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This paper introduces a new combinatorial game, named XT Domineering, together with its mathemat-
ical analysis. XT Domineering is modified from the Domineering game in which 1 � 2 or 2 � 1 dominos
are allowed to be placed on empty squares in an m � n board. This new game allows a player to place a
1 � 1 domino on an empty square s while unable to place a 1 � 2 or 2 � 1 domino in the connected group
of empty squares that includes s. After modifying the rule, each position in the game becomes an infin-
itesimal. This paper calculates the game values of all sub-graphs of 3 � 3 squares and shows that each
sub-graph of 3 � 3 squares is a linear combination of 8 elementary infinitesimals. These pre-stored game
values can be viewed as a knowledge base for playing XT Domineering. Instead of searching the whole
game trees, a simple rule for determining the optimal outcome of any sum of these positions is presented.
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1. Introduction

Since the 1970s, combinatorial game theory [1,2] has become
the common fundamental mathematical model for the analysis
of many intelligent games. Based on the theory, playing or solving
many combinatorial games such as Nim [3,4], Triangular Nim [5],
Clobber [6] and Cutthroat [7] may simply become mathematical
calculations, such as summation, instead of a complex tree search.

Domineering, designed by Göran Andersson (cf.[8]), is one of
combinatorial games based on the model. In an m � n Domineer-
ing, two players alternatively place 1 � 2 and 2 � 1 domino at a po-
sition, if there exists such a vacancy in a board with m � n squares.
One player is allowed to place 1 � 2 domino only, while the other
is 2 � 1 domino only. The one who cannot place domino loses.

In the past, many Domineering problems were solved. The gen-
eral Domineering problem of 2 � n board for all odd n was solved
by Berlekamp [9]. The researchers in [10] used the technique of
transposition tables to solve the 8 � 8 board. Subsequently, the
researchers in [11] found out the results for boards of width 2, 3,
5, and 7 and some specific cases. Recently, Bullock solved the
10 � 10 board Domineering [12]. Furthermore, Cincotti developed
three players Domineering on a three dimensional board [13,14].

This paper introduces a new game named XT Domineering
(named from eXTended Domineering). XT Domineering, modified
from the Domineering game, allows players to place a 1 � 1 dom-
ino on an empty square s while unable to place a 1 � 2 or 2 � 1
domino in the connected group of empty squares that includes s.
ll rights reserved.
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A connected group of empty squares is called an active group. After
modifying the rule, players are allowed to place 1 � 1 domino on
any square of an active group on which players are not allowed
to place any dominos in the original Domineering game. For exam-
ple, in XT Domineering, all 1 � 1 isolated vacancies in the board are
allowed to be placed by more dominos. Thus, the move lengths in
the new game are normally longer than those in Domineering.
Thus, the game has higher game-tree complexity, based on the def-
inition in [15].

This paper also introduces the mathematical analysis of XT
Domineering. In XT Domineering, each game position is actually
an infinitesimal (as described in Section 4). In this paper, we study
several interesting infinitesimals in XT Domineering. This paper
calculates the game values of all sub-graphs of 3 � 3 squares and
presents a rule to determine the outcome of any sum of these
positions.

Section 2 reviews the combinational games including three sub-
groups of games. Section 3 reviews the game Domineering and
introduces the new game, XT Domineering. Section 4 derives the
game values of 3 � 3 XT Domineering, while Section 5 derives
the outcomes of sums of 3 � 3 XT Domineering. Section 6 con-
cludes this paper.
2. Combinatorial games

Combinatorial game theory [2] starts from a simple definition of
game: a game is an ordered pair of sets of games. Conventionally, a
game G is denoted as:

G ¼ fGLjGRg; ð1Þ

http://dx.doi.org/10.1016/j.knosys.2011.11.008
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where GL and GR are sets of games. A special game is named 0, when
both GL and GR are empty sets, £.

Negation, addition and comparisons are defined as follows.

� G ¼ f�GRj � GLg; ð2Þ

Gþ H ¼ GL þ H;Gþ HLjR þ H;Gþ HR
n o

; ð3Þ

G P 0; if and only if there is no element in GR
6 0; ð4Þ

G 6 0; if and only if � GR P 0; ð5Þ
G P H; if and only if G� H P 0: ð6Þ

When neither G P H nor G 6 H, it is said G confused with H, denoted
by GkH. G < jH denotes either G < H or GkH, and similarly for Gj > H.
Furthermore, an equivalence relation on the sets of games is defined
as follows.

