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a b s t r a c t

Pricing and lead time are two crucial decisions to a success in today’s competitive markets. This paper

examines the equilibrium pricing and lead time decisions in a duopoly industry consisting of two large

and several smaller firms with competition. We solve the sufficient Karush–Kuhn–Tucker (KKT)

optimality conditions for the Nash equilibrium solution. We characterize the existence and uniqueness

of the Nash equilibrium solution of pricing and lead time decisions for both homogenous and

heterogeneous firms. Our case study provides important managerial insights about firms’ behavior

under price and lead time competition in a semiconductor manufacturing industry.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Observation of time-based marketplaces indicates that firms
that provide more products and services in shorter lead times can
charge a higher price and thus capture greater market share
(Stalk, 1988; Stalk and Hout, 1990). In this paper we examine the
equilibrium decision about the price and lead time in a duopoly
consisting of two large firms and several smaller firms in a
competitive market, where only the two large firms have domi-
nant control over the market.

Capital-intensive industries, such as semiconductor manufac-
turing and its related industries, are typical examples of a duopoly
in the marketplace. For instance, Intel and AMD are the leading
global producers of microprocessor chips. Taiwan Semiconductor
Manufacturing Company (TSMC) and United Microelectronics
Corporation (UMC) dominate the semiconductor foundry indus-
try, accounting for more than 80% market share (The Register,
2003). Samsung Electronics and LG Philips in Korea and AUO and
CMO in Taiwan dominate the thin-film transistor liquid crystal
display (TFT-LCD) industry (Chang, 2005). In such oligopolistic
markets, each individual firm has its own profit function and
often is unwilling to reveal information. Decisions made by
competing firms can be influenced by other firms’ behavior,
especially in consumer product markets characterized by shor-
tened product life-cycles.

A literature survey reveals that some researchers have exam-
ined individual firms’ decisions about the equilibrium price or
ll rights reserved.
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lead time (Bertrand and van Ooijen, 2000; Das and Abdel-Malek,
2003; Kunnumkal and Topagloglu, 2008; Cai et al., 2011; Glock,
2012), while others (Atamer et al., 2011; Qian, 2011; Maihami
and Kamalabadi, 2012) have focused on optimization within a
single firm and neglected the competition among firms. The
underlying concept is that pricing and lead time are trade-offs—a
short lead time typically results in a high price.

Palaka et al. (1998) examine the lead time setting, capacity
utilization, and pricing decisions facing a firm serving customers
sensitive to quoted lead times. Hatoum and Chang (1997) present
a model to determine the optimal demand level using a mechan-
ism of quoted lead time and price. Ray and Jewkes (2004) present
an analytical approach for a firm to maximize its profit by optimal
selection of a lead time. ElHafsi (2000) develops a model that
includes enough detail so that realistic price and day-to-day lead
time can be achieved and quoted to the customer. So and Song
(1998) study the impact of using delivery time guarantees as a
competitive strategy in service industries where demands are
sensitive to both price and delivery time. Ray (2005) develops
analytical models that can assist a firm in deciding on its optimal
pricing, stocking and investment values in varying operating
environments. Pekgun et al. (2008) study a firm serving custo-
mers sensitive to quoted price and lead time and analyze the
inefficiencies created by the decentralization of the decisions,
where pricing decisions are made by the marketing department
and lead time decisions by the production department.

A growing body of literature on competitive models relies
upon economic theory to analyze the behavior of independent
firms in a market where no firm is better off by a unilateral
change in its decision (see Gibbons, 1992). Several papers exam-
ine competitive supply, particularly in a duopoly industry, of
goods or services to time-sensitive customers. For example, Kalai
et al. (1992) study competition in service rates without consid-
eration of pricing competition. Chen and Wan (2003) consider the
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duopoly price competition of make-to-order (MTO) firms. The
results in Chen and Wan (2003) show that whenever market
equilibrium exists and is unique, the firm with greater capacity, a
higher service value, or a lower waiting cost can enjoy a price
premium and a large market share. Li and Lee (1994) present a
model of market competition in which a customer values cost,
quality, and speed of delivery. Lederer and Li (1997) study the
competition between firms that produce goods or services for
customers sensitive to time delay where firms compete by setting
prices and production rates for each type of customer and by
choosing scheduling policies. So (2000) studies a similar issue of
delivery time guarantees and pricing for service delivery. In
reality, industries seldom consist of only two firms (a duopoly).
Most research appears to ignore the effect of other smaller firms
on pricing and lead time decisions in a duopoly industry. Thus our
paper fills an important research void.

Our objective is to predict the equilibrium decision of the
prices and lead times of the goods provided by all of the firms
where none will be benefited by unilaterally deviating from its
current decision. The remainder of this paper is organized as
follows. The model and its equilibrium outcomes are described in
Section 2. In Section 3 we conduct a case study in a semiconduc-
tor foundry industry and produce several managerial insights
about price and lead time decisions. Section 4 presents our
concluding remarks and suggestions for further research.
2. The model

2.1. The duopoly market model

We model a duopoly market consisting of two large firms and
several smaller firms in a duopoly market. Regardless of firm size,
all customers are served on a first-come, first-served basis. The
large firms compete non-cooperatively to provide a type of goods
in an MTO fashion. Both are independent entities and are
modeled as queues with exponential service times with a com-
mon source of potential customer arrivals. Often, the decision
variables for each firm will be influenced by the other’s behavior.
We also consider the effects of the smaller firms’ decisions.

