Knowledge-Based Systems 34 (2012) 91-96

Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Game team balancing by using particle swarm optimization

Shih-Wei Fang, Sai-Keung Wong *

Department of Computer Science, National Chiao Tung University, Hsin-chu, Taiwan

ARTICLE INFO ABSTRACT

Article history:
Available online 10 March 2012

Keywords:

Artificial neural network
Particle swarm optimization
Game balance

Role-playing game

Team balancing system

Game balancing affects the gaming experience of players in video-games. In this paper, we propose a
novel system, team ability balancing system (TABS), which is developed for automatically evaluating
the performance of two teams in a role-playing video game. TABS can be used for assisting game design-
ers to improve team balance. In TABS, artificial neural network (ANN) controllers learn to play the game
in an unsupervised manner and they are evolved by using particle swarm optimization. The ANN control-
lers control characters of the two teams to fight with each other. An evaluation method is proposed to
evaluate the performance of the two teams. Based on the evaluation results, the game designers can
adjust the abilities of the characters so as to achieve team balance. We demonstrate TABS for our in-house

MagePowerCraft game in which each team consists of up to three characters.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Keeping the power of abilities balanced among the characters of
different classes, races, or allies is an important issue so as to up-
hold fun and fairness in a role-playing video-game. The players’
gaming experiences may be affected by the fairness in the games.
If the game is well balanced, then the abilities of a character/team
should not be more powerful than the other characters/teams.
Game balance is strongly demanded in online games which have
player versus player systems. To achieve such demand, it could in-
volve tuning parameters and settings for more than hundreds of
times. For some games, this may be a never-ending tuning cycle.
It may consume a lot of time, human resources and money.

The typical solution to achieving game balance is to run a series
of tests which are played by human or scripted artificial intelli-
gence (Al). Some people might perform an actuarial study about
the abilities of all the characters/teams to check game balance.
An alternative is to use scripted Al. However, the results of the tests
might be biased due to the changeless action rules defined by the
scripts. It may be tedious and time consuming to write the scripts
for different situations. A variety of techniques have also been
developed for dynamic game difficult balancing in which the skills
of agents are dynamically adjusted. Our focus is on team balancing
and the game will be played by players.

Team balancing is one of the important topics in game balanc-
ing. Evaluating team balancing is complicated due to the rich com-
bination of characters with different attributes and skills. In this

* Corresponding author.
E-mail addresses: teaXrice@gmail.com (S.-W. Fang), cswingo@cs.nctu.edu.tw
(S.-K. Wong).

0950-7051/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2012.02.017

paper, we present a novel team ability balancing system (TABS),
which assists game designers in evaluating team balance automat-
ically in a role-playing video game. TABS uses artificial neural net-
work (ANN) controllers in conjunction with particle swarm
optimization (PSO).

It is known that support vector machine using sigmoid function
as its kernel function is equivalent to a two-layer, artificial percep-
tron neural network [1]. Genetic algorithm (GA) and PSO are pop-
ulation-based stochastic methods. The problems which could be
solved by using GA may be solvable by using PSO. Furthermore,
PSO has fewer parameters to tune. The Markov model is not suit-
able in our case as it is complicated to define the action rules [2].
On the other hand, the association between ANN and PSO is easy
to build. Each particle of a swarm is associated with an ANN con-
troller. Furthermore, there is a one-to-one correspondence be-
tween the coordinates of a particle and the weights of the ANN
of the controller.

The performance of an ANN controller is evaluated based on a
non-differentiable fitness function. PSO is suitable in our case as
PSO is shown to be effective in optimizing non-differentiable func-
tions [3]. The controllers learn the ways to assist team-mates, at-
tack opponents and avoid damages in an unsupervised manner.
The advantage of employing the unsupervised approach is that it
is unnecessary to define the action rules.