G � H; if and only if G P H and G 6 H: ð7Þ

The equivalence classes of games form an algebraic group,
which can be used to describe the positions of many intelligent
games as follows.

� There are two players (say Left and Right) move alternatively.
� The game is a sum of positions; each position has two sets of

next positions; one for each player.
� On each player’s turn, the player can choose one position and

move the position to one of its next positions.
� The player who cannot find a move is the loser.

For each game G, there are four types of possible outcomes. The
corresponding relations between G and 0 are described as below:

� G � 0: The first player cannot win the game.
� G < 0: Left cannot win the game.
� G > 0: Right cannot win the game.
� Gk0: The first player can win the game.

In general, players are concerned with who can win a given
game G. Mathematically speaking, the question is equivalent to
determining one of the above four relations between G and 0. Since
we are dealing with equivalence classes, for simplicity, we shall
use the symbol = to replace � in the following context.

There are several subgroups of combinatorial games whose
addition and outcome properties are well-studied. Some of them
are reviewed in the following subsections.

2.1. Numbers

A game G is called a number [1,2] if all the elements in GL and GR

are numbers and there is no element in GL greater than or equal to
any element in GR. Some numbers are illustrated as follows:

1 ¼ f0j£g; . . . ;

n ¼ fn� 1j£g;
ð8Þ

1=2 ¼ f0j1g; . . . ;

m=2k ¼ fðm� 1Þ=2kjðmþ 1Þ=2kg:
ð9Þ

These numbers (integers and rationals) can be added as the
usual ways. Numbers are well ordered, and their relations with 0
are clear. Hence, one can easily determine the outcome for any
sum of numbers.

2.2. Nimbers

A game G is a nimber [3,4] if all the elements in GL and GR are
nimbers and GL = GR. Nimbers are defined as:
�1 ¼ f0j0g;
�2 ¼ f0; �1j0; �1g;
. . .
�n ¼ f0; �1; �2; . . . ; �ðn� 1Þj0; �1; �2; . . . ; �ðn� 1Þg: ð10Þ

For simplicity, ⁄1 is also denoted as ⁄ and named star. The special
nimber with infinite options:

I ¼ f0; �1; �2; . . . j 0; �1; �2; . . .g ð11Þ

is named remote star.
For each non-zero nimber, the first player can win a game. That

is, each non-zero nimber is confused with 0. Hence one can easily
determine the outcome of any sum of nimbers [4,16]. From this,
two well-known properties are (1) ⁄n + ⁄n = 0, and (2) {⁄nj⁄n} = 0.

2.3. Sumbers

For each number d, there is a corresponding up defined as
[1,2,17].

" ðdÞ ¼ " ðdLÞ; �j " ðdRÞ; �
n o

: ð12Þ

The negation of up is called down.

# ðdÞ ¼ � " ðdÞ: ð13Þ

A property between all ups and stars [1,2] is: for all numbers
d > 0 and n > 1, we have

" ðdÞ > �n and " ðdÞ > I ð14Þ

and, for all numbers d, we have

" ðdÞk�1 ðor " ðdÞk�Þ: ð15Þ

We use the notation m."(d) to denote the sum of m copies of
"(d). A sumber S (cf. [20]) is a sum of ups, downs and stars (⁄).

S ¼
X

k¼1;n

ak� " ðdkÞ þ a0��; ð16Þ

where ak are integers and dk are numbers, 0 < k 6 n. Without loss of
generality, in (16), we assume 0 < d1 < d2 < � � � < dn and a0 = 0 or 1.
Clearly, sumbers are closed under addition. We use the notation
G� H to denote that the sum of any number of copies of G is less
than H. The sumbers have the following properties:

0 <" ðd1Þ <" ðd2Þ; ð17Þ
0�" ðdnþ1Þ� " ðdnÞ �" ðdnÞ� " ðdn�1Þ; ð18Þ
" ðdnþ1Þþ " ðdnþ1Þ� " ðdnÞ>�; ð19Þ

where 0 < d1 < d2 < � � � < dn < dn+1 < � � �. These properties are sufficient
to determine the outcome of any sum of sumbers. The research in
[20] provides a simple rule to determine the outcome of (16):

S > 0 if and only if
X

k¼1;n

ak > a0

or
X

k¼1;n

ak ¼ a0; and a1 < 0

 !
;

where a0 is either 1 or 0. Note that the net number of ups is greater
than the net number of ⁄, or the net number of ups equals the net
number of ⁄ and the smallest up has a negative coefficient.

