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In this study, the application of the two-dimensional direct simulation Monte Carlo (DSMC)
method using an MPI-CUDA parallelization paradigm on Graphics Processing Units (GPUs)
clusters is presented. An all-device (i.e. GPU) computational approach is adopted where the
entire computation is performed on the GPU device, leaving the CPU idle during all stages
of the computation, including particle moving, indexing, particle collisions and state sam-
pling. Communication between the GPU and host is only performed to enable multiple-
GPU computation. Results show that the computational expense can be reduced by 15
and 185 times when using a single GPU and 16 GPUs respectively when compared to a sin-
gle core of an Intel Xeon X5670 CPU. The demonstrated parallel efficiency is 75% when
using 16 GPUs as compared to a single GPU for simulations using 30 million simulated par-
ticles. Finally, several very large-scale simulations in the near-continuum regime are
employed to demonstrate the excellent capability of the current parallel DSMC method.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The direct simulation Monte Carlo (DSMC) method [1] is a computational tool for simulating flows in which effects at the
molecular scale become significant. The Boltzmann equation [2], which is appropriate for modeling these rarefied flows, is
extremely difficult to solve numerically due to its high dimensionality and the complexity of the collision term. DSMC pro-
vides a particle based alternative for obtaining realistic numerical solutions. In DSMC, the movement and collision behavior
of a large number of representative ‘‘simulation particles’’ within the flow field are decoupled over a time step which is a
small fraction of the local mean collision time. The computational domain itself is divided into either a structured or unstruc-
tured grid of cells which are then used to select particles for collisions on a probabilistic basis and also are used for sampling
the macroscopic flow properties. The method has been shown to provide a solution to the Boltzmann equation statistically
when the number of simulated particles is large enough [3]. However, high computational cost has hindered further
applications of DSMC to some practical problems, especially in the near-continuum (collision-dominated) regime, while
the non-equilibrium effect may be important. Hence, it is important to increase the computational efficiency to extend
the applicability of the DSMC method.

The general wisdom for accelerating the DMSC computation is to parallelize the code using the massage passing interface
(MPI) protocol running on clusters with large numbers of processors [4–7]. Such implementations rely upon the multiple
. All rights reserved.
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instructions on multiple data (MIMD) parallelization philosophy. Recently, Graphics Processing Units (GPUs) have become
an alternative platform for parallelization, employing a single instruction on multiple data sets (SIMD) parallelization phi-
losophy. The resulting parallelization is much more efficient at the cost of flexibility – as a result, the computational time
of several scientific computations, especially those which are optimally applied to vectorized computation strategies, have
been demonstrated to reduce significantly, together with power and equipment costs. The DSMC method is essentially a
highly local particle method; however, reports on DSMC using GPU computing were very limited. Especially, there is no re-
lated study in hybrid MPI-CUDA implementation for DSMC method. A parallel DSMC-accelerated in SIMD architecture had
been presented by Gladkov et al. [8]. Although they obtained speedup of 65 times on a single GPU by simulating several 3D
small-scale simulations (0.1–1 million particles), they have not demonstrated its capability by simulating some challenging
large-scale real flow problems. In addition, several important features, such as particle removal on a single GPU and realistic
boundary conditions (fully diffusive wall and inlet/outlet boundary conditions), were not included in the proposed algo-
rithm. Each component of DSMC-accelerated in SIMD architecture and interaction between GPU computing and dimension-
less parameters in gas dynamics were not discussed in detail. Recently, we had presented a parallel DSMC method in SIMD
on a single GPU [9]. We demonstrated a modest speedup of 3–10 times in the simulation of supersonic flow over a flat plate
and a supersonic lid-cavity flow problem with 1–10 million particles caused by a low speedup due to smaller problems and
worse GPU machines.

Graphics Processing Units (GPUs) are co-processors originally designed to assist in the computations required for display-
ing graphics on monitor. In recent years, the GPU has been demonstrated as an effective tool in the computation of scientific
and engineering problems. In the past, researchers performing General Purpose computing using Graphics Processing Units
(GPGPU) [10] were forced to use graphics-related API’s (like OpenGL, and later OpenCL) until CUDA (Compute Unified Device
Architecture) [11] was introduced in 2007 by NVIDIA Corp. NVIDIA’s CUDA is a general-purpose parallel computing
architecture with a new parallel programming model and instruction set architecture. Nowadays, we can employ GPU
co-processors to accelerate our computation using CUDA. And also CUDA has been developed to work in many popular com-
puting languages such as C/C++, FORTRAN and even Java.

Thus, in this paper we intend to study the parallel performance of the DSMC method using a hybrid MPI-CUDA parallel-
ization paradigm and demonstrate its capability in simulating several large-scale near-continuum gas flow problems.

This paper is organized as follows. The governing equation and the standard DSMC method is first introduced. Then, the
DSMC method using hybrid MPI-CUDA parallelization is described in detail. The speedup and parallel performance on multi-
ple GPUs using CUDA is investigated through subsonic/supersonic lid-driven cavity benchmarks. Following this, we apply the
parallel DMSC implementation to several very large-scale simulations in near-continuum flows. Finally, the paper is summa-
rized with some important findings.
2. Numerical method

2.1. The Boltzmann Equation

The Boltzmann equation [2] is employed to describe molecular transport phenomena based on gas-kinetics theory and
statistical mechanics. It is an integral-differential equation which is valid for all flow regimes, which ranges from highly rar-
efied to continuum flows. The Boltzmann equation based on the assumption of binary collision is written as
@ðnf Þ
@t
þ c � @ðnf Þ
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where f and n are the velocity distribution function and number density, respectively. c and cr are the molecular velocity and
the relative molecular speed between two particles, respectively. And F is an external force, t is the time, r is the collision
cross section, and dX is the solid angle. f and f1 denote two different types of molecules, and the superscript ⁄ denotes the
post-collision quantities.

In general, it is very difficult to solve the Boltzmann equation directly using conventional numerical method because the
difficulty of correctly and efficiently modeling the integral collision term (right-hand term), in addition to the high numbers
of dimensionality of the Boltzmann equation (configuration and velocity spaces). Instead, the DSMC method, developed by
Bird during 1960s [1], has been widely used to solve the Boltzmann equation when the flow is rarefied. Until recently, the
DSMC method was shown statistically to equivalent to solving the Boltzmann equation as the number of particles is large [3].