2. Related work

PSO was introduced by Kennedy and Eberhart [4]. The develop-
ment of PSO was inspired by the elegant motion of a flock of birds
searching for food. Compared to Genetic Algorithm (GA) [5,6], PSO
has no evolutionary operator [7]. An in-depth comparison between

http://dx.doi.org/10.1016/j.knosys.2012.02.017
mailto:teaXrice@gmail.com
mailto:cswingo@cs.nctu.edu.tw
http://dx.doi.org/10.1016/j.knosys.2012.02.017
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

92 S.-W. Fang, S.-K. Wong/Knowledge-Based Systems 34 (2012) 91-96

PSO and GA can be found in [8]. PSO has been adapted to various
applications, such as clustering and classification [9], ANN control-
lers evolving [10], scheduling [11], multi-fault classification [12]
and multi-objective optimization [13]. PSO has also been applied
in tackling the job shop scheduling problem [14] and detecting
the top management fraud [15], respectively. Shi and Eberhart
[16] proposed a method for PSO parameter selection. The analysis
of PSO and evolutionary algorithms can be found in [17].

There is little work devoted for game balance between teams in
role-playing video games. However, there are plenty of works
about games or gaming mechanisms which are developed based
on ANN or PSO. ANN controllers are evolved with PSO in a compet-
itive approach [18]. In [19], ANN controllers are adopted in a video
game. A real-time difficulty adjustment approach is developed in
[20]. Thrun [21] used explanation-based neural network to play
chess. Duro and Oliveira [22] applied PSO to estimate the weights
of the heuristic evaluation function in playing chess.

Leigh et al. [23] adopted a coevolutionary algorithm to balance a
continuous gaming environment in a real-time two-player action
game. Each player has three different actions to adopt. Finite state
machine is used for modelling the action behaviour of a player. We
also apply a coevolutionary algorithm to evolve the controllers.
However, the strategies of our game are not supplied. Such strate-
gies subject to change if the attributes of the characters are chan-
ged. Hence, we want the controllers to learn the ways to play the
game.

Dynamic game difficult balancing changes the attributes or
fighting patterns of the controllers for matching the skill level of
the players. Andrade et al. [2] adopted Q-learning to solve the Mar-
kov Decision Processes for computing optimal strategies offline. At
runtime, an action mechanism is invoked for dynamically choosing
the appropriate actions for the controllers. Lee [24] proposed a
rule-based self-learning technique which allows the controller to
play against itself. Some methods adopt dynamic scripting for
achieving dynamic game balancing [25]. The action rules should
be supplied in these approaches. In our case, the characters of both
teams will be played by players. Furthermore, our system is used
for evaluating team balance automatically.

3. Modelling using particle swarm optimization

We implement PSO according to the work of [26]. Let n be the
number of particles of a swarm. The position of the ith particle is
X; = (Xi1, Xi2, . .., X;p) and its velocity is ;= (v, Up, ..., ¥;p) in a D-
dimensional space. The range of x; is [—4, 4] in our experiments.
The position of each particle represents a possible solution of the
optimization problem. Initially, the positions and velocities of the
particles are randomly generated over the entire search-space.
The particles are iteratively updated for refining the candidate
solutions. The velocity of the ith particle is given by:

Uit = w4 cir (p — X{) + Car2 (P — Xi), (1)

where the superscripts (t + 1) and t denote the iteration steps, p; is
the best position which the i-th particle has found so far, p; is the
global best position of all the particles at the tth iteration, r; and
r, are the random values in [0, 1]; w, ¢; and c; are used to control
the behaviour and efficacy of PSO. The position of the i-th particle
is updated as follows:

X=X o, @)

Note that if a particle moves outside of the search-space, the parti-
cle is set back to its nearest side constraint (i.e. setting to —4 or 4)
and its velocity is set to zero. The objective function of PSO is the
fitness function that is defined in Section 5.2. The fitness function

is used to evaluate the performance of a controller and PSO is used
to maximize the fitness value of the controller.

4. Team Ability Balancing System (TABS)

TABS can handle two teams fighting with each other and eval-
uate their performance in a role-playing video game. Fig. 1 shows
the workflow of TABS. We use ANN controllers to control the
behaviour of characters. The ANN controller computes the outputs
which are used for regulating the behaviour of a character. A PSO
manager maintains a set of particles of a swarm and each particle
is associated with a character. The positions of the particles are up-
dated according to the fitness values of the characters. The weights
of an ANN are interpreted as the coordinates of a particle. The
dimension of the position of a particle is the number of weights
of an ANN. There are four steps to perform in TABS:

Step One: Setup ANNs and PSOs. Assume that we have m teams
which are subjected for being evaluated their ability power among
them. For each team, we build up its own PSO manager, create a
population of n candidate controllers and a coach controller.

