nrwÞY0 anrð Þ � Y0 anrwð ÞJ0 anrð Þ�exp -a2ntT1=S1
� �

nÞ2 þ B2
n þ z BnCn þ AnDnð Þ þ AnBn=anð Þ=r1

i
� 1

9=
; (14)

Y0 xanRð ÞJ0 xanrð Þ � Y0 xanrð ÞJ0 xanRð Þ�exp -a2ntT1=S1
� �

þ AnDnÞ þ AnBn=anÞ=r1
i
� 1

o
� �Bnð Þ

)

(15)
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These two solutions are significantly different from the
solutions presented in Yang and Yeh (2002, Equations

(12) and (13)) which are in terms of integrals with lower
and upper limits from zone to infinity for the two-zone
aquifer of infinite extent. In addition, Equations (14) and
(15) are developed by the Bromwich integral along a
contour of infinite poles and residue theorem, while the
solutions of Yang and Yeh (2002) were obtained based on
the Bromwich integral with a single branch point in the
integrand. The transient solution for the wellbore flow
rate can also be developed in a similar manner to the one
presented in Appendix A when transforming Equation
(13) into the time domain. The result is
Q rw; tð Þ ¼ 2phwT1
1

lnðr1=rwÞ þ T1=T2 ln R=r1ð Þ þ 2
X1
n¼1

exp -a2ntT1=S1
� �

xn2 zAnð Þ2 þ B2
n þ z BnCn þ AnDnð Þ þ AnBn=anð Þ=r1

h i
� 1

8<
:

9=
;
(16)
with

Bn ¼
�J0 anrwð Þ

�zAnJ0 anr1ð Þ � BnJ1 anr1ð Þ (17)

An ¼ J1 xanr1ð ÞY0 xanRð Þ � J0 xanRð ÞY1 xanr1ð Þ (18)

Bn ¼ J0 xanRð ÞY0 xanr1ð Þ � J0 xanr1ð ÞY0 xanRð Þ (19)

Cn ¼ �xR½J1 xanr1ð ÞY1 xanRð Þ � J1 xanRð ÞY1 xanr1ð Þ�
� xr1Bn � An

an
(20)

Dn ¼ xR J1 xanRð ÞY0 xanr1ð Þ � J0 xanr1ð ÞY1 xanRð Þ½ �
�xr1An

(21)

where J0 and Y0 are the Bessel functions of the first and
second kinds of order zero, respectively, J1 and Y1 are the
Bessel functions of the first and second kinds of order
first, respectively, x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1S2=T2S1

p
, z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2T2=S1T1

p
, and an

are the roots of

J1 xar1ð ÞY0 xaRð Þ � J0 xaRð ÞY1 xar1ð Þ½ �
�z Y0 arwð ÞJ0 ar1ð Þ � Y0 ar1ð ÞJ0 arwð Þ½ �
þ J0 xar1ð ÞY0 xaRð Þ � J0 xaRð ÞY0 xar1ð Þ½ �
� Y1 ar1ð ÞJ0 arwð Þ � J1 ar1ð ÞY0 arwð Þ½ � ¼ 0

(22)

By neglecting the presence of skin zone, Equation (16)
reduces to
Q rw; tð Þ ¼ 2phwT
1

lnðR=rwÞ þ 2
X1
n¼

(

Copyright © 2011 John Wiley & Sons, Ltd.
where an are the roots of J0(arw)Y0(aR)�Y0(arw)J0
(aR) = 0. Equation (23) is exactly the same as the formula
represented in Wang and Yeh (2008, Equation (5)).

The large-time wellbore flow-rate solution in a finite
confined aquifer

The approximations of I0(x) ~ 1/Γ(1), I1(x) ~ x/2Γ(2), K0

(x) ~� ln(x), and K1(x) ~ 1/x can be made when the
arguments of Bessel functions are small (Abramowitz and
Stegun, 1979, p. 375). The Laplace domain solution for the
large-time wellbore flow rate can therefore be obtained from
Equation (13) after employing the relationship of small
p versus large t (Yeh andWang, 2007) and L’Hospital’s rule
as

�Q rw; pð Þ ¼ 2pT1hw
p

�1

ln rw
r1

� �
þ T1

T2
ln R

r1

� � (24)

where the negative sign in Equation (24) represents
withdrawal in the test well.
The large-time solution for the wellbore flow rate is

then obtained after taking the inverse Laplace transform
of Equation (24) as

Q rw; tð Þ ¼ 2pT1hw
�1

ln rw
r1

� �
þ T1

T2
ln R

r1

� � (25)

which is independent of time and indeed a steady-state
solution. In fact, this solution can also be obtained if
applying the Tauberian theorem (Yeh and Wang, 2007) to
Equation (13). This result indicates that the wellbore flow-
rate solution for a two-zone confined aquifer of finite extent
can reach steady state when the time is large. In addition,
Equation (25) can be simplified to the Thiem equation if
neglecting the skin zone, i.e. setting r1 equals rw.