2.2. The standard DSMC method

The DSMC method is a particle-based method for solving the Boltzmann equation and it is widely used to simulate gas
flows in the rarefied gas regime. The central idea of DSMC is to reproduce real flow properties with no more than collision
mechanics of gas molecules through a large number of pseudo particles that are used to represent real gas molecules. Each
pseudo particle represents a fairly large number of real gas molecules. In the DSMC simulation, there is an important feature
that the motions and the collisions of pseudo particles are uncoupled over a time interval. The time interval (timestep)
should be kept much smaller than the mean collision time.
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The general procedures of the standard DSMC method [1] are divided into several steps, including initialization, particle
movement, indexing, collision, and sampling. In the first step, the initialization is to set up the geometry and flow conditions.
A physical space is divided into a network of cells and the domain boundaries have to be assigned according to the flow con-
ditions. The size of computational cells should be smaller than the local mean free path. In general, each particle is assigned
the velocities in x-, y-, and z-direction based on the Maxwell–Boltzmann distribution according to number density and tem-
perature of flow conditions. Position of each particle is randomly distributed within a cell. In the step of particle movement,
each particle directly moves through a time step if it does not collide with a solid surface. When the particle collides with a
solid surface, the final position and velocities are determined by the boundary type. After all particles are moved, the relation
between locations of particles and cells is re-indexed for the purpose of easier selection of collision partner in a cell. In the
step of collision, particles in a cell are randomly selected for collision based on the real collision rate. When the flow reaches
a steady state after several time steps of simulation, flow properties are then sampled in each cell.

2.3. Hybrid MPI-CUDA parallelization paradigm

Conventionally, parallel DSMC method is implemented on distributed-memory machines using MPI protocol. The com-
putational loading is distributed on each processor (CPU) to reduce simulation time, communicate and synchronize among
all processors using MPI protocol. In fact, the MPI is collection of specifications of message passing interface libraries. In con-
trast, the CUDA, which is a parallel computing architecture on a single GPU, is employed to accelerate computation on the
DSMC-related components such as particle movement, indexing, collision and sampling. Therefore, the difference between
MPI and hybrid MPI-CUDA approach is that the latter combines the MPI among different nodes of CPU processors and the
CUDA on each GPU to make the most of the computing resources on a multiple GPU machines distributed around different
nodes. The detail of a hybrid MPI-CUDA parallelization paradigm is described in next.

A hybrid MPI-CUDA parallelization paradigm is presented in Fig. 1. A spatial domain decomposition method was adopted
in this approach. In this method, the MPI protocol is used to exchange data from memory of all MPI processors and synchro-
nize. CUDA is used to put the DSMC-related simulation components on GPU and data transfer between CPU (host) memory
and the GPU (device) global memory [12]. We used the CUDA API function cudaGetDeviceCount() [12] to get the number of
GPU devices available in each node and cudaSetDevice() to assign a GPU to each individual MPI process [12]. For example, as
shown in Fig. 1, a simple computing cluster with 4 nodes and 4 GPU devices per node using MPI can use cudaGetDevice-
Count(&GPUNum) to correctly identify the number of valid GPU’s on each node, and then cudaSetDevice(MPIMyID%GPUNum)
to assign each GPU to each MPI processor. For data exchange between global memory of different GPU devices (for example,
from device-A to device-B) we use the CUDA API function cudaMemcpy() [12] to transfer data from device-A to host-A (as
shown by the red line in Fig. 1). Next, the data is transferred from host-A to host-B (as shown by the blue line in Fig. 1) using
the MPI protocol with MPI_Send() and MPI_Recv(). Finally, we use cudaMemcpy() to transfer data from host-B to device-B.
This flexible method allows a single subroutine to manage communications without concern for (i) the device type, or (ii)
if the device is located on the same physical node. Note the data transfer, including particle and computational cell informa-
tion, are copied between the host and the device only in the initialization phase and the end of a simulation. Therefore, there
is no need to employ CUDA streams the current implementation.

2.4. Parallel Implementation of DSMC on multiple GPUs

In this study, an all-device (GPU) computational approach is adopted where the computational components of the DSMC
method (including particle moving, indexing, particle collisions and sampling) are performed entirely on the GPU device.
Fig. 1. Multiple GPU devices across multiple nodes MPI-CUDA paradigm.
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This required some changes to the original DSMC method in order to allow efficient all-device computation. Fig. 2 shows the
flowchart of DSMC computation using hybrid MPI-CUDA approach. During the initialization stage, input data is loaded into
the memory of the primary cluster node and finally distributed to all other processors using the MPI protocol. The initial
states are computed on each host CPU in parallel. We used the CUDA API function cudaMalloc() [12] to allocate the required
global memory for each GPU (device) on every delegated CPU (host). Finally, computationally relevant information (includ-
ing particle and computational cell information) is transferred to the global memory of device from the host memory. Fol-
lowing this initialization period the unsteady phase of the DSMC simulation is performed - particle moving, indexing,
particle selection (and consequent collisions) and sampling are executed on each GPU. When the simulation is nearing com-
pletion (i.e. the flow has reached steady state and the sampled data is sufficient to remove undesired statistical scatter) we
move the sampled data from GPU (device) to CPU (host). Finally, calculation of the macroscopic properties is performed by
each MPI processor (host) and the data is written to file for further analysis.

A flowchart demonstrating the particle movement phase algorithm in our proposed hybrid MPI-CUDA DSMC scheme is
shown in Fig. 3, involving:

� A GPU-centred function, known as a kernel (see Algorithm 1) is used to calculate the positions of all particles over a time
step Dt. Each particle’s deterministic motion is handled by a CUDA thread, using data held entirely in global memory.
� Particles determined to have left the current GPU’s simulation domain are placed into a buffer (in the device, and finally

on the host) in preparation for migration to other GPU devices.
� Introduce new particles based on inlet boundary conditions.
� Send and receive from buffers of all MPI processors (host) with the MPI API protocol MPI_Send() and MPI_Recv().
� Reallocate particles from buffers into their newly allocated GPU’s global memory.

When a particle arrives at an inlet/outlet boundary, or moves into a computational domain managed by a different GPU, it
must be relocated. Traditionally, the particle information in the target and source memory is directly manipulated – this
method is not well suited to the SIMD architecture employed by the GPU. Thus, we have developed a new algorithm to pro-
cess such particles, as shown in Figs. 4 and 5. First, each particle requires a record indicating its current state – this is con-
tained within the array d_ParticleIn (see Algorithm 1), where a value of one (1) indicates the particle is to remain in the same
GPU and zero (0) indicating that (i) a transition to a different GPU, or (ii) inlet/outlet boundary treatment is required. A sec-
ond array, d_ParticleInMPI (see Algorithm 1), is defined such that a value of one (1) confirms the particle for transition to
another GPU. Following this, we use the optimized parallel prefix sum (scan) method [13] to efficiently obtain the memory
Fig. 2. Flowchart describing the application of DSMC to GPU-accelerated computation.