Step Two: Update PSOs and Weights of ANNs. Each particle of a
swarm is associated with an ANN controller. Furthermore, there
is a one-to-one correspondence between the coordinates of the
particle and the weights of the ANN controller. The higher the fit-
ness value of a candidate controller the better the weights of its
ANN are. The current global best position p; is equal to the weights
of the ANN of the best candidate controller. The best position ever
found (i.e. p;) of a particle is equal to the weights of its correspond-
ing ANN which has the highest fitness value so far. The velocities
and positions of all the particles are updated based on Egs. (1)
and (2). After that the new coordinate values of each particle are
set as the weights of the ANN of the corresponding controller.

Step Three: Training Session. In the training session, we evolve
the candidate controllers so that they can control the teams to play
the game smartly according to the game rules. The n candidate
controllers of a team are trained by the coach controllers of other
teams (not including its own coach controller) one by one. In this
way, the candidate controllers can be adapted to the playing
behaviours of different teams.

During the training process, a fitness value is calculated and as-
signed to each candidate controller. After all the candidate control-
lers of all the teams have finished their games, we find out the best
candidate controller of each team based on their fitness values.
Then we make copies of the best m candidate controllers. After
that, we replace the coach controller of each team as the copy of
the best candidate controller of the team. The performance of the
coach controller is getting improved gradually. This also ensures
that each candidate controller of a team is trained by the coach
controllers of the same level, which means that the candidate con-
trollers are all trained in a fair manner. In this way, it is faster to

Inputs (Game Information)

Weights of ANN

Outputs (Character Actions)

Fig. 1. The workflow of TABS.

PSO

Updates

Manager

S.-W. Fang, S.-K. Wong/Knowledge-Based Systems 34 (2012) 91-96 93

train the candidate controllers with satisfactory performance. If the
training process is done, we go to Step Four. If not, we go to Step
Two.

Step Four: Playing Games by Best Trained Controllers. We use the
best trained candidate controller of each team to fight with each
other in a series of games and the gaming statistics are recorded.
We then compute the performance scores of these candidate con-
trollers. The ability power of the teams can be evaluated.

Parallel Training: The training computation is affected by the
number of candidate controllers per character (population size),
the number of characters and the complexity of the game-logic.
The game-logic must be evaluated every time step during the
training sessions for every controller. Therefore, parallel computa-
tion is highly demanded.

We set up game spaces which are isolated from each other. Each
game space has its own dynamic data and its game-logic can be
processed independently. The dynamic data include the positions
and status of the characters. The static data, such as the 3D mesh
data of models, can be shared by all the game spaces. The training
session is performed in parallel by using multi-threading technol-
ogy. Each game space is executed by one thread. Usually a random
number generator keeps its own state. To achieve thread safe for
computing random numbers, we assign each game space a random
number generator. Mersenne Twister [27] is used in TABS. We
need to reset all the dynamic data of the game space before a train-
ing session starts.

Game Simulation. To evaluate the fairness in a game, we ignore
all the factors that are affected by human-machine interaction,
such as the accuracy of aiming targets and pressing keys for certain
actions (e.g. casting spells). These factors which affect the game
play vary from person to person, and lead to difficulties in analys-
ing the ability power of the teams. In TABS, we assume that a con-
troller can perform any action accurately, such as casting spells and
moving.

4.1. Inputs and outputs of ANN

In different games, players decide to perform actions according
to the given information and their playing strategies; this makes a
game unique. Similarly, the information which is important for
making correct decisions should be fed to the controllers. This kind
of information includes the current status of the characters, such as
health points and the distances between the characters. The set of
inputs are normalized to a unit interval [0, 1]. The outputs of an

ANN are usually related to the available actions of its correspond-
ing character. The inputs and outputs of our game, MagePower-
Craft, are given in Section 5.1.

4.2. Fitness function

We evaluate the performance of a player by checking his/her
accomplishment of the goals and events in a game. However, dif-
ferent games have different goals and events. Generally, we should
encourage a candidate controller by increasing its fitness value if
the candidate controller has attempted to achieve some goals or
certain events. The candidate controllers with the highest fitness
value are used for computing the global best positions. Hence, a fit-
ness function affects the final behaviour of a candidate controller. A
fitness function example of our game, MagePowerCraft, is given in
Section 5.2.