Dimensionless solutions

The dimensionless variables defined for simplifying the
developed solutions are k=T2/T1, g = S2/S1, t ¼ T2t=S2r2w,
r = r/rw, r1 = r1/rw, rR=R/rw, hD= h/hw and QD=Q(rw)/
(2pT2hw). The variable k represents the conductivity ratio,
g represents the ratio of storage coefficients of the skin and
formation zones, r represents dimensionless distance, r1
1

exp -Ta2nt=S
� �

J20 anrwð Þ � J20 anRð Þ	 

=J20 anRð Þ

)
(23)
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represents dimensionless distance of the outer boundary
of the skin zone,�hD represents the dimensionless head
distribution in the Laplace domain, hD represents the
dimensionless head distribution in time domain, �QD
represents the dimensionless flow rate in Laplace domain,
and QD represents the dimensionless flow rate in time
domain.
The time domain solution for the dimensionless head

distributions in the skin and formation zones can then be
written as
h1D ¼
(
lnðr1=rÞ þ 1=k ln rR=r1ð Þ
lnðr1Þ þ 1=k ln rR=r1ð Þ þ p

X1
n¼1

J0 bnð ÞY0 bnrð Þ � Y0 bnð ÞJ0 bnrð Þ½ �exp -gb2nt=k
� �

xDn2 zanð Þ2 þ b2n þ z bncn þ andnð Þ þ anbn=bnð Þ=r1
h i

� 1

)
(26)

h2D ¼
(

1=k ln rR=rð Þ
lnðr1Þ þ 1=k ln rR=r1ð Þ

þp
X1
n¼1

J0 bnð ÞY0 bnrð Þ � Y0 bnð ÞJ0 bnrð Þ½ � � Y0 xbnrRð ÞJ0 xbnrð Þ � Y0 xbnrð ÞJ0 xbnrRð Þ½ �exp -gb2nt=k
� �

xDn2 zanð Þ2 þ b2n þ z bncn þ andnð Þ þ anbn=bnð Þ=r1
h i

� 1
n o

� �bnð Þ

)
(27)
In addition, the time-domain solution of the dimen-
sionless wellbore flow rate is
QD ¼ 1
k

1
lnðr1Þ þ 1=k ln rR=r1ð Þ þ 2

X1
n¼1

exp -gb2nt=k
� �

xDn2 zanð Þ2 þ b2n þ z bncn þ andnð Þ þ anbn=bnð Þ=r1
h i

� 1

8<
:

9=
; (28)
where bn= rwan are the roots of

½J1 xbr1ð ÞY0 xbrRð Þ � J0 xbrRð ÞY1 xbr1ð Þ�
�z Y0 brwð ÞJ0 br1ð Þ � Y0 br1ð ÞJ0 brwð Þ½ �
þ J0 xbr1ð ÞY0 xbrRð Þ � J0 xbrRð ÞY0 xbr1ð Þ½ �
� Y1 br1ð ÞJ0 brwð Þ � J1 br1ð ÞY0 brwð Þ½ � ¼ 0

(29)

with

BDn ¼
�J0 bnð Þ

�zanJ0 bnr1ð Þ � bnJ1 bnr1ð Þ (30)

an ¼ J1 xbnr1ð ÞY0 xbnrRð Þ � J0 xbnrRð ÞY1 xbnr1ð Þ (31)

bn ¼ J0 xbnrRð ÞY0 xbnr1ð Þ � J0 xbnr1ð ÞY0 xbnrRð Þ (32)
Copyright © 2011 John Wiley & Sons, Ltd.
cn ¼ �krR J1 xbnr1ð ÞY1 xbnrRð Þ � J1 xbnrRð ÞY1 xbnr1ð Þ½ �
�xr1bn �

an
bn (33)

dn ¼ xrR J1 xbnrRð ÞY0 xbnr1ð Þ � J0 xbnr1ð ÞY1 xbnrRð Þ½ �
�xr1an

(34)
The numerical evaluations of Equation (28) can be

achieved by finding the roots of Equation (29) first by
Newton’s method and then adding the summation term for
n up to 100. The accuracy of the results can be made at
least to the fifth decimal.
ADVANTAGES AND APPLICATIONS OF THE
SOLUTIONS

