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Abstract 

A new equalization scheme, including a decision feedback equalizer (DFE) equipped with polynomial-perceptron 
model of nonlinearities and a robust learning algorithm using lp-norm error criterion with p < 2, is presented in this 
paper. This equalizer exerts the benefit of using a DFE and achieves the required nonlinearities in a single-layer net. This 
makes it easier to train by a stochastic gradient algorithm in comparison with a multi-layer net. The algorithm is robust 
to aberrant noise for the addressed equalizer and, hence, converges much faster in comparison with the /,-norm. 
A detailed performance analysis considering possible numerical problem for p < 1 is given in this paper. Computer 
simulations show that the scheme has faster convergence rate and satisfactory bit error rate (BER) performance. It also 
shows that the new equalizer is capable of approaching the performance achieved by a minimum BER equalizer. 

Ein neues Entzerrungsverfahren wird in diesem Beitrag vorgestellt. Es schlief3t einen Entzerrer mit Entscheidungsriick- 
fiihrung ein, der mit einem Polynom-Perceptronmodell fiir Nichtlinearitlten und einem robusten Lernalgorithmus 
ausgestattet ist, welcher mit einem I,,-Norm-Kriterium mit p < 2 arbeitet. Dieser Entzerrer nutzt den Vorteil der 
Entscheidungsriickkopplung und erzielt die gewiinschten Nichtlinearitgten in einem Netzwerk mit einer Ebene. 
Gegeniiber einem mehrlagigen Netzwerk wird so das Training durch ein stochastisches Gradientenverfahren erleichtert. 
Der Algorithmus ist beim angesprochenen Entzerrer robust gegeniiber Fehlerrauschen und konvergiert daher vie1 
schneller als bei Verwendung der I,-Norm. Die Leistungsftihigkeit wird beziiglich maglicher numerischer Probleme fiir 
p < 1 im einzelnen analysiert. Rechnersimulationen zeigen die h&here Konvergenzgeschwindigkeit und zufriedenstel- 
lende Bitfehlerrate. Es zeigt sich aul3erdem, daLi der neue Entzerrer fihig ist, die Leistungsfihigkeit einer Entzerrung mit 
minimierter Bitfehlerrate zu erreichen. 

Cet article prksente un nouveau schCma d’6galisation incluant un Bqualiseur g decision par retour arri&e (DFE) Cquip6 
avec une mod6lisation des non-Marit& par modkle de perceptron polynomial et un algorithme d’apprentissage 
robuste utilisant la norme I, comme crit&e d’erreur (avec p < 2). Cet ggaliseur exploite les avantages d’une DFE et 
remplit les conditions de non-1inCaritC requisent par un rkseau monocouche. Ce dernier point permet un 
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apprentissage par un algorithme de gradient stochastique plus facile par comparaison g un rCseau multi-couche. 
L’algorithmeest robuste au bruit aberrant dans le cas de l’bqualiseur utilisk, et, de plus, il converge plus rapidement que la 
norme Iz. Une analyse dCtaillCe des performances tenant compte des problkmes numkiques lorsque p < 1 est don&e 
dans cet article. Les risultats de simulation montrent que le schCma a une vitesse de convergence plus rapide et des 
performances en terme de taux d’erreur par bit satisfaisant. 11 montre Cgalement que ce nouvel Cgaliseur est capable 
d’approcher les performances d’un tgaliseur a BER minimum. 

Keywords: Robust learning algorithm; Polynomial-perceptron based DFE; l,-norm error criterion 

1. Introduction 

Adaptive equalization is an important technique 
to combat intersymbol interference (ISI) in digital 
communication systems. The equalizer has the task 
to recover the transmitted sequences from the re- 
ceived signal. It is well understood that optimal 
performance can be obtained by detecting the 
entire transmitted sequence using the maximum 
likelihood sequence estimator (MLSE) [7, 151. 
However, the computation complexity and mem- 
ory requirement of the MLSE make it impractical 
in some real-time applications. A more practical 
approach is to use symbol-by-symbol-decision lin- 
ear transversal equalizer. However, it is known that 
in the signal space only linear decision boundaries 
[14] can be formed by a linear equalizer. An opti- 
mal symbol-by-symbol-decision equalizer must 
realize some nonlinear functions such that it can 
partition the signal space with nonlinear decision 
boundaries [4, 5, 91. Recently, nonlinear equalizers 
equipped with multi-layer perceptron (MLP) 
model of nonlinearities were proposed by Gibson et 
al. [9] and Siu et al. [23]. Their results indicated 
that the optimal decision boundaries must be non- 
linear and the MLP can approach the required 
nonlinearities. In addition, nonlinear approaches 
equipped with different models of nonlinearities 
such as using a polynomial-perceptron structure 
(PPS) [4], a radial basis function [S] and using 
a functional-link net [S] were demonstrated to 
have similar capabilities in partitioning the signal 
space. 