Fig. 3. Flowchart describing the particle movement phase of DSMC computation using MPI-CUDA.
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location of particles (d_ParticleWrite and d_ParticleWriteMPI), including those designated for transport to other GPU’s. This
makes it possible to efficiently manage the movement of particles between GPU devices.

The implementation of particle indexing is similar to that of Bird’s DSMC implementation [1]. Fig. 6 shows the particle
indexing of DSMC with CUDA, involving the following steps:

� Counting the number of particles in each cell (Algorithm 2).
� Perform the parallel prefix sum (scan) [13].
� Indexing the relationship between particles and cells (Algorithm 3).
Fig. 4. Sketch demonstrating the location in memory of particles on global memory.



Fig. 5. Sketch demonstrating particle relocation (with in the GPU) and inter-GPU transported particles (to other GPUs) to a buffer.

Fig. 6. The indexing method used by DSMC with CUDA.
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In indexing of particles, we create three arrays for selecting potential particle collision pairs using the following concept:
Selecting a particle in ith-cell = d_IndexCell1[i] + d_IndexCell2[i]⁄Rand [0�1]
Relating to the global particle number = d_IndexParticle[selected particle]where d_IndexCell1[i] and d_IndexCell2[i] contain

the (i) cumulative total number of particles in cells [0,1,2 . . . (i�1)] and (ii) the number of particles in the ith cell respectively.
The mapping of particle indexes from local (single GPU) to global (over all GPU’s) is contained within the array
d_IndexParticle[].

To avoid race conditions, Algorithms 2 and 3 both employ atomic addition [12]. This essentially ensures that threads can-
not concurrently access critical areas of memory, at the sacrifice of parallel efficiency. During the collision phase all particle
collisions within any given cell are handled by a dedicated CUDA thread, as demonstrated in Algorithm 4. Here, we employ
the classical No Time Counter (NTC) method together with a variable hard sphere (VHS) model for particle collisions [1].
The nature of DSMC collisions requires a random number generator, both for the collision outcome and collision partner



Fig. 7. The sampling method used by DSMC with CUDA.
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selection. The algorithm for a uniformly distributed random number generator, based on the method employed by Bird and
centred on the GPU device is presented in Code Snippet 1.

Fig. 7 shows the schematic diagram for the particle sampling phase of our proposed MPI-CUDA DSMC implementation.
Particle sampling within each cell is handled by a dedicated CUDA thread on GPU, as shown in Algorithm 5, and all particles
within a cell are sampled using shared memory [12], which results in much faster access than global memory. When sam-
pling within each cell is completed, the sampled data is transferred from shared memory to global memory.
Table 1
Simulation conditions for subsonic/supersonic lid-driven cavity problem.

Kn Cell number Total particle number

Case 1 0.01 200 � 200 10 M
Case 2 0.01 200 � 200 20 M
Case 3 0.01 200 � 200 30 M
Case 4 0.005 400 � 400 10 M
Case 5 0.005 400 � 400 20 M
Case 6 0.005 400 � 400 30 M
Case 7 0.002 1000 � 1000 10 M
Case 8 0.002 1000 � 1000 20 M
Case 9 0.002 1000 � 1000 30 M

Fig. 8. Computational time per particle and per timestep when using different combinations of block and threads per block numbers for Case 5 in the
subsonic lid-driven cavity problem.



Fig. 9. Computational time and speedupCPU/GPU ratio using a core of the CPU (Intel Xeon X5670) and a GPU (NVIDIA Tesla M2070) for each component of
DSMC in subsonic lid-cavity problem: (a) Kn = 0.01, (b) Kn = 0.005, and (c) Kn = 0.002.
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Fig. 10. Computational time and speedupCPU/GPU ratio using a core of the CPU (Intel Xeon X5670) and a GPU (NVIDIA Tesla M2070) for each component of
DSMC in subsonic lid-cavity problem: (a) 10 M particles, (b) 20 M particles, and (c) 30 M particles.
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3. Results and discussion

Here we discuss the performance of our proposed MPI-CUDA DSMC implementation on multiple GPUs using two test
cases: a subsonic and a supersonic lid-driven cavity flow under various rarefied conditions (Kn = 0.01–0.002). Following this
we demonstrate the capability of the proposed parallel DSMC method with MPI-CUDA using different numbers of GPU de-
vices in several large-scale simulations in near-continuum flow. For the purpose of this analysis, all DSMC simulations herein
(in Section 3.1. and Section 3.2.) are based on the execution of 5000 time steps using 16 NVIDIA Tesla M2070 devices (448
CUDA cores @ 1.15 GHz, 6 GB DDR5 RAM, ECC support) across 4 nodes. Each node has dual Intel Xeon X5670 (2.93 GHz, 12 M
Cache, 6.4 GT/s Intel QPI) with 48 GB RDIMM RAM @ 1333 MHz. All nodes are connected through an infiniband fabric. With
regards to the DSMC algorithm itself, the VHS collision model and NTC methods are applied in simulations unless otherwise
specified.
3.1. Subsonic Lid-Driven Cavity Flow

A two-dimensional subsonic lid driven cavity problem is simulated here using our proposed hybrid DSMC method. The
simulation domain is a square cavity (1 m � 1 m) with diffusely reflecting walls of fixed temperature (300 K). All walls are
Fig. 11. Speedup ratio as a function of GPU (M2070) number in strong scaling for subsonic lid-driven cavity problem: (a) compared to a core of the CPU
(Intel Xeon X5670), and (b) compared to a single GPU (M2070).
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stationary except the upper wall which is moving (with positive velocity) at Mach number M = 0.2. The gas (ideal argon,
c = 5/3) is initially at rest with a temperature of 300 K. Various Knudsen numbers are investigated through the manipulation
of gas density, computed using a characteristic length equal to the wall length. The cell size is uniform and approximately 1/2
of mean free path. Simulation conditions of all cases are summarized in Table 1. There are nine cases ranging from Kn = 0.01
to Kn = 0.002 with various number of particles (10 M–30 M). Note the Kn is the Knudsen number defined as the ratio of the
mean free path to the characteristic flow length.