Advantages over the existing solutions

To our knowledge, there are only two articles, i.e. Yang
and Yeh (2002) and the present one, in the groundwater
literature to provide the transient analytical solutions (in
time domain) of the wellbore flow rate for the constant-
head test in two-zone aquifer systems. The present article
has following three advantages over Yang and Yeh
(2002). First, the present solutions can reduce to those
given in Yang and Yeh (2002) when the outer boundary
goes infinity. In other words, the solutions presented in
Yang and Yeh (2002) can be considered as a special case
of the present solutions. Second, the solution in Yang and
Hydrol. Process. 26, 3216–3224 (2012)
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Yeh (2002) for the head distributions in the skin and
formation zones is only in Laplace domain while that in
the present article is in time domain. Finally and most
importantly, the wellbore flow-rate solution in Yang and
Yeh (2002, Equation (19)) is in terms of an integral from
zero to infinity with the variable u in the denominator of
the integrand, posing the problem of singularity at the
origin for the integration as indicated in Yang and Yeh
(2002, p. 178, Figure 2). Due to the presence of singular
point, the results of numerical evaluation for the integral
are accurate only to the second decimal as shown in Yang
and Yeh (2002, p. 179, Tables 1 and 2). On the other
hand, the present wellbore flow solution is composed of
infinite series and can be easily evaluated with accuracy
to at least five digits after the decimal.

Potential applications

The properties of an aquifer with the presence of skin
zone may be characterized by five parameters, i.e. the outer
radius of the skin zone and the transmissivity and storage
coefficient for each of the skin and aquifer zones. If those
parameters are known, the presented solution can be used
to predict the wellbore flow rate and head distributions in
both the skin and formation zones and explore the physical
insight of the constant-head test in a two-zone aquifer
system. On the other hand, if the parameters are not
available, the determination of those five parameters from
analyzing measured data is a subject of inverse problem. It
may not be possible or too complicate to develop type
curves for parameter estimation because the unknowns are
too many. Feasible ways of solving such an inverse
problem of involving five unknown parameters are to
adopt the presented solution and couple it with the
algorithm of extended Kalman filter (e.g. Leng and Yeh
2003; Yeh and Huang 2005) or with an optimization
Figure 2. The curves of the dimensionless wellbore flow rate versus dimens
distance rR with r1 = 3. The solid line represents the solution for the infinite-

for the finite-ex

Copyright © 2011 John Wiley & Sons, Ltd.
approach such as the nonlinear least-squares (e.g. Yeh,
1987) or simulated annealing (e.g. Lin and Yeh, 2005; Yeh
et al., 2007a,b).
The present solution can also be used as a tool to design a

field constant-head or to verify newly developed numerical
codes for simulating the flow in two-zone aquifer systems.
Generally speaking, the sensitivity analysis (Liou and Yeh,
1997) can be performed to investigate the effect of changing
input parameters (i.e. the five parameters) on the output (i.e.
head distribution or wellbore flow rate). It works as an
indicator in assessing the influences of parameter uncer-
tainty on the predicted head orwellboreflow rate. If the head
(or wellbore flow rate) is very sensitive to a specific
parameter, a small change in that parameter will then
markedly affect the predicted head (or wellbore flow rate).
In contrast, the change in a less sensitive parameter will have
little impact on the predicted result. This indicates that a less
sensitive parameter is much more difficult to be estimated.
With the present solution, the sensitivity analysis can be
easily performed to the targeted parameters (e.g. Huang and
Yeh, 2007), and the results will provide useful information
about the degrees of sensitivity among targeted parameters.
RESULTS AND DISCUSSION

Figure 2 shows the curves of the dimensionless wellbore
flow rate versus dimensionless time t for various
conductivity ratios k and outer boundary distance r with
dimensionless radial distance r1 = 5. Note that k< 1
denotes for the negative, skin case while k > 1 for the
positive skin case. The figure indicates that the dimen-
sionless wellbore flow rate for an aquifer with a positive
skin is always smaller than that with a negative one. For
small values of k, the wellbore flow-rate solution for an
aquifer of finite extent is equal to that of infinite extent
ionless pumping time for various conductivity ratio k and outer boundary
extent aquifer, while the dash line with the symbols represents the solution
tent aquifer