To begin, we denote the set of the two large firms by N¼{X,Y}
and the group of smaller firms by M. We assume that the
customer arrival rate of firm iAN, li, depends on firm i’s decision
of the price, pi, and lead time, ti. In a competitive market, li is also
influenced by the decisions of its major competitor, firm jAN, ja i,
and of the smaller firms. In other words, li is also a function of pj,
tj, pM, and tM in addition to pi and ti. In our hypothetical model,
customers prefer lower prices and shorter lead times compared to
the decisions offered by the other firms as shown in (1), where li

is proportional to the differences of prices and lead times between
the other firms and firm iAN.

lipðpj�piÞ

lipðpM�piÞ

lipðtj�tiÞ

lipðtM�tiÞ ð1Þ

Next, we elaborate on the precise relationships between prices
and lead times in the market as shown in (2). The customer
arrival rate li of firm i is a function of the difference between firm
i’s decisions and the decisions of its competitors. Let aM and aC

denote the preference factors accounting for the effect of the
decision differences by the smaller firms, M, and the competitor,
firm j. Similarly, bt and bp represent the preference factors for
explaining the effect of lead times and prices on the arrival rate.
We assume that the competition effect is a convex combination
between i’s competitor, firm j, and the smaller firms (aMþaC¼1,
aM, aCZ0), and the decision effect is a convex combination of the
price and lead time (btþbp¼1, bt, bpZ0). We now assume the
arrival rate is

li ¼ l0�mtbt½aMðti�tMÞþaCðti�tjÞ�

�mpbp½aMðpi�pMÞþaCðpi�pjÞ� ð2Þ

where l0 denotes the arrival rate when both prices and lead times
of all firms in the market are identical, and mt and mp represent
the lead time sensitivity and price sensitivity of the arrival rate,
respectively (l0, mt, mpZ0). A linear form of the arrival rate helps
us obtain qualitative insights without much analytical complex-
ity. It also has the desirable properties for approaching the
equilibrium decisions of prices and lead times of the firms in
the market. For illustrative purposes, we write li as li(pi,ti9
pj,tj,pM,tM); pi and ti are decisions of firm i, and pj, tj, pM, tM are
decisions of other firms. We note the arrival rate shown in (2)
does not limit itself to the situation where there are only two
large firms and a group of smaller firms in a competitive industry.
The form of (2) allows a decision maker to take into account the
other major competitor and the group of all firms. A similar model
appears in (Hatoum and Chang, 1997; Ray and Jewkes, 2004).

The objective of each firm is to maximize its own expected
profit. Since the capacity is fixed, maximizing the expected profit
is equivalent to maximizing the expected revenue. We assume an
M/M/1 queuing system with mean service rate mi for firm iAN. To
prevent quoting unrealistic lead times, we assume that all of the
firms maintain a certain minimum service level, s, which can be
set by each firm in response to competitiveness or to the industry
in general. The probability that the total sojourn time in firm i is
less than the quoted lead time is 1�e�ðmi�liÞti for an M/M/1 system
(Kleinrock, 1975). Therefore, the requirement that the probability
of meeting the quoted lead time for firm i must be at least s (e.g.,
95%) can be represented in the following constraint as

1�e�ðmi�liÞti Zs

or equivalently,

�ðmi�liÞtir lnð1�sÞ

Since firm iAN is assumed to maximize its own profit per unit
time, the maximization model for firm i can be written as

Max
pi ,ti

piðpi,ti9pj,tj,pM ,tMÞ ¼ piliðpi,ti9pj,tj,pM ,tMÞ ð3Þ

s:t:�ðmi�liÞtir lnð1�sÞ ð4Þ

liðpi,ti9pj,tj,pM ,tMÞ

¼ l0�mtbt½aMðti�tMÞþaCðti�tjÞ�

�mpbp½aMðpi�pMÞþaCðpi�pjÞ� ð5Þ

pi,ti40: ð6Þ

Firm i maximizes its profit function pi by quoting the price, pi

and lead time, ti. Clearly, firm i’s profit function, pi, is a function of
pi and ti, but it also depends on pj, tj, pM, and tM. Constraint (4)
ensures that firm i maintains a minimum service level, and
(5) and (6) are the arrival rate definition and bounds for prices
and lead times.

2.2. Establishing equilibrium price and lead time

In this section we elaborate upon our algorithm. In equili-
brium, the firms have no incentive to deviate from the current
quotation of their pricing and lead time decisions, given the other
firms’ decisions.
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2.2.1. Preliminary

Consider a real single-valued scalar function f(x) defined on
some nonempty closed set X in the n-dimensional Euclidean
space. Function f(x) is assumed to be twice continuously differ-
entiable on X. Let rf(x) and r2f(x), respectively, denote the
gradient and the Hessian matrix of f evaluated at x. A sufficient
condition for function f to be pseudo-convex is given in Definition
1. Let M(X,b) be the n�n matrix and let T denote the transpose
operator.

MðX,bÞ ¼r2f ðxÞþbrf ðxÞ � rf ðxÞT , ð7Þ

where b is a nonnegative real number.

Definition 1. (see Mereau and Paquet, 1974) A sufficient condition

for f(x) to be pseudo-convex on the convex set X is that there exists a

real numberb, 0rboþN, such that M(X,b) is positive semi-

definite.

2.2.2. The solution algorithm

Our goal is to solve for the equilibrium solution of the
competing firms in our model. We demonstrate the Karush–
Kuhn–Tucker (KKT) approach to find the Nash equilibrium solu-
tion, defining the equilibrium as a set of decisions that satisfy
each firm’s first-order conditions (KKT) for profit maximization.
The solution satisfying those conditions possesses the property
that no firm wants to alter its decision unilaterally and is known
as the Nash equilibrium solution (Hobbs, 2001). However, we
note that KKT conditions are necessary optimality conditions for
the local optimum in general, not sufficient conditions for the
optimum. Therefore, to satisfy the properties of the Nash equili-
brium, we need to solve the globally sufficient KKT conditions
simultaneously for the equilibrium instead of solving the general
locally necessary KKT conditions; otherwise, we need to examine
all possible KKT points for the equilibrium solution. This leads to
Lemmas 1 and 2 for the solution algorithm derivation.

Lemma 1. Profit function (3) of firm iAN is pseudo-concave

function.

Proof. See Appendix.

Lemma 2. The feasible region of constraints (4)–(6) is a convex set.

Proof. See Appendix.