5. Case study: MagePowerCraft

MagePowerCraft is a 3D team combating game. Fig. 2 shows the
game play snapshots of MagePowerCraft. It supports up to maxi-
mum of 3-on-3 team combating inside an arena. We set a time lim-
it for the game play. There are three classes of characters which are
the Fire Wizard, the Ice Wizard and the Priest. Each class has four
different skills. The settings of a skill may be attributed as an aiding
or an attacking skill to single or multiple targets. A skill can be cast
only on either friendly or hostile targets.

There are attributes of the skills which include the power rating
of the skill, the area of effect, casting time, cost of mana power
(MP) per cast, the cooldown (CD) time and special effects. The set-
tings of the skills are listed in Appendix A. The special effects of a
skill may bring different de-buffing (negative) status to the targets.
For examples, burning keeps on reducing the health point (HP) of
its target over a certain duration, frostbiting slows down the move-
ment speed of its target, electrocuting stops any action of its target
intermittently over a certain duration. Freezing and stunning make
their targets temporarily immobilized and interrupt the spells
being cast by the targets.

Except for the skill settings, all other attributes such as total HP,
total MP, min/max magical attack power of the three classes are
the same. In this way, we can focus on evaluating the fairness of
the power of skills in MagePowerCraft. The settings of the attri-
butes of the three classes are listed in Table 1.

Fig. 2. Game play screen shots of MageCraft, playing by ANN controllers.

Table 1
Character attributes of all classes. MAP: magical attack power.

HP MP Basic MP Min. MAP

Max. MAP

Magical defense Mana recovery rate Moving speed

20,143 20,836 6840 1642 1715

2875 0.585% 23529 m/s

94 S.-W. Fang, S.-K. Wong/ Knowledge-Based Systems 34 (2012) 91-96

A skill might cause several damage hits to its targets. The actual
magical attack power of a character for each hit is computed by:

ATK = MAPin + 13(MAPpax — MAPpin), (3)

where MAP,,;, and MAP,,,,x are the minimum and maximum of the
magical attack power of a caster, and r3 is a random value inside
[0, 1]. The amount of damage per hit is given by:

Damage = max(0,ATK x SkillPower + ExtraDmgPt — DefensePt),
4)

where SkillPower and ExtraDmgPt are the parameters of the skill,
and DefensePt is the current defense power of the target.

5.1. ANN controller settings

The ANN inputs are: the ready-rate Ready, of the kth skill, the
health point, the remaining time duration of each de-buffing status
of each hostile character, the distance between two characters, the
casting skill of a character. Ready, is computed as Ready, = (Total-
CDy, — RemainCDy,)/TotalCD,, where TotalCDy, is the total CD time
of skill, and RemainCD; is the remain CD time of skill;, for
k=1,2,..., Total Skill Number. All the input values are normalized
to the interval [0, 1]. For examples, the health point is normalized
by the maximum health points, the remaining time for de-buffing
is normalized by the maximum de-buffing duration, and the dis-
tance is normalized by the length of the arena floor. A casting skill
is mapped to a number so that the casting skill is normalized by
the total number of skills.

The five outputs of an ANN are: (1) the friendly (including self-
targeting) character target; (2) the hostile character target; (3) the
movement target; (4) a skill; if an aiding skill is indicated, then the
skill is cast to the friendly target; if the skill is an attacking skill, it
is cast to the chosen hostile target; and (5) the movement type, i.e.
stop moving or moving toward/away from the movement target.

We classify the skills into two types: skills cast on friendly tar-
gets and skills cast on hostile targets. An advantage is that the con-
trollers do not need to learn about the skills that are cast on
friendly targets and hostile targets, respectively. This is reasonable
as an experienced player should know well about that.

5.2. Fitness function

We design a fitness function for evaluating the performance of
the controllers. The total fitness F(t + 1) at the (t + 1)th step is given
by:

F(t+1) :F(t)+max(0’Fgain _FIOSS)v (5)
where t is the game step, F(t) is the fitness value at the tth step, Feqin
and F,s are the gain and loss values, respectively. F(0) is equal to 0.
The fitness function is not differentiable due to the discrete nature.