Hydrol. Process. 26, 3216–3224 (2012)
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only at early test time (say, roughly t< 40 when k = 0.1
and t< 100 when k = 1) indicating that wellbore flow
rate will reach steady state quickly for aquiferswith negative
skins. In the period of moderate time (100< t< 1000),
these two flow-rate solutions deviate from one another,
indicating that the finite-extent solution can no longer be
used to approximate to the infinite-extent solution. In
other words, the outer boundary distance has an effect on
the wellbore flow rate when the pumping time is not
short. Finally, the finite-extent solution tends to reach an
asymptotic limit, the steady-state solution, revealing the
significance of boundary effect on the wellbore flow rate
while the infinite-extent solution decreases endlessly
with dimensionless time. The effect of boundary
distance on the wellbore flow rate is very small for a
high value of k (say, 10). Figure 2 also indicates that the
dimensionless time when the outer boundary starts to
affect the wellbore flow rate increases with the
dimensionless outer boundary distance rR.
CONCLUSIONS

A mathematical model for describing the head distributions
in a two-zone confined aquifer bounded by a finite outer
boundary for a constant-head test has been presented. The
Laplace-domain solution for the head distributions in
the skin and formation zones are first developed using the
Laplace transform, and the Laplace-domain solution for the
wellbore flow rate is then developed based on the head
solution of the skin zone andDarcy’s law. Both the Laplace-
domain solutions for the head distribution andwellbore flow
rate can reduce to the solutions for the two-zone aquifer with
an infinite boundary when the outer boundary distance
approaches infinity. The transient solutions of the head
distribution and wellbore flow rate are then developed from
their Laplace-domain solutions by the Bromwich integral
method and residue theorem. Finally, the relationship of
small Laplace variable versus large time variable and
L’Hospital’s rule are used to develop the large-time
wellbore flow rate which turns out to be the steady-state
solution. This result indicates that the wellbore flow rate can
reach steady state quickly for a finite-domain aquifer. In
addition, this steady-state result reduces to the Thiem
equation if the skin effect is negligible.
The wellbore flow-rate solution for the constant-head test

is used to investigate the effects of conductivity ratio and
outer boundary distance on the flow rate across the wellbore
in a two-zone confined aquifer bounded by a finite outer
boundary. The result indicates that the dimensionless flow
rate for an aquifer with a positive skin is always smaller than
that with a negative skin. For small conductivity ratios, the
flow-rate solution for an aquifer offinite extent equals that of
infinite extent only at early test time, indicating that wellbore
flow rate can reach steady state quickly for aquifers with the
negative skin. The wellbore flow-rate solution for a finite
aquifer tends to an asymptotic limit at large time while that
solution for an infinite aquifer decreases endlessly with
dimensionless time. The effect of outer boundary distance
Copyright © 2011 John Wiley & Sons, Ltd.
on the wellbore flow rate is small for an aquifer of high
conductivity ratio and the dimensionless time when the
outer boundary begins to influence the wellbore flow rate
increases with the dimensionless boundary distance.
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APPENDIX:DERIVATION OF EQUATION (14)

The head distributions in time domain, h1, can be obtained
by Bromwich integral method (Carslaw and Jaeger, 1959)
as

h1 tð Þ ¼ L�1 �h1 pð Þ½ � ¼ 1
2pi

Z reþi1

re�i1
ept �h1 pð Þdp (A1)

where i is an imaginary unit and re is a very large real
constant that all of the real parts of the poles are smaller
than it. The graph of the Bromwich integral contains a
close contour with a straight line parallel to the imaginary
p
dΔ
dp

�
p¼�T1a2n=S1

¼ 1
2
q
dΔ
dq

� �
q1¼ian;q2¼ikan

¼ 1
2
q1 Φ’

1I0 q1rwð Þ �Φ’
2K0 q1rwð Þ þ rw Φ1I1 q1rwð Þ þΦ2K1 q1rwð Þ½�"

(A8)
axis and a semicircle. According to Jordan’s Lemma, the
value of the integration for the semicircle tends to zero
when its radius approaches infinity. Based on the residue
theorem, the head distribution in the skin zone (Equation
(A1)) can be expressed as
Bn ¼
I0 q1rwð ÞK0 xq1r1ð Þ

Φ2 I0 xq1Rð ÞK0 xq1r1ð Þ � I0 xq1r1ð ÞK0 xq1Rðð½

Copyright © 2011 John Wiley & Sons, Ltd.
h1 tð Þ ¼
X1
n¼1

Re s ept �h1 pð Þ; gn½ � (A2)

where gn are the poles in the complex plane.
There are infinite poles in �h1 pð Þ and obviously one pole

at p = 0. To determine other poles, the denominator and
numerator in the brackets of Equation (8) are written,
respectively, as