From Lemmas 1 and 2, we can conclude that the KKT
optimality conditions to the problem (3)–(6) of firm iAN are both
necessary and sufficient (Bazaraa et al., 1993). The KKT optimality
conditions of firm iAN are stated as

Oi ¼ pili�a1ð�ðmi�liÞti�lnð1�sÞÞþa2piþa3ti ð8Þ

@Oi

@pi

¼ 0 ð9Þ

@Oi

@ti
¼ 0 ð10Þ

a1ð�ðmi�liÞti�lnð1�sÞÞ ¼ 0 ð11Þ

a2pi ¼ 0 ð12Þ

a3ti ¼ 0 ð13Þ

�ðmi�liÞtir lnð1�sÞ ð14Þ

pi40 ð15Þ

ti40 ð16Þ

a1, a2, a3Z0 ð17Þ
where a1, a2, and a3 are dual variables to constraints (4) and (6).
Constraint (8) is the Lagrangian function definition for the
purpose of notational simplicity. Constraints (9), (10) and (17)
are corresponded to dual feasibility equalities, (11)–(13) are
complementary slackness conditions, and (14)–(16) are primal
feasibility equalities. Similarly, we also derive the KKT conditions
of the other competing firm. The equilibrium solution of prices
and lead times can be obtained by simultaneously solving the
combined KKT conditions. Since the KKT optimality conditions of
the model presented in this paper are sufficient, any solution
simultaneously satisfying the combined KKT optimality condi-
tions is optimal to each firm. In other words, this solution follows
the definition of the Nash equilibrium where no firm wishes to
alter its decision unilaterally.
Observation 1 The dual variables a2 and a3 are equal to zero in
the KKT optimality conditions.

Proof. Since we only focus on a nontrivial solution, we assume
that the equilibrium solution of prices and lead times is a positive
value. This allows us to simplify the KKT conditions by letting a2

and a3 be zero in (12) and (13). &

Observation 2 The dual variable a1 is non-zero in the KKT
optimality conditions.

Proof. From (10), we have @Oi
@ti
¼�mtbtpi�a1ð�miþli�mtbttiÞþ

a3 ¼ 0. Obviously, mt, bt, and pi are non-zero, and a3¼0 due to
Observation 1. Thus, a1(�miþli�mtbtti) is non-zero as well and it
completes the proof. &

2.3. Demonstration

To illustrate the use of the KKT approach, we construct a
simple and symmetric example of two leading firms, X and Y, and
a group of smaller firms, M. We assume that the price and lead
time of M are given: that is, pM¼10 and tM¼5. The customer
arrival rate, l0, is 3 when X and Y have the same prices and lead
times. The mean service rates of X and Y are mX¼mY¼5. The
minimum service levels, s, for both firms are set at 95%. Other
required parameters are aM¼ .2, aC¼ .8, bt¼ .5, bp¼ .5, and mt¼1,
mp¼ .5. The KKT optimality conditions of firm X can be stated as

ð4�:5pXþ :2pY�:5tXþ :4tY Þþ :25a1tXþa2 ¼ 0

�:5pX�a1ð�1�:25pXþ :2pY�tXþ :4tY Þþa3 ¼ 0

a1½ð�1�:25pXþ :2pY�:5tXþ :4tY ÞtXþ3� ¼ 0

a2pX ¼ 0

a3tX ¼ 0

ð�1�:25pXþ :2pY�:5tXþ :4tY ÞtX r�3

pX ,tX 40

a1, a2, a3Z0:

The KKT optimality conditions of firm Y can be stated as

ð4�:5pYþ :2pX�:5tYþ :4tXÞþ :25a4tYþa5 ¼ 0

�:5pY�a4ð�1�:25pYþ :2pX�tYþ :4tXÞþa6 ¼ 0

a4½ð�1�:25pYþ :2pX�:5tYþ :4tXÞtYþ3� ¼ 0

a5pY ¼ 0

a6tY ¼ 0

ð�1�:25pYþ :2pX�:5tYþ :4tXÞtY r�3
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pY ,tY 40

a4,a5,a6Z0:

Observation 1 allows us to simplify the combined KKT condi-
tions by allowing a2, a3, a5, and a6 to be zero. We use the
commercial package, Mathematica 7 (Wolfram, 2009), to solve
the combined KKT conditions of X and Y for the equilibrium price
and lead time; the equilibrium solution is

pX ,pY ,tX ,tY

� �
¼ 16:67,16:67,1:51,1:51ð Þ,

and a1¼a4¼3.09, ai¼0, i¼2, 3, 5, and 6. The corresponding profits
of X and Y are 50.24, respectively. Intuitively, the solution and
profits are identical for the two firms in this symmetrical
example.

2.4. Existence and uniqueness of equilibrium

Analyzing the required conditions for the existence and
uniqueness of the equilibrium price and lead time of X and Y

paves the way to solving the nonlinear system of KKT optimality
conditions for the equilibrium solution. We first show a trivial
observation for derivation purposes followed by two cases:
homogeneous firms and heterogeneous firms.
Observation 3 Firm i determines the equilibrium price and lead
time such that the equality of constraint (4) holds.

Proof. This result follows from Observation 2 and (11). &

2.4.1. Homogeneous firms

In the case of homogeneous firms, two competing firms have
identical capacity, production technology, cost structure, quality,
etc; in other words, m¼mX¼mY. In addition, it is reasonable
assuming that these two firms return the identical equilibrium
decision of prices and lead times. For notational simplicity, let p

and t denote the equilibrium price and lead time of the two
homogeneous firms without the subscript index. From Observa-
tions 1 and 2, the variables of the combined KKT conditions are
reduced to only (t, p, a1) and the combined KKT conditions of the
firms can be further reduced using (43), simplified as

u00�u1aMt�u2ð1þaMÞpþa1u2t¼ 0 ð18Þ

�u1p�a1ðu
0
0�u1ð1þaMÞt�u2aMp�mÞ ¼ 0 ð19Þ

ðu00�u1aMt�u2aMp�mÞtþu5 ¼ 0 ð20Þ

p,t,a140 ð21Þ

Lemma 3. A unique positive solution exists to the equation
ax3
þbxþc¼0 when aco0 and b is a real number.

Proof. See Appendix. &

Proposition 1. If the two competing firms are homogenous, there
exists a unique equilibrium solution of the price and lead time.