For example, consider SA = �"(3) + 3."(1) + ⁄. In SA, the net num-
ber of ups (=2) is greater than the net number of ⁄ (=1), thus SA > 0.
Consider SB = �"(3) + 3."(2) � "(1) + ⁄. In SB, the net number of ups
(=1) equals the net number of ⁄(=1), and the smallest up (="(1)) has
a negative coefficient (= � 1), thus SB > 0. Consider SC = "(3)
� 2."(2) + 2."(1) + ⁄. In SC, the net number of ups (=1) equals the
net number of ⁄ (=1), but the smallest up (="(1)) has a positive
coefficient (=2), thus SC � 0. Let ‘‘� ’’ denote ‘‘not greater than’’.



Fig. 2. Sub-positions of the graph in Fig. 1.
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2.4. Infinitesimal and atomic weight

A game G is called an infinitesimal if and only if G is less than any
positive numbers and greater than any negative numbers. Nimbers
and sumbers are all infinitesimals. Researchers in [1,2] introduced
the definition of atomic weight. If G = {Ga,Gb,Gc, . . . , jGd,Ge,Gf, . . .}
where Ga, Gb, Gc, Gd, Ge, Gf, . . . have atomic weight a, b, c, d, e, f,
. . ., then the atomic weight of G is
G0 ¼ fa� 2; b� 2; c � 2; . . . jdþ 2; eþ 2; f þ 2; . . .g

unless G0 is an integer and either G > q or G < q. In these excep-
tional cases, if G > q then the atomic weight of G is the largest inte-
ger <jd + 2, e + 2, f + 2, . . . , and if G < q then the atomic weight of G is
the least integer j > a � 2, b � 2, c � 2, . . ..

According to the above definition, each nimber has atomic
weight 0; each up has atomic weight 1.

Two important properties [1,2] about atomic weights are de-
scribed as follows.

1. The atomic weight of a sum of games equals to the sum of the
atomic weights of the games.

2. If the atomic weight of a game is greater than or equals to 2,
then Left wins the game. On the other hand, if it is less than
or equals to �2, then Right wins the game. However, there
are no general rules when the atomic weight is between �2
and 2.

For example, " + "(2) has atomic weight 2, hence Left can win
the game; ; + "(2) + ;(3) + ;(4) �q + ⁄ � ⁄(3) has atomic weight
�2, hence Right can win the game. Thus, for some games, we can
determine the winners by computing the atomic weight of sub-
games, instead of searching complex trees.
3. Domineering and XT Domineering

Domineering (also called Stop-Gate or Crosscram) [8] is a math-
ematical game played on a board with n � n squares. Two players
have a collection of 1 � 2 and 2 � 1 dominos which they place on
the grid in turn, covering up squares. One player, Left, plays first
and places domino vertically (1 � 2), while the other, Right, places
horizontally (2 � 1). The first player who cannot place a domino
loses the game.

As the game progresses, the original n � n squares may be par-
titioned into a set of disjoint sub-positions. Fig. 1 shows a graph in
the middle of a 6 � 6 Domineering. It contains 5 disjoint sub-posi-
tions shown in Fig. 2.

In terms of combinatorial game theory, the game G in Fig. 1 is a
sum of sub-positions A, B, C, D, and E, i.e., G = A + B + C + D + E. Note
that by rotating position D 90� counter clockwise, one can get po-
sition E. In general, rotating a Domineering position 90� (either
clockwise or counter clockwise) will result a negation of the origi-
nal position, and reflecting a Domineering position with respect to
a vertical axis or horizontal axis will not change the game value of
the position. Hence, E = �D, and G = A + B + C.
Fig. 1. Middle game of 6 � 6 Domineering.
Domineering attracted many combinatorial game researchers
because the game contains many numbers, switches of numbers,
and complicated hot positions. Fig. 3 (below) shows the game val-
ues of the positions in Fig. 2. Note that the derivations are based on
[9] and the details of derivations are therefore omitted in this pa-
per. By summing up the values, we have G = 3/4 + {1j � 1} � 1 =
�1/4 + {1j � 1} = {3/4j � 5/4}, thus the first player can win the
game. This illustrates the power of using combinatorial theory,
since we can derive the result without tree search as many board
games do. A simpler example is illustrated in Appendix A.