Fig. 8 shows the computational time per particle per timestep (i.e. the specific time) for different combinations of block
and thread numbers for Case 5 as shown in Table 1. For this test case, it seems the optimal number of blocks and threads
per block is 16,384 and 256 respectively. Future analysis and simulations of all test cases employ the same configuration
of block and thread numbers.
3.1.1. Timing breakdown for a single GPU
Figs. 9 and 10 show the computational time required to execute 5000 timesteps and speedupCPU/GPU, i.e. the ratio of com-

putational time when using a single core of Intel Xeon X5670 and a single GPU (NVIDIA Tesla M2070). The former is pre-
sented by the same Knudsen number with different numbers of particles in each figure and the latter is presented by the
same total number of particles with different Knudsen numbers in each figure. The results show that a speedup of 13–15
times can be obtained using a single GPU for the current simulation conditions. The results in Figs. 9 and 10 demonstrate
that the speedup ratio depends slightly on the Knudsen number – we found that when the Knudsen number is smaller
(i.e. nearer to continuum) the DSMC algorithm is consistently better accelerated using GPU, as shown in Fig. 10. This is
caused by the longer runtime for the denser cases on CPU due to increasing contribution from both particle movement
and indexing phases. However, the computational time on GPU scales almost linearly with number of particles no matter
Table 3
Simulation conditions and non-uniformity (UN (%)) in weak scaling for subsonic lid-driven cavity problem.

Kn GPUs Total particle
number

UN
(%)

Kn GPUs Total particle
number

UN
(%)

Kn GPUs Total particle
number

UN
(%)

Case
I

0.01 1 5 M 0.00 Case
IV

0.005 1 5 M 0.00 Case
VII

0.002 1 5 M 0.00
2 10 M 0.18 2 10 M 0.46 2 10 M 0.15
4 20 M 0.34 4 20 M 0.82 4 20 M 0.35
8 40 M 0.39 8 40 M 1.14 8 40 M 0.73
16 80 M 8.43 16 80 M 1.21 16 80 M 2.67

Case
II

0.01 1 10 M 0.00 Case
V

0.005 1 10 M 0.00 Case
VIII

0.002 1 10 M 0.00
2 20 M 0.20 2 20 M 0.36 2 20 M 0.24
4 40 M 0.38 4 40 M 0.91 4 40 M 0.42
8 80 M 0.43 8 80 M 1.13 8 80 M 0.67
16 160 M 8.47 16 160 M 1.17 16 160 M 2.62

Case
III

0.01 1 15 M 0.00 Case
VI

0.005 1 15 M 0.00 Case
IX

0.002 1 15 M 0.00
2 30 M 0.22 2 30 M 0.35 2 30 M 0.22
4 60 M 0.33 4 60 M 0.85 4 60 M 0.37
8 120 M 0.40 8 120 M 1.11 8 120 M 0.74
16 240 M 8.45 16 240 M 1.16 16 240 M 2.52

Table 2
Non-uniformity (UN (%)) and speedup ratio (SC/G is speedupCPU/GPU (compared to a core of the Intel Xeon X5670 CPU), and SG/G is speedupGPU/GPU (compared to a
single Tesla M2070 GPU)) in strong scaling for subsonic lid-driven cavity problem.

GPUs SC/G SG/G UN (%) GPUs SC/G SG/G UN (%) GPUs SC/G SG/G UN (%)

Case 1 1 13.02 1.00 0.00 Case 4 1 14.11 1.00 0.00 Case 7 1 15.71 1.00 0.00
2 22.67 1.74 0.30 2 26.13 1.85 0.35 2 29.63 1.89 0.23
4 40.13 3.08 0.27 4 47.36 3.36 0.95 4 53.57 3.41 0.48
8 65.29 5.01 0.45 8 77.42 5.49 1.33 8 88.18 5.61 0.80
16 88.65 6.81 8.69 16 107.69 7.63 1.18 16 118.06 7.52 2.54

Case 2 1 13.17 1.00 0.00 Case 5 1 14.03 1.00 0.00 Case 8 1 15.26 1.00 0.00
2 23.82 1.81 0.21 2 26.69 1.90 0.38 2 29.45 1.93 0.21
4 42.98 3.26 0.30 4 51.01 3.64 0.86 4 57.37 3.76 0.34
8 73.84 5.61 0.48 8 87.25 6.22 1.27 8 102.91 6.75 0.70
16 116.48 8.85 8.38 16 131.44 9.37 1.29 16 161.43 10.58 2.59

Case 3 1 13.22 1.00 0.00 Case 6 1 14.28 1.00 0.00 Case 9 1 15.44 1.00 0.00
2 24.29 1.84 0.27 2 27.43 1.92 0.35 2 29.88 1.94 0.25
4 44.47 3.36 0.33 4 53.45 3.74 0.87 4 59.38 3.85 0.39
8 77.92 5.89 0.39 8 93.77 6.57 1.24 8 111.68 7.23 0.71
16 129.03 9.76 8.53 16 149.28 10.45 1.23 16 185.28 12.00 2.79
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what the rarefaction is. In addition, the collision phase becomes the most time-consuming part of the DSMC method on GPU
in contrast with the movement phase does on CPU. In general, the particle movement and the sampling phases are better
accelerated with GPU than the other components of DSMC, including the indexing phase and particle collision phase, which
is explained next.

In the movement phase, it is faster mainly because accessing to global memory for obtaining particle properties (veloc-
ities and positions) for all threads is a typical coalesced reading, although particle removal needs some special care (see Algo-
rithm 1). In the sampling phase, although accessing to global memory for all threads, based on cell number mapping, is a
non-coalesced reading, a faster speed is obtained because much faster shared memory is used to temporarily store sampling
results. When sampling is completed for several cells, the sampled data is transferred from shared memory to global memory
(see Algorithm 5). By doing so, there are two immediate advantages: (1) reduced number of global memory access and writ-
ten, and (2) no synchronization required. In the indexing phase, it is slower because of the use of atomicAdd (see Algorithms 2
and 3) [12] which, in the worse case scenario, essentially a sequential function used in during the indexing phase. During the
collision phase, access to global memory is non-coalesced for all threads due to the random nature of particle selection.
Fig. 12. Computational time (unit: second) as a function of the number of GPU devices for weak scaling in the subsonic lid-driven cavity problem.

Fig. 13. Computational time per particle and per timestep when using different combinations of block and threads per block numbers for Case 5 in the
supersonic lid-driven cavity problem.