Proof. There are only three unknowns in (18)–(21) and we only
focus on nontrivial positive solutions of prices and lead times.
Rearranging (20), we have

p¼ 1
u2aM
ðu00�u1aMt�mÞþ u5

t

h i
ð22Þ

From (18) and (19), it is easy to have (23) without a1

u1u2tp¼ ½u00�u1aMt�u2ð1þaMÞp�

½u00�u1ð1þaMÞt�u2aMp�m� ð23Þ
Substituting (22) into (23), we have

�u1mtþu5
u0

0
aM
�ð1þ 1

aM
Þm

h i
1
t þ 1þ 1

aM

� �
u2

5

t2 ¼ 0: ð24Þ

Multiplying t2 on both sides, (24) can be represented as

�At3�BtþC ¼ 0 ð25Þ

where

A¼ u1m

B¼�u5
u0

0
aM
� 1þ 1

aM

� �
m

h i
C ¼ 1þ 1

aM

� �
u5

2

A,C40:

Since (�A)Co0 and from Lemma 3, a unique positive t exists
such that (25) holds. In addition, (22) shows the one-to-one
correspondence between t and p. As a result, a unique equilibrium
price exists as well. &

2.4.2. Heterogeneous firms

In the case of heterogeneous firms, two competing firms do
not have identical capacity, production technology, cost structure,
quality, etc; in other words, mXamY in this paper. With Observa-
tions 1, 2, and 3, the combined KKT optimality conditions for X

and Y can be rewritten as

@OX

@pX

¼ u00�u1tX�2u2pXþu1aCtYþu2aCpYþa1u2tX ¼ 0 ð26Þ

@OX

@tX
¼�u1pX�a1ðu

0
0�mX�2u1tX�u2pXþu1aCtYþu2aCpY Þ ¼ 0

ð27Þ

ðu00�mX�u1tX�u2pXþu1aCtYþu2aCpY ÞtXþu5 ¼ 0 ð28Þ

@OY

@pY

¼ u00�u1tY�2u2pYþu1aCtXþu2aCpXþa4u2tY ¼ 0 ð29Þ

@OY

@tY
¼�u1pY�a4ðu

0
0�mY�2u1tY�u2pYþu1aCtXþu2aCpXÞ ¼ 0

ð30Þ

ðu00�mY�u1tY�u2pYþu1aCtXþu2aCpXÞtYþu5 ¼ 0 ð31Þ

a1, a4, tX , tY , pX , pY 40 ð32Þ

Rearranging (28) and (31), the prices can be represented by the
functions of lead times

pX ¼
1

u2ð1�a2
C
Þ

u00ð1þaCÞ�mX�aCmY

� �
�

u1tX

u2
þ

u5

u2ð1�a2
C
ÞtX
þ

aC u5

u2ð1�a2
C
ÞtY
ð33Þ

pY ¼
1

u2ð1�a2
C
Þ

u00ð1þaCÞ�mY�aCmX

� �
�

u1tY

u2
þ

u5

u2ð1�a2
C
ÞtY
þ

aC u5

u2ð1�a2
C
ÞtX
ð34Þ

By algebraic manipulations, X’s KKT optimality conditions,
(26)–(28), can be represented as

u2
5ð2�a2

CÞ

t2
Xð1�a2

CÞ
�u1mXtXþ

u5

tX tY ð1�a2
C
Þ
u5aC

þ
u5tY

tX tY ð1�a2
C
Þ

u00ð1þaCÞ�mXð2�a2
CÞ�aCmY

� �
¼ 0 ð35Þ

Similarly, Y’s KKT optimality conditions, (29)–(31), can be
represented as

u2
5ð2�a2

CÞ

t2
Y ð1�a2

CÞ
�u1mY tYþ

u5

tX tY ð1�a2
C
Þ
u5aC

þ
u5tX

tX tY ð1�a2
C
Þ

u00ð1þaCÞ�mY ð2�a2
CÞ�aCmX

� �
¼ 0: ð36Þ

For notational simplicity, (35) and (36) can be rewritten as

E�F1t3
XþGtX

tY
þH1tX ¼ 0 ð37Þ
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E�F2t3
YþGtY

tX
þH2tY ¼ 0: ð38Þ

where

E¼
u2

5ð2�a
2
C
Þ

1�a2
C

F1 ¼ u1mX

F2 ¼ u1mY

G¼
u2

5
aC

1�a2
C

H1 ¼
u5

1�a2
C

u00ð1þaCÞ�mXð2�a2
CÞ�aCmY

� �
H2 ¼

u5

1�a2
C

u00ð1þaCÞ�mY ð2�a2
CÞ�aCmX

� �
:

Up to this point, the combined KKT optimality conditions of
the two heterogeneous competing firms are represented as two
equations with two unknowns, tX and tY, as shown in (37) and
(38). We can now analyze the equations plotted in a tXtY-plane
composed of horizontal axis tX and vertical axis tY. Rearranging
(37), we have

tY ¼
GtX

F1t3
X�H1tX�E

ð39Þ

From Lemma 3, there is a unique positive solution, tA
X , to

F1t3
X�H1tX�E¼ 0 since F1(�E)o0. As tX approaches tA

X , the
denominator of (39) approaches zero. Therefore, we have
lim

tX-tA
X

tY ¼ lim
tX-tA

X

ðGtX=F1t3
X�H1tX�EÞ ¼1. As tX approaches infinity,

tY approaches zero by L’Hospital Rule (Salas et al., 2003, pp. 615–
616). Thus line tX ¼ tA

X and axis tX are asymptotic to (37) on tXtY-
plane. Similarly, line tY ¼ tA

Y and axis tY are asymptotic to (38) on
tXtY-plane where tA

Y is the solution to F2t3
Y�H2tY�E¼ 0.

In addition, the first derivative of (39) with respect to tX is
�Gð2F1t3

XþEÞ= F1t3
X�H1tX�E

� �2
, where G, F1, E, and tX are positive.

As a result, (qtY/qtX)o0 and it implies that (39) decreases in tX.
We next examine concavity or convexity of (39) on tXtY-plane.
Taking the second derivative of (39) with respect to tX, we have

@2tY

@t2
X

¼
2G½Eð6F1t2

X�H1ÞþF1t3
Xð3F1t2

XþH1Þ�

ðF1t3
X�H1tX�EÞ3

ð40Þ

Observation 4 F1t3
X�H1tX�E40 and F2t3

Y�H2tY�E40 when
tX40 and tY40.