XT Domineering is modified from the Domineering game by
changing the rule to allow a player placing a small (1 � 1) domino
on a sub-position while unable to place his big domino (1 � 2 or
2 � 1) in the sub-position in the original Domineering game. For
example, consider sub-position C in Fig. 2. In Domineering, Left
cannot place a domino vertically (1 � 2) at sub-position C, while
in XT Domineering, Left is allowed to place a 1 � 1 domino at
sub-position C. More specifically, sub-position C has the value
{;j0} = �1 in Domineering, and {{0j0}k0} = {⁄j0} = ; in XT Domi-
neering. Note that Left is not allowed to place a 1 � 1 domino at
a position while he is able to place a 1 � 2 domino at that position
and Right is not allowed to place a 1 � 1 domino at a position while
he is able to place a 2 � 1 domino at that position. For example,
both players are not allowed to place 1 � 1 domino at positions
A, B, D and E in Fig. 2.

Since XT Domineering has at least the same number of options
as Domineering and allows more moves (e.g., on 1 � 1 vacancies),
XT Domineering has higher game-tree complexity [15].

Note that each player has at least one option at any non-empty
position in XT Domineering. This nature prevents the occurrence of
non-zero numbers and ensures that each position in XT Domineer-
ing is an infinitesimal. One of the major motivations of this paper is
to see what kind of infinitesimals may be shown up in this game.

4. Game values of 3 � 3 XT Domineering

For XT Domineering with 1 � n squares, the games have peri-
odic values with period length 8, {0, ⁄,;,", ⁄,0,"⁄,;⁄} [18]. This is in
fact a partisan octal game [19]. In this section, we investigate a to-
tal of 29 sub-graphs of 3 � 3 squares in XT Domineering.

After excluding non-connected sub-graphs, rotated negation
sub-graphs, or reflected equivalence sub-graphs, there are 34 dis-
tinct positions. The game values of these distinct positions are de-
rived based on the above inequalities (1)–(19), and shown in Table
1. Each position in Table 1 is a linear combination of the following
eight elementary games:

� ¼ f0j0g; ð20Þ
"¼ f0j�g; ð21Þ
"þ ¼ f" j�g; ð22Þ
Fig. 3. Some game values in Domineering.



Table 1
Game values of 3 � 3 XT Domineering.
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" =2 ¼ f"" �j # �g; ð23Þ
H ¼ f0; " �j#�;0g; ð24Þ
�=2 ¼ f"" j ## �g; ð25Þ
ð�=2Þþ ¼ f""; "" �j ## �g; ð26Þ
} ¼ f""" �j ## #�g: ð27Þ

For simplicity, let "" indicate " + ", and similarly for ""⁄, """⁄,
etc.

The games ⁄, " and "+ (="(2)) have been introduced in Section 3.
⁄ has atomic weight 0 (as described in Section 2.4), while " and "+

have atomic weight 1 each. We use the symbol "2 to denote "+ � ".

"2 ¼ "�� " : ð28Þ

From inequality (18), we have

"	 "2 > 0: ð29Þ

The game "/2 (half up), as the name suggested, has atomic
weight 1/2 and the following properties:

" =2þ " =2 ¼"; ð30Þ
" =2 > "2: ð31Þ

The game w (black star) has atomic weight 0 and with property
similar to nimbers:

HþH ¼ 0; ð32Þ
Hk�ðnÞ; for integer n > 0: ð33Þ

The game ⁄/2 (half star), as the name suggested, has the follow-
ing property:
�=2þ �=2 ¼ �: ð34Þ

The game ⁄/2 has atomic weight {0j0} = ⁄, since the atomic
weight of "" is +2 and that of ;;⁄ is �2.

The game (⁄/2)+ (half star plus), as the name suggested, is just
slightly greater than ⁄/2 and has atomic weight {0,0j0} = ⁄. The dif-
ference between (⁄/2)+and ⁄/2 is named M⁄:

M� ¼ ð�=2Þþ � �=2 > 0: ð35Þ

Since the atomic weight of both (⁄/2)+ and ⁄/2 are ⁄, the atomic
weight of M⁄equals ⁄ � ⁄ = 0.