Fgain is the sum of the following six items: the damage inflicted
to the hostile targets; the healing point done to/from the friendly
targets; and the four rewards. The rewards include: starting to cast
spells, casting spells successfully, interrupting the spells being cast

by hostile targets, and moving away from the attack range of the
spells of the hostile targets.

The fitness value is decreased by F,,ss which is the sum of the
following four items: the damage inflicted by the hostile targets;
the punishment for casting spells in CD; the punishment for cast-
ing spells on the invalid target (out of range); and the punishment
for being interrupted while casting spells.

5.3. Experiments and results

We implemented TABS and applied it to MagePowerCraft. We
performed three experiments in which two teams were fighting
against each other. All experiments were performed on Quad Core
CPU - Intel (R) Core (TM) i7 CPU 870 @ 2.93 GHz and the OS was
Windows 7 Professional. Four threads were used for performing
the training sessions.

The number of neurons in the hidden layer should be between
the size of the input layer and the size of the output layer [28]. In
our system, the ANN of each controller has one hidden layer con-
sisting of six neurons. The sigmoid function is adopted as the acti-
vation function.

The winning condition of a team is that it defeats the other team
before the game play duration is over. The score of a team is calcu-
lated as follows: the winning team is rewarded with a score of one;
if no team is defeated, the game is drawn and each team is re-
warded with a score of one.

The PSO parameters w,cy, and ¢, were set to 0.5, 1.5 and 1.5 in
all the experiments, respectively. We also performed experiments
with other sets of values, as shown in Table 2. The average number
of convergence iterations ranges from 56.2 to 85.9. The scores of
the teams were similar in different tests with different parameters.

There were 100 candidate controllers for each class of charac-
ters. After the training sessions, we applied the best-trained con-
trollers to control the characters to play the game. The
performances of the well-developed controllers are quite good.
We observe some action patterns performed by the characters,
such as attacking enemies, aiding teammates, dodging attack, pur-
sue and fleeing, in a reasonable way. However, the scores of the
controllers vary from game to game. Hence, we collected the re-
sults of ten runs for each experiment and take the average of the
results. There were 1000 games to play for each run and the statis-
tics of the combating result were recorded. The average
error = |S — N/2|/(N/2), where S is the average score of the 10 runs
and N = 1000.

Experiment One: We validated TABS in three cases which had
different settings. We assigned the characters of the same classes
to each team. Obviously, the ability power of the two teams was
balanced. Thus, the same conclusion should be drawn by TABS.
The two teams in the three cases are: (Case 1a) Fire Wizard (Team
1) versus Fire Wizard (Team 2), (Case 1b) Fire Wizard and Ice Wiz-
ard (Team 1) versus Fire Wizard and Ice Wizard (Team 2) and (Case
1c) Fire Wizard, Ice Wizard and Priest (Team 1) versus Fire Wizard,
Ice Wizard and Priest (Team 2). Table 3 shows the statistics of the
three cases. Table 4 shows the training time per game and ANN
configuration.

Table 2

Number of convergence iterations for different PSO settings.
PSO weights # Convergence iterations Average
{w=04,c1=15,c,=2} 62 67 65 60 80 70 42 69 56 55 62.6
{w=0.5,¢,=1.5,c,=1.5} 82 67 65 42 68 50 41 40 41 66 56.2
{w=0.5,¢c1=1.5,c,=1.5} 70 97 96 226 67 53 57 69 40 70 82.5
{w=14, c;=1.5,c,=2.5} 101 64 120 181 73 80 41 55 71 73 85.9
{w=0.9, ¢; =175, c; =3} 141 86 58 41 49 82 71 49 60 111 74.8

S.-W. Fang, S.-K. Wong/Knowledge-Based Systems 34 (2012) 91-96 95

Table 3
Results of experiment one.