Proof. See Appendix.

From Observation 4, the denominator of (40) is positive. With
G40, the sign of @2tY

@t2
X

can be determined by inspecting the sign of
E 6F1t2

X�H1

� �
þF1t3

X 3F1t2
XþH1

� �
. For notational simplicity, we let

TðtXÞ ¼ E 6F1t2
X�H1

� �
þF1t3

X 3F1t2
XþH1

� �
. We discuss the sign of

T(tX) in the following two disjunctive cases: H1Z0 and H1o0.

Proposition 2. As H1Z0, T(tX) is positive for all tX40.

Proof. See Appendix.

Proposition 3. H1o0, T(tX) is positive for all tX40 when
1=6H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4E40, but T(tX) is negative for some tX40

when 1=6H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4Eo0.

Proof. See Appendix.

From Propositions 2 and 3, @2tY=@t2
X is positive for all tX40

when H1Z0, or when H1o0 and 1=6H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4E40.

Thus, (37) on tXtY-plane is convex when H1Z0, or when H1o0

and 1=6H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4E40. Similarly, (38) on tXtY-

plane is convex when H2Z0, or when H2o0 and
1=6H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H2=6F2Þ

p
þ4E40. We let SS denote

E,F1,F2,

G,H1,H2

 ! E40,F140,F240,G40,

H140 [ H1o0, 1
6 H1

ffiffiffiffiffiffiffi
�H1
6F1

q
þ4E40

n o
,

H240 [ H2o0, 1
6 H2

ffiffiffiffiffiffiffi
�H2
6F2

q
þ4E40

n o
									

9>>>=
>>>;

8>>><
>>>:

ð41Þ

Proposition 4. There exists a unique equilibrium solution of
prices and lead time if the parameters, E,F1,F2,G,H1, and H2, of
two competing firms satisfy (41).

Proof. From Propositions 2 and 3, (37) and (38) on tXtY-plane are
convex when (E,F1,F2,G,H1,H2)ASS. It is trivial to argue that the
slopes of (37) and (38) are different by inspecting the first
derivative. With the asymptotic lines of (37) and (38), the two
equations can only cross once and the result follows. &
3. Sensitivity analysis: A case study

Our case study is designed to examine the behavior of the
equilibrium price and lead time as predicted by our model when
different firms compete under varying market conditions. We
predict the required parameters in our model based on available
public data for two leading semiconductor foundry manufacturers
in Taiwan. Without implying identity, X and Y denote the two
large firms.

3.1. Case study data

Our case study is based upon timely representative data for
the semiconductor foundry manufacturing industry. We note that
the data will differ for other industry sectors, geographic regions,
and/or time epochs and the case study results may alter depend-
ing on different data sets.

The average quarterly shipment for 200-mm wafer products
per firm in 2007 is 722.5 thousand (K) (Science & Technology
Policy Research and Information Center (STPI), 2008). This ball-
park number allows us to predict the customer arrival rate, l0,
when both prices and lead times of all firms in the market are
identical, since the demand of a duopolist is roughly close to the
market average per firm due to the nearly half of weighting in the
average for duopoly firms. Therefore, we let l0 equal 722.5K
pieces per quarter in the case study. From public financial
information, we know that the quarterly shipments of X and Y

in 2007 are about 2.001 million (M) and 1.077M pieces, respec-
tively; this data allow us to estimate the ballpark number of firms’
service rates. We intentionally set an identical service rate of the
duopoly firms to leave room for conducting the sensitivity
analysis of the service rates. The service rate of the firms is
quoted at the average quarterly shipments of X and Y, i.e.,
mX¼mY¼1.54M pieces per quarter. The total market share of X

and Y in Taiwan is 68% with smaller firms accounting for
approximately 32% (IDC, 2008). We refer to the total market
share of X and Y as the preference factor, i.e., aC¼ .68 and
consequently, aM¼ .32, since a high market share firm potentially
has a larger impact on the decision difference for the demand
change and vice versa for the smaller firms. We assume an equal
preference factor of lead times and prices; in other words,
bt¼bp¼ .5. In addition, we assume that the two firms’ minimum
service levels sX and sY are both .95. The average selling price
(ASP) of finished wafer products is US $1000 (GS, 2008). The
production lead time in the foundry industry ranges from 30 to 50
day and the number, 36-day, is chosen for prediction of mt and
mp. We note that different products may have different
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production lead times. The purpose of the data set presented in
this section is to predict a reasonable data set of mt and mp from
the available public information for our later use in the sensitivity
analysis. Our data set allows us to roughly predict and round
mt¼180,000 and mp¼15,000 such that the available data satisfy
the KKT optimality conditions of (8)–(17) along with Observa-
tions 1 and 2.
3.2. Impact of firm characteristics

To study the effects of each firm’s characteristics of service rate
and service level on the equilibrium prices, lead times, and firm
profits, we consider X and Y with the parameters proposed in
Section 3.1, but only vary X’s service rate (mX) and service level
(sX), respectively. We compute the ratios of their corresponding
equilibrium prices, lead times, and profits to observe how the
equilibrium solution changes when only X adjusts its parameters.
The results are given in Fig. 1 and the ballpark number of profits
can be found in Fig. 2(b) and Fig. 3(b).