The game } (diamond) has atomic weight {1j � 1}. Since the
incentive of } (diamond) is greater than the ones of all the other
7 elementary games, } should always be played first among the
8 elementary games. Diamond also has the property below:

}þ} ¼ 0: ð36Þ

The calculation for the values of positions in Table 1 is a tedious
process. In general, one first derives a position expression accord-
ing to the rule and then simplifies the expression by removing the
dominated options and replacing with the reversible options (c.f.
[1,2]). For example, considering P4�3, according the rule
P4�3 = {0,;j"}. After eliminating the dominated option ; (; < 0),
one can get P4�3 = {0j"}. Considering P5�7, according the rule
P5�7 = {⁄j⁄}. After replacing P5�7 with reversible option ðPLR

5�7 ¼ 0Þ,
one can get P5�7 = 0. After simplifying a position, one needs to
check whether the position can be represented as a sum of simpler
game. For example, P4�3 = {0j"} = ""⁄. The research in [20] provided
an algorithm to simplify switches of up sums into up sums when-
ever possible. The game values in Table 1 have also been verified in
CgSuite [21], a useful tool for deriving game values.

Fig. 4 shows the corresponding XT Domineering games values of
positions in Fig. 2. The derivations for C, E, and E+⁄ are illustrated in
Appendix A.

The sum in Fig. 4 is "/2 + ⁄ + ; + ;;⁄ + ""⁄ = ;/2 + ⁄ = {"j;;}. Hence
the first player can win the game.



Fig. 4. Some game values in XT Domineering.

Fig. 5. Some game values in XT Domineering.

K.-Y. Kao et al. / Knowledge-Based Systems 34 (2012) 55–63 59
Assume that sub-position C is changed as shown in Fig. 5. Then,
the sum in Fig. 5 becomes "/2 + ⁄ + "" + ;;⁄ + ""⁄ = "" + "/2 + ⁄. Since
the atomic weight of the above sum is 2 + 1/2, over 2, Left wins the
game. From above examples, Table 1 becomes an important knowl-
edge base for playing the game of XT Domineering.
5. Outcome of 3 � 3 XT Domineering

In the previous section, we derive the values of positions in Ta-
ble 1. Then, we can easily determine the outcome of sums, if the
atomic weights are at least 2 or at most �2. However, there are
no simple rules when the atomic weights are between �2 and 2.

This section discusses the approach to determine the outcome
of sums of 3 � 3 XT Domineering, even when the atomic weights
are between �2 and 2. Since the game } will always be played be-
fore any other games in Table 1, we may only focus on the analysis
of sums of the other 7 elementary games. Without loss of general-
ity, a sum S of any positions in Table 1 can be written as:
Table 2
Minimum ups U required for U + SB + SC > 0.

SCnSB (n > 0) 1 2 3 4

0 w ⁄ w+⁄

1 (n + 1).M⁄ 0 "2 0 "2

2 M⁄ 0 "2 " + 2."2 " + "2

3 0 "2, "/2 � "2 "2 " + 2."2 " + "2

4 �n.M⁄ " + 2."2 " + "2 " + 2."2 " + "2

5 ⁄/
2 + (n + 2).M⁄

"/2 "/2 + "2 "/2 "/2 + "2

6 ⁄/2 + 2.M⁄ "/2 "/2 + "2 " � "2, "/
2 + 2."2

"/2 + "2

7 ⁄/2 + M⁄ "/2 "/2 + "2 "/2 + " + 2."2 "/
2 + " + "2

8 ⁄/2 " � "2, "/
2 + 2."2

"/2 + "2 "/2 + " + 2."2 "/
2 + " + "2

9 ⁄/2 � n.M⁄ "/2 + " + 2."2 "/
2 + " + "2

"/2 + " + 2."2 "/
2 + " + "2

(a)
S ¼ SA þ SB þ SC ; ð37Þ
Fig. 6. Some game values in XT Domineering.
where SA is a linear combination of "+, " and "/2,

SB is a linear combination of ⁄ and w, and
SC is a linear combination of ⁄/2 and M⁄.