Fig. 14. Computational time and speedupCPU/GPU ratio using a core of the CPU (Intel Xeon X5670) and a GPU (NVIDIA Tesla M2070) for each component of
DSMC in supersonic lid-driven cavity problem: (a) Kn = 0.01, (b) Kn = 0.005, and (c) Kn = 0.002.
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Fig. 15. Computational time and speedupCPU/GPU ratio using a core of the CPU (Intel Xeon X5670) and a GPU (NVIDIA Tesla M2070) for each component of
DSMC in supersonic lid-driven cavity problem: (a) 10 M particles, (b) 20 M particles, and (c) 30 M particles.
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3.1.2. Parallel performance using multiple GPUs in strong scaling and weak scaling
Strong scaling is defined as how the simulation time varies with the number of processors for a fixed total problem size.

Weak scaling is defined as how the simulation time varies with the number of processors for a fixed problem size per pro-
cessor. In the case of strong scaling, the parallel performance is presented for the subsonic lid-driven cavity with the simu-
lation conditions shown Table 1. Fig. 11 shows the variation in speedup ratio of the fixed total problems with increasing
numbers of GPU devices. In Fig. 11 (a), the result shows that up to 185.28 times of speedup can be reached using 16 GPUs
(NVIDIA Tesla M2070) for the densest case with 30M particles as compared to a single core of Intel Xeon X5670 CPU. When
compared to the performance using a single M2070 GPU, the ratio of speedup of 12 times (see Fig. 11 (b)) demonstrates
approximately 75% parallelization efficiency. Again, larger speedup is obtained with decreasing rarefaction. We would ex-
pect a much better speedup at 16 GPUs if a much larger problem is simulated.

The balance of computational load between GPU’s on different nodes strongly influences the performance of our proposed
hybrid method. It is shown earlier in Figs. 9 and 10 that the simulation time of the DSMC method is proportional to the total
number of the particles in a single GPU. Thus, we define a non-uniformity (UN) parameter to describe situation of computing
load balance as
Fig. 16.
(Intel X
UN ¼ Pmax � Pmin

Paverage
� 100% ð2Þ
Speedup ratio as a function of GPU (M2070) number in strong scaling for supersonic lid-driven cavity problem: (a) compared to a core of the CPU
eon X5670), and (b) compared to a single GPU (M2070).
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where Pmax and Pmin are the maximum and minimum number of particles across the GPU devices, respectively, and Paverage is
the average number of particles (= total number of particles/number of GPUs). Therefore, when the value of UN is close to
‘‘zero’’, there is a lower variation in the number of particles from GPU to GPU. The computed non-uniformity (UN) and speed-
up ratio are presented in Table 2, showing that the computational load across the GPU devices is relatively even.

For weak scaling, we present the parallel performance for a fixed number of particles per processor as shown in Table 3. In
this test, there are nine cases ranging from Kn = 0.01 (Case I–III) to Kn = 0.002 (Case VII–IX) with various number of particles
(5 M,10 M,15 M) per processor at some specific Kn; therefore, there are 80 million to 240 million particles when 16 GPUs are
used. The computational time for all cases in the case of weak scaling is shown in Fig. 12. The results show that parallel per-
formance is better (or more scalable) when nearing continuum conditions (i.e. Kn = 0.002) than in more rarefied conditions
(Kn = 0.01 and Kn = 0.005). We also demonstrate relatively uniform loading across GPU devices (see Table 3).

3.2. Supersonic Lid-Driven Cavity Flow

This test case is similar to the previously investigated lid-driven cavity problem, with the exception of the speed of the
upper moving wall (M = 2). The purpose is to understand how the load imbalance will influence the parallel performance.
Fig. 13 shows computational time per particle and per timestep with different combinations of block and thread per block
numbers using a single GPU (M2070) for case 5. As per the previous (subsonic) investigation, the optimal number of blocks
and threads per block is 16,384 and 256 respectively. This configuration is thus employed for all of the test cases presented
next.

3.2.1. Timing breakdown for a single GPU
Figs. 14 and 15 show the computational time required to execute 5000 timesteps and the corresponding speedupCPU/GPU

ratio using a core of the CPU (Intel Xeon 5670) and a GPU (NVIDIA Tesla M2070) for each case. In addition to previous anal-
ysis, we compute the computational expense required for each component of the DSMC simulation. The results show that
similar speedups are obtained as compared to those of subsonic cases, although slightly lower speedups are obtained for
more rarefied cases. In addition, they again show that our proposed DSMC simulation with CUDA has two key bottlenecks,
being the indexing phase and collision phase. The discussion about the bottlenecks was presented in Section 3.1.1.

3.2.2. Parallel performance using multiple GPUs in strong scaling and weak scaling
In strong scaling, the parallel performance is presented by the above test case (supersonic lid-driven cavity, M = 2) and

simulation conditions summarized in Table 1. Fig. 16 shows the variation in speedup ratio of the fixed problems with
increasing numbers of GPU devices. The result shows that speedup of 127.8 times can be reached using 16 GPUs (NVIDIA
Tesla M2070) as compared to single core of Intel Xeon X5670 CPU in Fig. 16 (a). In this instance, the parallel performance
when using 16 GPU devices is only 51% (speedup of 8.15 times when compared to a single GPU), as shown in Fig. 16(b).
A possible explanation for the low level of performance is the level of imbalance of particles across the GPU devices – this
is sensible since the supersonic lid-driven cavity results in large density variations across the simulation domain – thus dem-
onstrating the weaknesses associated with a static domain decomposition as proposed here, which requires further improve-
ment in the future. The speedup ratio and non-uniformity (UN) in this test are presented in Table 4. Results (UN, in Table 4)
demonstrate that the parallel performance on multiple GPUs in this case is dominated by computing load for each GPU.
Fig. 17 shows the computational expense for the supersonic lid-driven cavity problem with a fixed number of particles
Table 4
Non-uniformity (UN (%)) and speedup ratio (SC/G is speedupCPU/GPU (compared to a core of the Intel Xeon X5670 CPU), and SG/G is speedupGPU/GPU (compared to a
single Tesla M2070 GPU)) in strong scaling for supersonic lid-driven cavity problem.