In Fig. 1(a), X’s service rate (mX) varies from 924, 1232, 1540,
1848, to 2156K pieces per quarter and Y’s service rate (mY)
remains the same (mY¼1540). In a similar setting in Fig. 1(b),
X’s service level (sX) varies from 0.9, 0.925, 0.95, 0.975, to 0.99
while firm Y’s service level (sY) is 0.95. We summarize the major
observations as follows:
(i)
 The ratios of the equilibrium prices remain almost the same;
the ratios of the equilibrium lead times decrease; the ratios of
the corresponding profits increase as the ratios of the service
rate increase. The trend of the ratios of the corresponding
profits is not surprising, but it is worth further examination of
Fig. 1. Impact of service rate (mX) a

Fig. 2. Impact of preference
the relationship between predicted equilibrium prices and
lead times. An increase in the service rates implies an increase
in capacity. This observation allows us to infer that a firm
appears not to raise its price due to competitiveness as its
capacity increases; otherwise, the firm may lose market
share. Meanwhile, an increase in capacity enables a firm to
reduce its lead time so that it can attract more demand to
increase its corresponding profit.
(ii)
 The ratios of the corresponding profits and equilibrium prices
remain almost the same; the ratios of the equilibrium lead
times increase as the ratios of the service levels increase. An
increase in service levels implies a more conservative per-
spective in quoted lead times. In other words, management
tends to quote a long lead time so the firm can easily satisfy
the requirement of a high service level (defined as the
probability that the total production cycle time is less than
or equal to the quoted lead time). From the numerical results,
an increase in lead times results in a decrease in the selling
price. However, due to competitiveness, the other firm tends
to reduce its selling price as well at the equilibrium. As a
result, the ratios of both firms’ corresponding profits and
equilibrium prices remain almost the same even though their
profits and selling prices decrease as one firm’s service level
increases. This shows that the ability to offer a higher service
level does not benefit the firm with the higher service level.
3.3. Impact of preference factors of firms

We next study how the preference factors affect the equili-
brium prices, lead times and profits. We consider different values
of aM, aC, bt, and bp such that aMþaC¼1 and btþbp¼1. Again,
nd service level (sX).

factor (aM).
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other parameters remain the same as proposed in Section 3.1; the
results are shown in Figs. 2 and 3.

The factor, aM, can be interpreted as the preference measure
accounting for the effect of the decision difference by the smaller
firms. As aM increases, the impact of the decision difference
between the large firm and the smaller firms on the customer
arrival rate increases. Meanwhile, as aM increases, the impact of
the decision difference between the two large firms on the
customer arrival rate decreases. We note this is a symmetric case
where both X and Y share the same parameters; therefore, X and Y

have identical equilibrium prices, lead times, and resulting
profits. Fig. 2 presents the trend of the equilibrium price, lead
time, and profit as aM increases. Only several discrete data sets
have been investigated in the case study so that the trend may
behave in a non-smooth manner. Clearly, both firms’ equilibrium
prices and lead times increase in aM and their corresponding
profits decline after aM¼ .2. A large value of aM indicates a small
value of aC, which represents a smaller impact of the decision
difference between the two large firms on the customer arrival
rate. Firms X and Y would not pay much attention to the
competition between them; hence, both the equilibrium price
and lead time increase as aM increase. However, the results shown
in Fig. 2 indicate that both an increase in the price and lead time
do not necessarily reduce the profitability of both firms depend-
ing on the level of aM.

The factors, bt and bp, can be interpreted as the preference
measures accounting for the effect of the lead times and prices on
the arrival rate, respectively. As bt increases, the impact of lead
time decisions on the customer arrival rate increases; meanwhile,
the impact of price decisions on the customer arrival rate
decreases. Similarly, X and Y have identical equilibrium prices,
lead times, and resulting profits in the symmetric case. Fig. 3
presents the trend of the equilibrium price, lead time, and profit
as bt increases. Again, only several discrete data sets have been
investigated in the case study so that the trend may behave in a
non-smooth manner. It is clear that the equilibrium lead times of
X and Y decrease, but the equilibrium prices increase in bt. Thus, if
firms pay more attention to the lead time decision, but less
attention to the price decision, the results are low equilibrium
lead times and high prices. The corresponding profits increase
after bt¼ .5; hence, the trend of profitability is not determined
based on the value of bt or bp.
4. Conclusions

This paper has examined the equilibrium pricing and lead time
decisions in a duopoly industry consisting of two leading firms
and a group of smaller firms all competing to provide goods or
services to customers. We consider each firm as a system that
behaves as an M/M/1 queue. The objective function of each firm
depends on its own decision variables as well as on the decision
variables of the competition. All firms attempt to maximize their
profits by making decisions about the price and lead time subject
to the constraints needed to satisfy the minimum required service
level which is defined as the probability of meeting the promised
lead time quotation.

We solve the combined KKT conditions for the equilibrium
decision of the price and the lead time. In equilibrium, no firm
wishes to deviate from its current decision given the others’
decisions. The equilibrium solution is obtained by simultaneously
solving the sufficient KKT optimality conditions instead of the
necessary conditions. Our model shows the sufficiency of the KKT
optimality conditions so that the solution to the KKT conditions is
indeed an equilibrium decision rather than an examination of all
possible KKT points for the equilibrium. Thus, we characterize the
analytical condition of the existence and uniqueness of the Nash
equilibrium of price and lead time decisions for both homogenous
and heterogeneous cases.

The case study of two leading semiconductor foundry manu-
facturers and several smaller firms examines the behavior of the
equilibrium price and lead time as the firms compete under
varying market conditions. The results produce some helpful
managerial insights. A unilateral increase in one firm’s capacity
does not appear to raise its price due to competitiveness, but
instead tends to reduce the lead time to attract more demands.
The ability to offer a higher service level does not automatically
guarantee a benefit to the firm with the higher service level. The
equilibrium prices and lead times of the two large firms increase
when they pay less attention to the competition between them,
but it does not necessarily imply reduced profitability for either
firm. Likewise, high prices and low lead times result when firms
pay more attention to their lead time decisions, and less to the
price decisions.