SA measures the up-ness (or advantage for Left) of S; SB is a sum
that neither player has advantage; SC consists of games with atom-
ic weight ⁄. There are only 4 possible cases of SB, as shown in the
column subhead of Table 2, and 9 possible cases of SC, as shown
in the row subhead of Table 2. Note that the atomic weight of SC

is 0 in row 1, 2, 3 and 4, and ⁄ in row 5, 6, 7, 8 and 9.
Table 2 is a set of 39 inequalities (note that there are two values

in each of grid(3,1), grid(8,1) and grid(6,3)), 1 
 i 
 9, 1 
 j 
 4,

gridði; jÞ þ rowðiÞ þ colðjÞ > 0: ð38Þ

The proof for these inequalities is given in Appendix B. Let us
illustrate by some example. The ups in grid(9,2) is "/2 + " + "2, it
corresponds to the inequality:

" =2þ " þ"2 þ �=2� n: M� þH > 0; for n > 0:

Grid(3,1) represents 2 inequalities: "2 > 0 and "/2 � "2 > 0;
grid(8,1) represents 2 inequalities: " � "2 + ⁄/2 > 0 and "/
2 + 2."2 + ⁄/2 > 0. These inequalities are sufficient to determine
the outcome of any sum of the 8 elementary games. The general
steps to determine the outcome of a sum S of 3 � 3 XT Domineer-
ing is described as follows:

1. Check the game value of each of S’s position from Table 1.
2. If there is any } in the sum, play it out first.
3. Denote the sum SA + SB + SC, (37) by S, and determine the value

of SA, SB and SC.
4. Use SB and SC to lookup Table 2 for the minimum ups U required.
5. Determine whether SA � U or not. Inequalities (29)–(31) can

help the determining process.
6. S > 0 if and only if SA � U.
7. To determine whether S < 0 or not, it is equivalent to determin-

ing whether �S > 0 or not. Apply the above steps to �S.
(b)

Fig. 7. Deriving both game values of C and E of Fig. 2 in (a) and (b), respectively.



Fig. 8. Deriving the game values of C + E.

(a)

(b)

Fig. 9. Deriving both game values of C and E of Fig. 2 in (a) and (b), respectively.
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For example, consider the sum S of the sub-positions as shown
in Fig. 6 and who wins the game.

The sum S can be simplified as:

S ¼ Hþ � þ �=2þ "" �þ "" �þ ## þ� þ ð�=2Þþ ¼ Hþ � þ �=2þ "
" þ� þ ð�=2Þþ ¼ H� �=2þ "" þ� þ ð�=2Þþ ¼ Hþ "" � þ M�
and,

SA ¼"";
SB ¼ Hþ �;
SC ¼ M�:



Fig. 10. Deriving the game values of C + E.
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Using SB and SC to lookup Table 2, we get U = " + "2. Since
SA = "" > " + "2 = U, we conclude S > 0. Hence the game is a win
for Left, no matter who moves first.

6. Conclusion and further consideration

This paper has the following three major contributions. First, we
present a new game, XT Domineering, which has higher game-tree
complexity [15] than Domineering.

Second, we also have presented a mathematical approach to
solve sums of 3 � 3 XT Domineering. Again, this success demon-
strates the potential of applying combinatorial game theory to
solving more of other intelligent games.

After solving 3 � 3 XT Domineering, it is natural to think of
3 � 4, 4 � 4, or even larger size XT Domineering. According to
our preliminary study, there seems to be no simple close form
equation that can relate a given position to its game value. Thus
a lookup table is required to store the values of all the positions.
CgSuite [21] is a useful tool to derive the values. After deriving
the canonical form of the game values, one still needs to check
whether a game can be decomposed as a sum of simpler elemen-
tary games. Unfortunately, there are too many sub-positions in
3 � 4, 4 � 4, or even larger size XT Domineering, we cannot afford
to examine all the positions and check whether they can be decom-
posed as simpler elementary games. An automated game decom-
position procedure is in need and deserves further research in
the future.

Third, we find several infinitesimal games with interesting
properties, including w, ⁄/2, (⁄/2)+ and "/2. It is worth further re-
search to find more other interesting infinitesimal games. The
game of XT Domineering is a rich source of infinitesimal games.
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Appendix A

The power of using combinatorial theory is to derive the game
value (or result) without tree search as many board games do. This
is well described in many articles such as [6,7]. In this appendix, a
simple Domineering example with C and E in Fig. 2 as well as a XT
Domineering example is illustrated to demonstrate the power of
using combinatorial theory.