Experiment 1a. 1-on-1 Combating

Team1:Team2 480:520 498:502 503:497 482:518 500:500
Team1:Team2 507:493 493:507 502:498 498:502 499:501
Average 496.2:503.8 Avg. Error 0.76%
Experiment 1b. 2-on-2 Combating
Team1:Team2 504:496 515:485 505:495 500:500 501:499
Team1:Team2 507:493 498:502 497:503 523:477 508:492
Average 505.8:494.2 Avg. Error 1.16%
Experiment 1c. 3-on-3 Combating
Team1:Team2 477:523 497:503 493:507 590:410 532:468
Team1:Team?2 501:499 498:502 487:513 495:505 521:479
Average 509.1:490.9 Avg. Error 1.82%

Table 4

Results of experiment one: training time per game (s) and ANN configuration.
Experiments Training time per game (s) #Input #Outputs #Weights
1-on-1 1.42 11 5 96
2-on-2 7.27 19 5 144
3-on-3 19.44 27 5 192

The results show the largest average error is 1.82% and we use
this error, namely ¢, for determining whether or not the ability
power of two teams are similar. If the error of a testing result is
lower than €, the ability power of the two teams is balanced. Notice
that € is subjected to change for different games with different
features.

Experiment Two: The first team has a Fire Wizard and a Priest
while the second team has an Ice Wizard and a Priest. The statistics
are shown in Table 5. We assume that a game designer wants to
balance two teams.

The error shows that the two teams were not balanced
(7.6% > €). Team 1 was more powerful than Team 2. We strength-
ened the Ice Wizard in Team 2 by setting the attack power of Bliz-
zard from ATK x 210% + 334 to ATK x 265% + 385, and Instant Freeze
from ATK x 226% + 270 to ATK x 290% + 410. Then we applied TABS
for the new skill settings and repeated the experiment. The two
teams are now balanced as the average error is 0.64%, as indicated
in Table 6.

Experiment Three: The first team has an Ice Wizard and a Fire
Wizard, while the second team has an Ice Wizard and a Priest.
The statistics are shown in Table 7.

The error shows that the two teams were not balanced
(3.08% > €). Team 1 was more powerful than team 2. We weakened
the ability of Fire Wizard in Team 1 by lowering the attack power

Table 5

Results of experiment two before balancing (using original skill settings).
Team1:Team2 546:454 549:451 514:486 510:490 542:458
Team1:Team2 512:488 544:456 581:419 559:441 523:477
Average 538:462 Avg. Error 7.6%

Table 6

Results of experiment two after balancing (with the new skill settings).
Team1:Team2 496:504 503:497 512:488 516:484 502:498
Team1:Team2 506:494 497:503 493:507 509:491 498:502
Average 503.2:496.8 Avg. Error 0.64%

Table 7

Results of experiment three before balancing (using original skill settings).
Team1:Team2 537:463 564:436 489:511 503:497 516:484
Team1:Team2 513:487 518:482 524:476 495:505 495:505
Average 515.4:484.6 Avg. Error 3.08%

Table 8

Results of experiment three after balancing (with the new skill settings).
Team1:Team2 518:482 505:495 503:497 520:480 478:522
Team1:Team2 493:507 497:503 501:499 494:506 470:530
Average 497.9:502.1 Avg. Error 0.42%

of Fire Ball from ATK x 512% + 710 to ATK x 350% + 571, the attack
power of Fire Wall from ATK x 184% + 162 to ATK x 180% + 162, and
the attack power of Fire Shots from ATK x 211% + 134 to ATK x
185% + 134. Then we applied TABS for the new skill setting and re-
peated the experiment. The two teams are balanced as the average
error is 0.42%, as indicated in Table 8.

Comparison to GA. We implemented GA for evolving the weights
of ANN controllers. The training times per game is similar to the
ones of using PSO. Most of the computation time was spent in per-
forming the game simulation in both methods. We did not observe
much difference for the fighting patterns of the characters.

6. Discussions

When the power of the two teams is unbalanced, we tune the
subjected parameters up or down a bit according to the statistics
of the two teams given by TABS. After each tuning attempt, we
evaluate the balance situation of the two teams with the new set-
ting. The process of tuning the subjected parameters is required
manual operation. It usually takes two to four attempts.

Currently, a team is scored by its win-loss record. The criteria
for computing the score of a team can be extended to other aspects.
For example, a character may be easily killed at the very beginning
of a game. We believe that this is not a good gaming experience for
the player who controls that character. In this case, TABS can show
the information, such as the average surviving time and average
score of each character. This kind of information may be useful
for intra-team balancing.