We suggest that three possible extensions to our prototypical
duopoly model are worth investigation. First, since we base our
model (and results) on a linear structure of the customer arrival
function, it would be useful to extend the model to other
structures of the customer arrival rate. Second, the service level
and the preference measures are assumed as given and fixed in
our model. Additional modeling should consider the service level
or preference measures as decision variables that can also affect
the customer arrival rate. Third, noting that unsatisfied orders
may cause a significant loss in profits due to potential penalties,
both penalty design and policy analysis are fruitful topics for
further consideration.
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Appendix

Proof of Lemma 1. For notational simplicity, we rewrite the
arrival rate li as

liðpi,ti9pj,tj,pM ,tMÞ

¼ l0�mtbt½aMðti�tMÞþaCðti�tjÞ��mpbp½aMðpi�pMÞþaCðpi�pjÞ�

¼ u000�u1ti�u2piþu3tjþu4pj ð42Þ

where

u000 ¼ l0þaMbtmttMþaMbpmppM

u1 ¼ btmt

u2 ¼ bpmp

u3 ¼ aCbtmt

u4 ¼ aCbpmp

u5 ¼�lnð1�sÞ

u1, u2, u3, u4,u540: ð43Þ

By inserting (42) into (4) and rearranging it, we have

ðu0�u1ti�u2piÞtir�u5 ð44Þ

where

u0 ¼ u00þu3tjþu4pj�mi:

Proving that the profit function of firm i, pi, is pseudo-concave
is equivalent to showing that p0i ¼�pi is pseudo-convex. Since p0i
is twice continuously differentiable, the gradient, rðp0iÞ, and
Hessian matrix, r2

ðp0iÞ, of p0i can be computed as

rðp0iÞ
T
¼

@p0
i

@pi

@p0
i

@ti


 �
¼ �liþu2pi u1pi

h i
,

and

r2
ðp0iÞ ¼

@2p0
i

@p2
i

@2p0
i

@pi@ti

@2p0
i

@ti@pi

@2p0
i

@t2
i

2
664

3
775¼ 2u2 u1

u1 0

" #
:

Rearranging (7), we have

MðX,bÞ ¼
2u2 u1

u1 0

" #
þb

ðli�u2piÞ
2

�u1piðli�u2piÞ

�u1piðli�u2piÞ ðu1piÞ
2

" #

¼
2u2þbðli�u2piÞ

2 u1�bu1piðli�u2piÞ

u1�bu1piðli�u2piÞ bðu1piÞ
2

" #
:

The determinant of M(X, b) is u2
1 2bpili�1
� �

. Since we only
focus on a nontrivial solution of the equilibrium price and lead
time, it is reasonable assuming that lower and upper bounds exist
for the prices and lead times of firm iAN. We let pi , pi , ti , and ti

denote these lower and upper bounds of prices and lead
times, respectively. Let b¼1/2f where j¼ pili and li ¼

u0�u1ti�u2piþu3tjþu4pj . It is obvious that f is a lower bound
of the profit function of firm i since the customer arrival rate has
the highest value for the variable with negative coefficients and
the lowest value for the variable with positive coefficients. As a
result, the determinant of M(X,b) is positive for such b. In
addition, the diagonal elements of M(X, b) are nonnegative. This
gives the result that there exists a real number b, 0rboþN,
such that M(X, b) is positive semi-definite. Following Definition 1,
p0i is a pseudo-convex function. &

Proof of Lemma 2. The feasible region C of constraints (4)–(6)
can be represented as

C ¼ ðpi,tiÞ9pi40,ti40, andðu0�u1ti�u2piÞtir�u5

� 

Let z
!

1 ¼ ðp1,t1ÞAC and z
!

2 ¼ ðp2,t2ÞAC. Consider the point
z
!
¼ ðp,tÞ ¼ a z

!
1þð1�aÞ z

!
2, 0rar1. Because p140 and p240,

it is obvious that p¼ap1þ (1�a)p240. Similarly, t40. These
show that (6) holds for z

!
¼ ðp,tÞ.

Constraint (4) can be represented as (44). For z
!

1 and z
!

2, we
have

u0�u1t1�u2p1r�u5=t1 ð45Þ

and

u0�u1t2�u2p2r�u5=t2: ð46Þ

Considering z
!
¼ ðp,tÞ, the left side of (44) can be rewritten as

ðu0�u1t�u2pÞt¼ ½aðu0�u1t1�u2p1Þ

þð1�aÞðu0�u1t2�u2p2Þ�ðat1þð1�aÞt2Þ:

Because of (45) and (46), and the Cauchy inequality (see Bartle,
1976), we have

ðu0�u1t�u2pÞtr a�u5

t1
þð1�aÞ�u5

t2

� �
ðat1þð1�aÞt2Þ

¼�u5 a2þð1�aÞ2það1�aÞ t2

t1
þ

t1

t2

� �� �
r�u5ða2þð1�aÞ2þ2að1�aÞÞ
¼�u5:

Therefore

ðu0�u1t�u2pÞtr�u5: ð47Þ

Due to (47), z
!
¼ ðp,tÞ also satisfies (4) and (5). In summary, for

z
!

1 ¼ ðp1,t1ÞAC and z
!

2 ¼ ðp2,t2ÞAC, we show that the point
z
!
¼ ðp,tÞ ¼ a z

!
1þð1�aÞ z

!
2, 0rar1 satisfies constraints (4)–(6).

It completes the proof.

Proof of Lemma 3. There are two situations such that aco0:
ao0, c40 and a40, co0. We first examine the former case
when ao0 and c40. Let function f(x) be ax3

þbxþc, which is
obviously continuous as xZ0. The first and second derivatives of f

are f
0

(x)¼3ax2
þb and f

00

(x)¼6ax. Function f is a concave function
as x40. If br0, f is a decreasing function when x is positive. In
addition, we have f(0)¼c40. As a result, f definitely intersects
axis x at a sufficiently large value of x. In other words, there exists
a unique positive solution to ax3

þbxþc¼0 if br0.

We then analyze the case when b40. There are two points
such that the first derivative of f equals 0; that is, x¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�b=3aÞ

p
.