First, let us investigate the game of Domineering. The game va-
lue of C, �1, is derived in Fig. 7(a). The negative game value indi-
cates that Right wins the game. The game value of E, 1/2, is
derived in Fig. 7(b). The positive value indicates that Left wins
the game. In the derivation, a cross is used to indicate that Left does
not choose �1 since choosing 0 is better to Left.

If both C and E are left in a game, we can derive the game value,
�1 + 1/2 = �1/2, by using the combinatorial theory, and easily con-
clude that Right wins the game due to the negative game value.
However, in case of using tree search, we need to derive the same
game value as shown in Fig. 8, whose computational complexity
grows exponentially as more are added.

Now, let us investigate the game of XT Domineering. As de-
scribed in Section 3, the game becomes more complex since
1 � 1 dominos are also allowed to be placed. For both games C
and E, the derivations for both are shown in Fig. 9(a) and (b),
respectively. The game value of C, ; (a negative infinitesimal), indi-
cates that Right still wins the game, while the game value of E, ""⁄,
indicates that Left wins the game. The derivations for both are
clearly much more complex, when compared with Fig. 7.

For simplicity, we choose the game ⁄ + E, as shown in Fig. 10. Its
game value is "" with atomic weight 2, which indicates that Left
wins the game, as described in Section 3.

Appendix B

Proposition 1. The ups in the grids of Table 2 are the sufficient and
necessary conditions for

gridði; jÞ þ rowðiÞ þ colðjÞ > 0:
Proof. Let (Gi,j) denote the inequality

gridði; jÞ þ rowðiÞ þ colðjÞ > 0:

We first show the sufficiency of the conditions.

� Since " > "/2 > "2 > 0, we have (G3,1), "2 > 0 and "/2 � "2 > 0.
� Since ⁄/2 + M⁄ + "/2 > 0, we have (G7,1).
� Since ⁄/2 + " � "2 > 0 and ⁄/2 + "/2 + 2."2 > 0, we have (G8,1).
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� Since ⁄/2 + "/2 + "2 > w, we have (G8,2).
� Since M⁄ + M⁄ > ⁄, we have (G1,3), and
(G7,1)) (G5,3),
(G8,1)) (G6,3), and
(G8,2)) (G6,4).

� Since ⁄/2 + "/2 + " + "2 > w + ⁄, we have (G8,4). (G8,2) and
(G8,4)) (G9,2) and (G9,4).
� Since "2 > w and " + "2 > w + ⁄, we have (G3,2) and (G3,4). (G3,2)

and (G3,4)) (G4,2) and (G4,4).
� Since "2 > w, we have (G3,2), and
(G4,2)) (G4,1),
(G9,2)) (G9,1),
(G1,3)) (G1,4),
(G4,4)) (G4,3), and
(G9,4)) (G9,3).

� Since M⁄> 0, we have (G2,1), and

(G2,1)) (G1,1),
(G7,1)) (G6,1)) (G5,1),
(G3,2)) (G2,2)) (G1,2),
(G8,2)) (G7,2)) (G6,2)) (G5,2),
(G4,3)) (G3,3)) (G2,3),
(G9,3)) (G8,3)) (G7,3),
(G3,4)) (G2,4),
(G6,4)) (G5,4), and
(G8,4)) (G7,4).

This completes proof for the sufficiency of the conditions. h

Next, we prove the necessary of the conditions. We need to
show that any sums of ups less than or confused with the value
in a corresponding grid will result in an insufficient condition. Note
that the smallest increments of sums ups are "2 and "/2 � "2, and
the only possible sums of ups confusing with 0 are
"/2 � (n + 1)."2, n > 0.

For (G3,1), (G6,3) and (G8,1), we only need to show that if the va-
lue in the corresponding grid reduced by "2, then the inequality
will not hold. For all the other grids, in order to prove the necessary
conditions, we need to show that if the value in a grid reduced by
"2 or "/2 � "2, or, if the value in a grid increased or reduced by "/
2 � (n + 1)."2, n > 0, then the corresponding inequality will not
hold. Since "/2 � 2."2 � "/2 � (n + 1)."2 > �("/2 � "2) > �("/
2 � (n + 1)."2), it is sufficient to show: if the value in a grid reduced
by "2 or increase by "/2 � 2."2 then the corresponding inequality
will not hold.