GPUs SC/G SG/G UN (%) GPUs SC/G SG/G UN (%) GPUs SC/G SG/G UN (%)

Case 1 1 11.68 1.00 0.00 Case 4 1 13.73 1.00 0.00 Case 7 1 15.24 1.00 0.00
2 18.70 1.60 23.44 2 23.08 1.68 18.75 2 27.65 1.81 6.51
4 28.88 2.47 32.96 4 37.99 2.77 23.91 4 46.85 3.07 19.97
8 39.78 3.41 39.19 8 54.97 4.00 31.12 8 72.46 4.75 32.18
16 46.38 3.97 49.92 16 70.45 5.13 35.20 16 93.96 6.16 42.01

Case 2 1 11.77 1.00 0.00 Case 5 1 13.42 1.00 0.00 Case 8 1 14.65 1.00 0.00
2 19.37 1.65 23.48 2 23.34 1.74 18.61 2 27.18 1.85 6.48
4 29.89 2.54 32.82 4 39.50 2.94 23.74 4 48.37 3.30 19.32
8 42.02 3.57 39.42 8 58.34 4.35 30.93 8 78.56 5.36 32.12
16 50.73 4.31 50.01 16 75.93 5.66 34.97 16 109.30 7.46 42.30

Case 3 1 11.87 1.00 0.00 Case 6 1 13.44 1.00 0.00 Case 9 1 15.68 1.00 0.00
2 19.84 1.67 23.46 2 23.44 1.74 18.59 2 29.22 1.86 6.49
4 30.97 2.61 32.89 4 40.28 3.00 23.87 4 52.83 3.37 19.05
8 43.25 3.64 39.31 8 59.30 4.41 30.99 8 87.69 5.59 31.96
16 53.60 4.51 50.04 16 79.44 5.91 35.28 16 127.80 8.15 42.25
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per processor (i.e. weak scaling) with the results specifically listed in Table 5 that is similar to Table 3 for the subsonic case.
As in the strong scaling tests, we clearly see the poor level of load balancing across multiple GPU devices, resulting in rel-
atively low levels of performance as some GPU devices are forced to wait for other heavily loaded GPU devices to complete
their computation cycles.
Table 5
Simulation conditions and non-uniformity (UN (%)) in weak scaling for supersonic lid-driven cavity problem.

Kn GPUs Total particle
number

UN
(%)

Kn GPUs Total particle
number

UN
(%)

Kn GPUs Total particle
number

UN
(%)

Case I 0.01 1 5 M 0.00 Case IV 0.005 1 5 M 0.00 Case VII 0.002 1 5 M 0.00
2 10 M 23.49 2 10 M 18.37 2 10 M 6.55
4 20 M 32.88 4 20 M 23.75 4 20 M 19.08
8 40 M 39.33 8 40 M 30.87 8 40 M 32.03
16 80 M 50.04 16 80 M 35.22 16 80 M 42.42

Case II 0.01 1 10 M 0.00 Case V 0.005 1 10 M 0.00 Case VIII 0.002 1 10 M 0.00
2 20 M 23.53 2 20 M 18.57 2 20 M 9.81
4 40 M 32.89 4 40 M 23.79 4 40 M 18.87
8 80 M 39.27 8 80 M 30.85 8 80 M 31.94
16 160 M 50.05 16 160 M 35.13 16 160 M 42.19

Case III 0.01 1 15 M 0.00 Case VI 0.005 1 15 M 0.00 Case IX 0.002 1 15 M 0.00
2 30 M 23.50 2 30 M 18.44 2 30 M 6.54
4 60 M 32.76 4 60 M 23.76 4 60 M 18.86
8 120 M 39.27 8 120 M 30.98 8 120 M 31.96
16 240 M 49.94 16 240 M 35.20 16 240 M 42.27

Fig. 18. Sketch of the Mach reflection problem.

Fig. 17. Computational time (units: second) as a function of the number of GPU devices for weak scaling for the supersonic lid-driven cavity problem.



Fig. 19. Contours of properties of Mach reflection problem: (a) Mach number and streamline, (b) density, (c) temperature, and (d) pressure.
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3.3. Large-scale simulations in near-continuum flow

To demonstrate the capability of the current parallel DSMC method using MPI-CUDA parallelization paradigm using mul-
tiple GPU devices, we have selected several very large-scale simulations in near-continuum flow. These include: (i) Mach
reflection problem, (ii) hypersonic flow over a wedge problem, and (iii) supersonic over a square block problem. These sim-
ulations are performed across several different kinds and generations of GPU devices including NVIDIA Tesla M2070, NVIDIA
Telsa C1060 (240 CUDA cores) and low-cost GeForce GTX 590 (2 GPU chips on board, 1024 CUDA cores in total) to demon-
strate flexibility of the current implementation.

3.3.1. Mach reflection problem
The Mach reflection problem involves the high-speed flow (M = 5.0) between two symmetrical wedges with angle h (=30

degree) and L/W (=1.5) in Fig. 18. Since the problem is symmetric, we only simulate the upper half of the problem. The initial
conditions are argon gas at temperature 300 K with a uniform flow speed of 1612.45 m/s. The initial number density is
1.2944 � 1021 particles/m3 and the wall temperature is fixed at 600 K – these conditions correspond to a free-stream
Fig. 20. Contours of properties of Mach reflection problem: (a) total pressure, and (b) total enthalpy.

Fig. 21. Sketch of the hypersonic flow over a wedge.
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Knudsen number of 0.001 based on the free-stream mean free path (k1 = 0.001 m) and the length (W = 1 m). Results show
that approximately 21.81 hours are required for 120,000 simulation time steps with (after 120,000 timesteps) approximately
255 million particles and 6.4 million cells using 16 GPU devices (NVIDIA Tesla M2070). Note the timestep is 3.74 � 10�7 s
and the grid is uniform with cell size of roughly the free-stream mean free path.
Fig. 22. Contours of properties of hypersonic flow over a wedge: (a) Mach number and streamline, (b) total pressure, and (c) total enthalpy.



Fig. 23. Contours of properties of supersonic flow over a block: (a) Mach number and streamline, (b) density, (c) temperature, and (d) pressure.
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Fig. 24. Property distributions along horizontal lines (y = 0.2, 0.6 and 0.8 m): (a) Mach number, (b) temperature, and (c) pressure.
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Table 6
Comparison of the performance and the computational time using various classes of GPU
devices for the supersonic flow past a square block (80,000 time steps).