Again, we have f(0)¼c40. Function f increases within the range
0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�b=3aÞ

ph i
, but decreases when x4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�b=3aÞ

p
. With the con-

cavity property, f intersects axis x at a sufficiently large value of x

as well. A similar argument follows for the latter case when a40,
co0 and it completes the proof. &

Proof of Observation 4. Rearranging (37), we have tY ¼

ðGtX=F1t3
X�H1tX�EÞ40. The inequality follows since G40. Simi-

larly, F2t3
Y�H2tY�E40 follows. &

Proof of Proposition 2. We discuss the sign of T(tX) in the
following two disjunctive cases: H1¼0 and H140. When H1¼0,
it is obvious that T(tX) is positive since all other terms are positive.
We then examine the case when H140. Let function B(tX) be
F1t3

X�H1tX�E. One can easily distinguish the critical points (local
maximum or minimum) of B(tX) since B(tX) is a continuous
and twice differentiable function. As a result, B(tX) increases
as tX o�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH1=3F1Þ

p
, B(tX) decreases as �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH1=3F1Þ

p
rtX o
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH1=3F1Þ

p
, and B(tX) increases as tX Z

ffiffiffiffiffiffi
H1
3F1

q
. In addition, we have

B(0)¼�Eo0, and B(tX) needs to be positive from Observation 4.
Combining these, we argue that the feasible region of tX is greater
than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH1=3F1Þ

p
; namely, 3F1t2

X�H140, and leading to the result
that 6F1t2

X�H140. Under this inequality, we have T(tX)40 as
H140. &
Proof of Proposition 3. To inspect the locations of critical points
of T(tX), we take the first and second derivatives of T(tX) as
shown below

T 0ðtXÞ ¼ 3F1tXð5F1t3
XþH1tXþ4EÞ

T 00ðtXÞ ¼ 6F1ð10F1t3
XþH1tXþ2EÞ:

For notational simplicity, we let P(tX) denote 5F1t3
XþH1tXþ4E.

One can easily distinguish the critical points of P(tX) since P(tX) is
a continuous and twice differentiable function. As a result,
P(tX) increases as tX o�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
, P(tX) decreases as

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
rtX o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
, and P(tX) increases as

tX Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
. We discuss the sign of T(tX) in the following

two disjunctive cases: (i) ð2=3ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
þ4E40, and (ii)

ð2=3ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
þ4Eo0.
(i)

(ii)
2

3
H1

ffiffiffiffiffiffiffiffi
�H1
15F1

q
þ4E40 :

We have P(0)¼4E40. The minimum of P(tX) for all tX40 is at
tX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
and with the value of Pð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
Þ,

which is equal to ð2=3ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
þ4E. Trivially, under

condition (i), P(tX) is positive for all tX40; namely, T’(tX)40
for all tX40. Therefore, T(tX) increases as tX40. In addition,
we have T(0)¼�EH140. Thus, T(tX)40 for all tX40.
2

3
H1

ffiffiffiffiffiffiffiffi
�H1
15F1

q
þ4Eo0 :

Under condition (ii), the local minimum of P(tX) at
tX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
is negative. In addition, P(0)¼4E40 and

P(tX) is an increasing and convex function as tX 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
. One can argue that P(tX)¼0 for tX40 has two

roots denoted by tX1
and tX2

, where

0otX1
o

ffiffiffiffiffiffiffiffi
�H1
15F1

q
ð48Þ

tX2
4

ffiffiffiffiffiffiffiffi
�H1
15F1

q
ð49Þ

At tX ¼ tX1
and tX ¼ tX2

, T(tX) is in its local maximum and
minimum since T 00 tX1

� �
o0 and T 00 tX2

� �
40. Since TðtX2

Þ is
the minimum point when tX40, thus, T(tX) is positive for
all tX40 if TðtX2

Þ is positive. This allows us to ignore the
case that tX ¼ tX1

. We then examine the sign of TðtX2
Þ in the

following by inspecting two disjunctive cases: (ii-a)
H1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4Eo0 and (ii-b) ðH1=6Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4E40.

(ii-a) H1

6

ffiffiffiffiffiffiffi
�H1
6F1

q
þ4Eo0 :

Under case (ii-a), Pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
Þ ¼ ðH1=6Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ

4Eo0. In addition, since PðtX2
Þ ¼ 0, we have

Pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
Þ PðtX2

Þ. As mentioned earlier, P(tX)
increases as tX 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
. From (49) and the

obvious inequality
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
, both

tX2
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
are greater than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
.

Within this range, P(tX) is increasing in tX. Therefore

tX2
4

ffiffiffiffiffiffiffi
�H1
6F1

q
ð50Þ

Again, since PðtX2
Þ ¼ 0, we have

5F1t3
X2
þH1tX2

þ4E¼ 0 ð51Þ

Substituting (51) into TðtX2
Þ, we have

TðtX2
Þ ¼

tX2
4 ðH1þ6F1t2

X2
ÞðH1�3F1t2

X2
Þ: ð52Þ

Since H1o0, H1�3F1t2
X2
o0. Since tX2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
and

F1 is positive, we have H1þ6F1t2
X2
40. Combining the

above inequalities, therefore, T tX2

� �
o0. Thus, T(tX) is

negative for some tX40 when ð2=3ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
þ

4Eo0 and ð1=6ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4Eo0.

(ii-b) H1

6

ffiffiffiffiffiffiffi
�H1
6F1

q
þ4E40 :

Under case (ii-b), Pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
Þ ¼

H1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ

4E40. In addition, since PðtX2
Þ ¼ 0, we have

Pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
Þ4 PðtX2

Þ. As mentioned earlier, P(tX)

increases as tX 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
. It is similar to case

(a), where both tX2
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
are greater thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�H1=15F1Þ
p

. Within this range, P(tX) is increasing in

tX. Therefore

tX2
o

ffiffiffiffiffiffiffi
�H1
6F1

q
ð53Þ

Since tX2
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
and F1 is positive, we have

H1þ6F1t2
X2
o0. Again, H1�3F1t2

X2
o0 since H1o0.

Therefore, the sign of T tX2

� �
is positive. Thus, T(tX) is

positive for all tX40 when ð2=3ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
þ

4Eo0 and ð1=6ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4E40.
To summarize the above proof for clarification purposes, from
(i), we have shown that T(tX)40 for all tX40 when
ð2=3ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
þ4E40. There are two disjunctive cases in

(ii) in which we state that T(tX) is negative for some tX40 when
ð2=3ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
þ4Eo0 and ð1=6ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4Eo0,

but T(tX) is positive for all tX40 when
ð2=3ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
þ4Eo0 and ð1=6ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4E40.

In addition, the range of ð2=3ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=15F1Þ

p
þ4E40 is con-

tained in the range of ð1=6ÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�H1=6F1Þ

p
þ4E40. Hence, it

completes the proof.
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