� Consider (G3,1), "2 > 0 and "/2 � "2 > 0.
But 0 � 0 and "/2 � 2."2 � 0.
Thus "2 or "/2 � "2 is a necessary condition.
� Consider (G6,3),
�=2þ 2:M�þ " =2þ 2:"2 > � and �=2þ 2:M�þ " �"2 > �:
But
�=2þ 2:M�þ " =2þ "2� � and �=2þ 2:M�þ " �2:"2� �:
Thus "/2 + 2."2 or " � "2 is a necessary condition.

Note that, since 2.M⁄ > ⁄, the necessary condition of (G6,3) implies
the necessary condition of (G8,1).

� Consider (G1,2), (n + 1).M⁄ + "2 > w.
But (n + 1).M⁄ � w and (n + 1).M⁄ + "/2 � "2 � w.
Thus "2 is a necessary condition.
� Consider (G1,4), (n + 1).M⁄ + "2 > w + ⁄.

But (n + 1).M⁄ � w + ⁄ and (n + 1).M⁄ + "/2 � "2 � w + ⁄

Thus "2 is a necessary condition.
� Consider (G2,3), M⁄ + " + 2."2 > ⁄.
But M⁄ + " + "2 � ⁄ and M⁄ + " + "/2 � ⁄.
Thus " + 2."2 is a necessary condition.
� Consider (G4,1), �n.M⁄ + " + 2."2 > 0.

But � n.M⁄ + " + "2 � 0 and �n.M⁄ + " + "/2 � 0.
Thus " + 2."2 is a necessary condition.
� Consider (G5,2), ⁄/2 + n.M⁄ + "/2 + "2 > w.

But ⁄/2 + n.M⁄ + "/2 � w and ⁄/2 + n.M⁄ + " � "2 � w.
Thus "/2 + "2 is a necessary condition.
� Consider (G5,4), ⁄/2 + (n + 2).M⁄ + "/2 + "2 > w + ⁄.

But ⁄/2 + (n + 2).M⁄ + "/2 � w + ⁄ and ⁄/2 + (n + 2).M⁄ + " �
"2 � w+⁄.
Thus "/2 + "2 is a necessary condition.
� Consider (G7,3), ⁄/2 + M⁄ + "/2 + " + 2."2 > ⁄.

But ⁄/2 + M⁄ + "/2 + " + "2 � ⁄ and ⁄/2 + M⁄ + 2." � ⁄.
Thus "/2 + " + 2."2 is a necessary condition.
� Consider (G9,1), ⁄/2 � n.M⁄ + "/2 + " + 2."2 > 0.

But ⁄/2 � n.M⁄ + "/2 + " + "2 � 0 and ⁄/2 � n.M⁄ + 2." � 0.
Thus "/2 + " + 2."2 is a necessary condition.
Let (Gi,j)⁄ denote the inequalities.
grid(i, j) + row(i) + col(j) � "2 � 0, and grid(i, j) + row(i) + col(j) +
"/2 � 2."2 � 0.
� Since "2 > w, we have
(G1,2)⁄) (G1,1)⁄,
(G1,4)⁄) (G1,3)⁄,
(G2,3)⁄) (G2,4)⁄,
(G4,1)⁄) (G4,2)⁄,
(G5,2)⁄) (G5,1)⁄,
(G5,4)⁄) (G5,3)⁄,
(G7,3)⁄) (G7,4)⁄, and
(G9,1)⁄) (G9,2)⁄.

� Since M⁄ > 0, we have

(G1,1)⁄) (G2,1)⁄,
(G5,1)⁄) (G6,1)⁄) (G7,1)⁄,
(G1,2)⁄) (G2,2)⁄) (G3,2)⁄,
(G5,2)⁄) (G6,2)⁄) (G7,2)⁄) (G8,2)⁄,
(G2,3)⁄) (G3,3)⁄) (G4,3)⁄,
(G7,3)⁄) (G8,3)⁄) (G9,3)⁄,
(G2,4)⁄) (G3,4)⁄) (G4,4)⁄,
(G5,4)⁄) (G6,4)⁄, and
(G7,4)⁄) (G8,4)⁄) (G9,4)⁄.

This completes the proof for the necessary of the conditions.
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