Time (sec.) speedup Increased efficiency (%)

Tesla C1060 25,276 1 0
Tesla M2070 19,625 1.29 22
GeForce GTX 590 16,812 1.5 33.5
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Fig. 19 shows the contours of Mach number, streamlines, density and temperature after a flowtime of 0.04488 s. The re-
sults show the expected trends – an oblique shock is formed on the leading edge of the wedge which, after contact with the
plane of symmetry, forms a normal shock wave, forming a triple point. Conditions immediately behind the normal shock
wave are subsonic, which quickly accelerate to supersonic conditions as the flow moves downstream. Thus, the resulting
flow behaves like a ‘‘virtual nozzle’’. Fig. 20 shows contours of total pressure and total enthalpy, showing the energy drop
past the incident shock wave and in the boundary layer region. On the other hand, we can observed that the overall structure
of Mach reflection is captured without any doubt, although the cell size in this simulation is one mean free path based on the
free-stream. In addition, we have found that the grid resolution for the shock (e.g., close to the triple point) is about 5–7 cells
because of rarefaction, which is good enough for resolving the shock structure.

3.3.2. Hypersonic flow over a wedge
Fig. 21 shows the layout of a hypersonic flow past a wedge used in the simulations discussed below. The free-stream flow

conditions consist of argon gas moving with a speed of 1884.12 m/s, a temperature of 40 K and a number density of
1.2944 � 1021 particles/m3. These correspond to a Mach number of 16 and a free-stream Knudsen number of 0.005 based
on the free-stream mean free path (k1 = 0.001 m) and the length (L = 0.2 m). The wall temperature of the wedge is held con-
stant at 300 K. In this test, the timestep size is 2.2 � 10�7 s and the grid is uniform with cell size �1/2 of the free-stream
mean free path. Results show that only approximately 7.24 hours are required for 50,000 time steps of simulation with using
(after 50,000 steps) 170 million particles across 3.2 million cells when executed on 16 NVIDIA Tesla C1060 GPU devices
across 4 nodes. Each node has dual Intel Xeon X5472 (3 GHz, 12 M Cache, 1600 MHz FSB), 4 GPU devices of NVIDIA Tesla
C1060 (240 microprocessors @ 1.3 GHz, 4 GB DDR3 memory, without ECC support) and 32GB RDIMM system memory.
The interconnection between all nodes is InfiniBand.

Fig. 22 shows contours of Mach number, streamlines, total pressure and total enthalpy. As expected, leading oblique
shock waves are formed from the leading edges of the wedge, with a boundary layer formed on its surface post-shock. Sep-
aration of flow occurs behind the wedge (see Fig. 22 (a)). The energy drops across the flow field for this problem are reflected
in Fig. 22 (b) and Fig. 22 (c).

3.3.3. Supersonic flow over a block
The final test case is a two dimensional supersonic flow over a rectangular block. Ideal argon with a temperature of 300 K

is initially assumed to be moving with Mach number M = 4.0 and with an angle of attack 30 degree over a diffusely reflecting
block of fixed temperature 1000 K. The block is square with sides of length L = 0.2 m. The corresponding free-stream Knud-
sen number is 0.005 based on the free-stream mean free path (k1 = 0.001 m) and the length (L = 0.2 m). Here, the timestep
size is 2.12 � 10�7 s and the grid is uniform with cell size �1/2 of the free-stream mean free path. Results show that approx-
imately 4.67 hours are required for 80,000 time steps of simulation with (after 80,000 steps) approximately 65 million par-
ticles and 3.2 million cells. We have also performed a cell-refinement study using 12.8 million cells and 200 million particles.
The results are essentially the same as the case with 3.2 million cells. This simulation was executed on a very low-cost sys-
tem, which includes 6x NVIDIA GeForce GTX 590’s across 3 nodes. Each node has 1x AMD Phenom II X6 1090T (3.2 GHz, 6 M
Cache), 2 NVIDIA GTX 590 GPU devices and 8 GB UDIMM system memory. Each GTX590 has dual GF110 chips including
1.5 GB DDR5 memory per each, totally 3 GB and 1024 CUDA cores. The interconnection between all nodes is Gigabit Ether-
net. Fig. 23 shows contours of Mach number, streamline, density, temperature and pressure. The results show a clear bow
shock predicted in front of the block as expected. For a future comparison of the data, Fig. 24 shows several property distri-
butions along several horizontal lines at y = 0.2, 0.6, and 0.8 m, including Mach number, temperature and pressure.

In addition, the comparison of the performance and the computational time using various classes of GPU devices (NVIDIA
Tesla C1060 and M2070) in this test case is presented in Table 6. The performance using NVIDIA GeForce GTX 590 cards is
among the best, and its efficiency can increase about 15% as compared to that of NVIDIA Tesla M2070. The results show that
large-scale DSMC simulation is feasible using general gaming cards in a low-cost system.
4. Conclusions

In this paper we present a parallel DSMC method using MPI-CUDA parallelization paradigm using multiple Graphics Pro-
cessing Units (GPUs) capable of very large-scale simulations in near-continuum conditions. The results demonstrate that a
speedup of 15 times using a single GPU (NVIDIA Tesla M2070) when compared to single core of an Intel Xeon X5670 CPU can
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be obtained. Computational time scales almost linearly with number of particles on a single GPU. In the instance of multiple
GPU devices and strong scaling, we have shown the computational time can be reduced by 185 times when using 16 GPU
devices (NVIDIA Tesla M2070). When the scalability across multiple GPU devices was investigated, we found 75% parallel-
ization efficiency for a problem of fixed size (i.e., strong scaling). The performance characteristics of the parallel GPU imple-
mentation are dependent on the degree of rarefaction of the flow, with increased parallel speedup encountered with a
decrease in the Knudsen number. The key bottlenecks identified in this study (with regard to the DSMC computation itself)
where (i) particle indexing into cells, and (ii) particle partner selection and collision phase. A significant challenge demon-
strated was the particle imbalance across several GPU devices when using a domain decomposition paradigm. To demon-
strate the capacity of this implementation to perform large-scale near continuum DSMC simulation, a large number of
computational benchmarks were performed. We performed these tests using various GPU devices – from professional
GPU computing devices (NVIDIA’s Tesla series) to devices traditionally employed for computing gaming (NVIDIA GeForce
series). In one instance, a benchmark simulation employing approximately 255 million particles across 6.4 million cells re-
quired approximately 21 hours to complete 120,000 time steps.

In the future, we aim to continue the optimization of the DSMC algorithm for application to the multiple GPU parallel-
ization paradigm. Investigations into the indexing and collision phases, in addition to inclusion of the sub-cell method
[14] and variable time step scheme [15] are planned in the immediate future. In order to improve the computational load
balancing across multiple GPU devices we will implement a dynamic domain decomposition method [16]. Finally, we will
extend our implementation to incorporate three-dimensional flows to increase the applicability to very large scale, real life
flow problems in the near-continuum and possibly continuum regime. For those who are interested in this research, we have
provided a source code of two-dimensional DSMC implemented on a single GPU in our group website [17].