7. Conclusions and future work

In this paper, we introduce Team Ability Balancing System
(TABS) which evaluates automatically the fairness of teams in a
role-playing video game. The statistics collected by TABS are useful
for game designers to tune the gaming parameters. We have vali-
dated TABS by applying it to our in-house MagePowerCraft. It is
an interesting research direction to find a better and promising
solution for verifying the maturity of the controllers automatically.
Currently, we require game designers to observe how the control-
lers play in order to determine whether or not the controllers play
in a reasonable way. We want to develop a fully automatic evalu-
ation system for fairness adjustment in team combating games.

Appendix A. Skill settings in MagePowerCraft

See Tables A.9 and A.10.

96 S.-W. Fang, S.-K. Wong/ Knowledge-Based Systems 34 (2012) 91-96

Table A.9

Skill settings. The actual attack power (alpha, B) = ATK x o + 8, where ATK is calculated as shown in Eq. (3). Heal Points = Target's maximum HP x 8% + 324.

Characters ~ Skills Attack Heal MP cost Target Attack range Max Cast time CDtime Areaeffect Area effect width
power (%) number (m) damage (s) (s) (m)
Fire Fire ball (512,710) - 3.4 Single 0-10.59 1 2 17 - -
wizard Inferno (185,276) - 34 Multiple 0.5-3.53 12 0.8 24 Rectangular 0.6
Fire wall (184,162) - 3.2 Multiple 0-2.59 6 1.2 33 Circular -
Fire shots (211, 134) - 2.5 multiple 0-10.59 3 0.1 20 Rectangular 0.6
Ice wizard Freezing (214, 556) - 2.3 multiple 0-2.35 3 0.1 15 Rectangular 0.6
sword
Freezing (279, 462) - 3.1 multiple 2.59-5.41 1 1.1 28 Circular -
field
Blizzard (210, 334) - 2.3 multiple 0.6-2.59 2 0.9 15 Circular -
Instance (226,270) - 2.3 multiple 0-1.88 1 0.5 24 Circular -
freeze
Priest Chain (220, 85) - 2.5 multiple 0-5.89 3 0.8 20 Circular -
lightning
Grand cross (169, 262) - 3.2 multiple 0.5-11.29 6 2.6 28 Rectangular 1.8
Heal - (8, 3 multiple 0-4 1 0.5 60 Circular -
324)
Lightning (181,294) - 2.7 multiple 0-4.94 5 0.5 18 Rectangular 0.6
volt

Table A.10
Special effects of skills.

Characters ~ Skills Special effect

Fire Fire ball Stunned, last for 1.5 s. Burned, take 10% of last hit
wizard damage point every 2 s. and last for 8 s
Inferno Burned, take 50% of last hit damage point every 2 s
and last for 10 s; Stunned, last for 4 s
Fire wall Burned, take 5% of last hit damage point every 2 s
and last for 10 s; Stunned, last for 3 s
Fire shots Burned, take 10% of last hit damage point every 2 s
and last for 15 s
Ice wizard Freezing Frostbitten, Moving speed x 50% and last for 2 s;

sword Stunned, last for 3.5 s

Freezing Frostbitten, Moving speed x 50% and last for 8 s
field
Blizzard Frostbitten, Moving speed x 50% and last for 1s;
Stunned, last for 0.5 s
Instance Frozen, last for 2 s
freeze
Priest Chain Electrocuted, break actions every 5 s and last for
lightning 12s
Grand Stunned, last for 1s
Cross
Lightning 60% Electrocuted, break actions every 5 s and last
volt for 13 s

References

[1] P. Andras, The equivalence of support vector machines and regularization
neural networks, in: Neural Processing Letters, vol. 65, 2002, pp. 97-104.

[2] G. Andrade, G. Ramalho, H. Santana, V. Corruble, Challenge-sensitive action
selection: an application to game balancing, in: Proceedings of the Int'l
Conference on Intelligent Agent Technology, 2005, pp. 194-200.

[3] X. Yu, X. Xiong, Y. Wu, A pso-based approach to optimal capacitor placement
with harmonic distortion consideration, Electric Power Systems Research 71
(2004) 27-33.

[4] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Neural Networks, vol.
4, 1995, pp. 1942-1948.

[5] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1989.

[6] J. Branke, Evolutionary algorithms for neural network design and
training, in: Nordic Workshop on Genetic Algorithms and its Applications,
1995.

[7] R. Eberhart, Y. Shi, Comparison between genetic algorithms and particle swarm
optimization, in: Evolutionary Programming VII, 1998, pp. 611-616.