Δ ¼ Φ1I0 q1rwð Þ �Φ2K0 q1rwð Þ (A3)

Ψ ¼ hw Φ1I0 q1rð Þ �Φ2K0 q1rð Þ½ � (A4)

Let Δ= 0, the roots an in p ¼ pn ¼ �T1a2n
� �

=S1 can be
determined from Equation (A3) with q1 = ian and
q2 ¼ �xa2n. Substituting pn ¼ �T1a2n

� �
=S1 into Equation

(A3) yields Equation (22). The residue of the pole at p = 0
can then be obtained from the following formula
(Kreyszig, 1999)

Res ept �h1 pð Þ; 0½ � ¼ lim
p!0

�h1 pð Þept p� 0ð Þ (A5)

Substituting Equation (8) into Equation (A5) and
applying L’Hospital’s rule, the result is

Res ept �h1 pð Þ; 0½ � ¼ hw
lnðr1=rÞ þ T1=T2 ln R=r1ð Þ
lnðr1=rwÞ þ T1=T2 ln R=r1ð Þ (A6)

The other residues at the poles pn ¼ �T1a2n=S1 can be
written as

Res ept �h1 pð Þ; pn½ � ¼ lim
p!pn

�h1 pð Þept p� pnð Þ (A7)

Applying L’Hospital’s rule to Equation (A7), the
denominator of Equation (8) becomes
where the variables Φ1 and Φ2 are defined in Equations
(10) and (11), respectively, and Φ’

1 and Φ’
2 are the

differentiations of Φ1 and Φ2, respectively.
A variable Bn introduced based on Equation (A3) and

Δ = 0 to simplify Equation (A8) is defined as
Þ� (A9)¼ K0ðq1rwÞK0ðxq1r1Þ
Φ1½ðI0ðxq1RÞK1ðxq1r1ÞþI1ðxq1r1ÞK0ðxq1RÞ�
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p
dΔ
dp

� �
p¼�T1a2n=S1

¼ 1
2
q
dΔ
dq

� �
q1¼ian;q2¼ikan

¼ 1
2Bn

Bn
2 zAnð Þ2 þ B2

n þ z BnCn þ AnDnð Þ þ AnBn=anð Þ=r1
h i

� 1
n o

(A13)
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In addition, following two recurrence formulas (Carslaw
and Jaeger, 1959, p. 490) are used to eliminate the
imaginary unit in Equation (8):

Kv ze�
1
2pi

� �
¼ � 1

2
pie�

1
2vpi �Jv zð Þ � iYv zð Þ½ � (A10)

and

Iv ze�
1
2pi

� �
¼ e�

1
2vpiJv zð Þ (A11)

Substituting Equations (A10) and (A11) into Equation
(A9) results in
Res ept �h1 pð Þ; pn½ � ¼ hwp
X1
n¼1

J0 anrwð ÞY0 anrð Þ � Y0 anrwð ÞJ0 anrð Þ½ �exp -a2ntT1=S1
� �

xn2 zAnð Þ2 þ B2
n þ z BnCn þ AnDnð Þ þ AnBn=anð Þ=r1

h i
� 1

g (A15)
�J0 anrwð Þ
�zAnJ0 anr1ð Þ � BnJ1 anr1ð Þ

¼ Y0 anrwð Þ
�zAnY0 anr1ð Þ þ BnY1 anr1ð Þ ¼ Bn (A12)

With Equations (A9) and (A12), Equation (A8) is
given as
Copyright © 2011 John Wiley & Sons, Ltd.
where the constants shown on the right-hand side of
Equation (A13) have been defined in Equations (17–21).
Similarly, the numerator of Equation (8) can also be
obtained as

Ψ ¼ 1
2Bn

phw �Y0 anrwð ÞJ0 anrð Þ þ J0 anrwð ÞY0 anrð Þ½ �f g
(A14)

The residues at the poles pn ¼ �T1a2n=S1 can be
obtained from Equations (A13) and (A14) as
Therefore, Equation (A2) can be expressed as

h tð Þ ¼ Res ept �h1 pð Þ; 0½ � þ Res ept �h1 pð Þ; pn½ � (A16)

Finally, the head distribution in the skin zone can be
obtained from Equations (A6) and (A15) and given as
Equation (14).
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