Code Snippet 1. A GPU-based function (code) for the creation of uniformly distributed random numbers.

class RANDOM{
public:

int inext , inextp , iff , ma[56] ;
RANDOM() ;

} ;
RANDOM::RANDOM(){

inext = 0 ;
inextp = 0 ;
iff = 0 ;
for (int i = 0 ; i<56 ; i++)

ma[i] = 0 ;
}
__device__ float Randn(RANDOM ⁄Rand , int index_n){

int i , j ;
float rf ;
const int MBIG = 1000000000 ;
const int MSEED = 161803398 ;
const int MZ = 0 ;
const float FAC = 1.E-9 ;
int MJ , MK , II ;
if (index_n < 0 || Rand->iff == 0){

Rand->iff = 1 ;
MJ = MSEED - index_n ;
MJ = MJ%MBIG ;
Rand->ma [55] = MJ ;
MK = 1 ;
for (i = 1; i<55;i++){

II = 21⁄i%55 ;
Rand->ma[II] = MK ;
MK = MJ-MK ;
if (MK < MZ) MK = MK + MBIG ;
MJ = Rand->ma[II] ;

}
for (j = 0; j < 4; j++){

for (i = 1;i < 56; i++){

(continued on next page)
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Rand->ma[i] = Rand->ma[i] - Rand->ma[1 + (i + 30)%55] ;
if (Rand->ma[i] < MZ) Rand->ma[i] = Rand->ma[i] + MBIG ;

}
}
Rand->inext = 0 ; Rand->inextp = 31 ;

}
do{

Rand->inext = Rand->inext + 1;
if (Rand->inext == 56) Rand->inext = 1;
Rand->inextp = Rand->inextp+1;
if (Rand->inextp == 56) Rand->inextp = 1;
MJ = Rand->ma[Rand->inext] - Rand->ma[Rand->inextp];
if (MJ < MZ) MJ = MJ + MBIG;
Rand->ma[Rand->inext] = MJ;
rf = MJ⁄FAC;

}while (!(rf > 1.E-8 && rf < 0.99999999));
return rf;

}

Algorithm 1. Calculate positions of all particles over a time step.

Require: bidx is the index of this block (blockIdx.x)
Require: tidx is the index of this thread within the block (threadIdx.x)
Require: bdimx is the number of blocks (gridDim.x)
Require: tdimx is the number of threads in each block (blockDim.x)
Require: d_ParticleIn is initialized to ‘‘1’’ from 0 to Nparticles � 1
Require: d_ParticleInMPI is initialized to ‘‘0’’
for i = bidx ⁄ tdim+tidx to Nparticles-1 ; i+ = bdimx ⁄ tdimx do

ParticleCoordinate[i]+ = ParticleVelocity[i] ⁄ timestep
if particle collide boundary of GPU’s domain

d_ParticleInMPI[i] = 1
d_ParticleIn[i] = 0
continue

else if particle collide inlet/outlet boundary
d_ParticleIn[i] = 0
continue

else if particle collide wall boundary
particle be rebounded based on type of wall
continue

end if
calculate cell number of particle

end for

Algorithm 2. Sum number of particles in each cell.

Require: bidx is the index of this block (blockIdx.x)
Require: tidx is the index of this thread within the block (threadIdx.x)
Require: bdimx is the number of blocks (gridDim.x)
Require: tdimx is the number of threads in each block (blockDim.x)
Require: d_IndexCell2 is initialized to ‘‘0’’
for i = bidx ⁄ tdim+tidx to Nparticles � 1 ; i+ = bdimx ⁄ tdimx do

CellNo = d_ParticleCellNo[i]
atomicAdd(&d_IndexCell2[CellNo],1)

end for



C.-C. Su et al. / Journal of Computational Physics 231 (2012) 7932–7958 7957
Algorithm 3. Index the relationship between particles and cells.

Require: bidx is the index of this block (blockIdx.x)
Require: tidx is the index of this thread within the block (threadIdx.x)
Require: bdimx is the number of blocks (gridDim.x)
Require: tdimx is the number of threads in each block (blockDim.x)
Require: d_IndexCell2 is initialized to ‘‘0’’
for i = bidx ⁄ tdim + tidx to Nparticles � 1; i+ = bdimx⁄tdimx do

CellNo = d_ParticleCellNo[i]
j = atomicAdd(&d_IndexCell2[CellNo],1)
k = d_IndexCell1[CellNo] + j
d_IndexParicle[k] = i

end for

Algorithm 4. Collision implementation with CUDA in DSMC.

Require: bidx is the index of this block (blockIdx.x)
Require: tidx is the index of this thread within the block (threadIdx.x)
Require: bdimx is the number of blocks (gridDim.x)
Require: tdimx is the number of threads in each block (blockDim.x)
for i = bidx ⁄ tdim+tidx to Ncells � 1 ; i + = bdimx ⁄ tdimx do

collision pairs is calculated by NTC method
for j = 0 to Mcollision pairs � 1 do

select colliding particle and to calculate relative speed⁄collision cross section (rT ⁄ cr)
if Rand[0 � 1] < (rT ⁄ cr)/ (rT ⁄ cr)max

calculate velocity post-collided
end if

end for
maximum relative speed⁄collision cross section (rT ⁄ cr)max is updated in this cell

end for

Algorithm 5. Sampling implementation with CUDA in DSMC.

Require: bidx is the index of this block (blockIdx.x)
Require: tidx is the index of this thread within the block (threadIdx.x)
Require: bdimx is the number of blocks (gridDim.x)
Require: tdimx is the number of threads in each block (blockDim.x)
Require: s_sampleproperties are stored the sampling data on shared memory
Require: d_sampleproperties are stored the sampling data on global memory
for i = bidx ⁄ tdim + tidx to Ncells � 1 ; i+ = bdimx ⁄ tdimx do

s_sampleproperties[tidx] = 0
Mparticles = d_IndexCell2[i]
m = d_IndexCell1[i]
for j = 0 to Mparticles � 1 do

k = d_IndexParticle[m + j]
s_sampleproperties[tidx] + = d_ParticleProperties[k]

end for
d_SampleParticleNum[tidx] + = Mparticles

d_sampleproperties[tidx] + = s_sampleproperties[tidx]
end for
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