[8] R. Hassan, B. Cohanim, O. De Weck, G. Venter, A comparison of particle swarm
optimization and the genetic algorithm, in: AIAA Multidisciplinary Design
Optimization Specialist Conference, 2005, pp. 1-13.

[9] K.Y. Huang, A hybrid particle swarm optimization approach for clustering and
classification of datasets, Knowledge-Based Systems 24 (2011) 420-426.

[10] R. Eberhart, Y. Shi, Particle swarm optimization: developments, applications
and resources, in: Evolutionary Computation, vol. 1, 2001, pp. 81-86.

[11] B. Alatas, E. Akin, Multi-objective rule mining using a chaotic particle swarm
optimization algorithm, Knowledge-Based Systems 22 (2009) 455-460.

[12] X. Tang, L. Zhuang,]. Cai, C. Li, Multi-fault classification based on support
vector machine trained by chaos particle swarm optimization, Knowledge-
Based Systems 23 (2010) 486-490.

[13] S. Qasema, S. Shamsuddina, A. Zain, Multi-objective hybrid evolutionary
algorithms for radial basis function neural network design, Knowledge-Based
Systems 27 (2012) 475-497.

[14] R. Zhang, S. Song, C. Wu, A two-stage hybrid particle swarm optimization
algorithm for the stochastic job shop scheduling problem, Knowledge-Based
Systems 27 (2012) 393-406.

[15] P.-F. Paia, M.-F. Hsub, M.-C. Wang, A support vector machine-based model for
detecting top management fraud, Knowledge-Based Systems 24 (2012) 314-
321.

[16] Y. Shi, R. Eberhart, Parameter selection in particle swarm optimization, in:
Evolutionary Programming VII, 1998, pp. 591-600.

[17] P. Angeline, Evolutionary optimization versus particle swarm optimization:
philosophy and performance differences, in: Evolutionary Programming VII,
1998, pp. 601-610.

[18] L. Messerschmidt, A. Engelbrecht, Learning to play games using a pso-based
competitive learning approach, IEEE Transactions on Evolutionary
Computation 8 (2004) 280-288.

[19] K. Stanley, B. Bryant, R. Miikkulainen, Evolving neural network agents in the
nero video game, in: Symposium on Computational Intelligence and Games,
2005, pp. 182-189.

[20]]. Olesen, G. Yannakakis, J. Hallam, Real-time challenge balance in an RTS game
using rtneat, in: Computational Intelligence and Games, 2008, pp. 87-94.

[21] S. Thrun, Learning to play the game of chess, Advances in Neural Information
Processing Systems (1995) 1069-1076.

[22] J. Duro, J. d. Oliveira, Particle swarm optimization applied to the chess game,
in: IEEE Congress on Evolutionary Computation, 2008, pp. 3702-3709.

[23] R. Leigh, J. Schonfeld, S. Louis, Using coevolution to understand and validate
game balance in continuous games, in: Genetic and evolutionary computation,
2008, pp. 1563-1570.

[24] C. Lee, A self learning rule-based controller employing approximate reasoning
and neural net concepts, International Journal of Intelligent Systems 6 (1)
(1991) 71-93.

[25] P. Spronck, I. Sprinkhuizen-Kuyper, E. Postma, Difficulty scaling of game ai, in:
Proceedings of the 5th International Conference on Intelligent Games and
Simulation, Belgium, 2004, pp. 33-37.

[26] G. Venter, Particle swarm optimization, AIAA Journal (2003) 1583-1589.

[27] M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator, ACM
Transactions on Modeling and Computer Simulation 8 (1998) 3-30.

[28] M. Berry, G. Linoff, Data Mining Techniques for Marketing, Sales, and Customer
Support, Wiley, New York, 1997.

	Game team balancing by using particle swarm optimization
	1 Introduction
	2 Related work
	3 Modelling using particle swarm optimization
	4 Team Ability Balancing System (TABS)
	4.1 Inputs and outputs of ANN
	4.2 Fitness function

	5 Case study: MagePowerCraft
	5.1 ANN controller settings
	5.2 Fitness function
	5.3 Experiments and results

	6 Discussions
	7 Conclusions and future work
	Appendix A Skill settings in MagePowerCraft
	References