In this paper, we focus on a new nonlinear 
equalizer in the following two respects. First, 
a single-layer nonlinear decision feedback equalizer 
(DFE) equipped with polynomial-perceptron 
model of nonlinearities is developed, Second, an 

&-norm [21] based learning algorithm suitable for 
the addressed structure is investigated. The struc- 
ture exerts the benefit of using a DFE and achieves 
the required nonlinearities in a single-layer net. 
This is advantageous since it is much easier to train 
by a stochastic gradient algorithm. The algorithm 
using /,-norm error criterion with p < 2 can be 
robust to aberrant noise when the distribution of 
error signals is more or less known a priori. The 
new equalizer has error signals lying in an interval 
suitable for applying the l,-norm error criterion. 
A performance analysis of the l,-norm back propa- 
gation (BP) algorithm [ZO] with p > 1 has been 
conducted by Siu et al. [22] for an MLP equalizer. 
A detailed performance analysis with a considera- 
tion on the possible numerical problem arising 
when p < 1 is given in this paper. Computer simu- 
lations show that the new equalizer is attractive in 
both convergence rate and BER performance and 
has a performance close to that achieved by a 
minimum BER equalizer. 

The paper is organized as follows. Section 2 de- 
scribes the polynomial-perceptron based DFE. Sec- 
tion 3 presents the [,-norm tap-weight updating 
algorithm for the proposed structure. A perfor- 
mance analysis of the l,-norm algorithm with a nu- 
merical stability consideration is given in Section 4. 
Computer simulation results are given in Section 5. 
A comparison of the new equalizer with other non- 
linear equalizers is given in Section 6. 

2. Polynomial-perceptron based DFE 

The capability of a single-layer net is limited 
since only linear decision boundaries can be formed 
in the pattern space [16]. Although the use of 
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a multi-layer net [20, 241 can achieve the required 
nonlinearities, the high complexity of the multi- 
layer net precludes its use in many applications. It 
is known that functions realized by hidden layer 
nodes in a multi-layer net can also be realized or 
approximated by a single-layer net provided that 
sufficient orders of nonlinear links are incorporated 
into the node [17]. For example, consider a set of 
components described by a vector X1, the required 
nonlinearities can be achieved by a series of higher- 
order expansion as 

XI +X2 = [XII x t-1, XII 
-+X,=[X,]x[l,X,]+ . ..) (I) 

where x denotes outer product operation. This 
expansion introduces higher-order terms, together 
with the first-order terms given by X1, to represent 
the information. Some advantages through the use 
of the outer product model can be found in [17]. 
A perceptron with nonlinear links obtained by 
using (1) on the input is called a polynomial percep- 
tron [4]. 

Let L and M denote, respectively, the number of 
taps in the feedforward and the feedback filters of 
a DFE. The signal vector in a DFE can be repre- 
sented as 

T 
X(n) = [X,(n), X,(41 I 
with 

(2) 

X,(n) = [x&r), xr(n - I), ... ,x&r - L + l)], (3) 

X,(n) = [x&i - I), x&i - 2), 1.. ,x&i - Ml, (4) 

where X,(n) and X,(n) denote, respectively, the feed- 
forward and the feedback signal vectors. In a DFE, 
the feedforward and feedback signals can be highly 
correlated [2]. This fact can be seen from the cross- 
correlation between X,(n) and X,(n) given as 

Notice that the elements in (4) are related to the 
equalizer delay d by 

x&r) = s(n - d) + v(n), (6) 

where s(n) is the transmitted signal and v(n) is the 
decision error. Moreover, it is reasonable to assume 
that the decision error is independent of the feed- 
forward signal. Consequently, the elements in (5) 
become 

E[x& - i)xb(n -j)] = E[xf(n - i)s(n - d -j)], 

(7) 

with i = 0, 1, . . . ,L-landj=1,2 ,..., M.Wecan 
see from (7) that the elements in (5) depend solely 
on the channel response. The polynomial-percep- 
tron based DFE shown in Fig. l(a) is denoted as 
PPDFE-I, where the threshold term for the percep- 
tron is treated as an input of value unity (ue = 1) 
with tap-weight W&I). The DFE shown in Fig. l(b), 
denoted as PPDFE-II, uses the same higher-order 
expansion but only on the feedforward part of X(n). 
The number of taps needed for an ith-order expan- 
sion can be found by 

N= i nk, (8) 
k=O 

with no = 1 and nk = nk_ 1(L + M + k - 1)/k, k = 
1,2, . . . , i [4], for PPDFE-I, while 

1 
N = 1 nk -t M, 

k=O 
(9) 

with no = 1 and nk = n,_,(L + k - 1)/k, 
k = 1,2, . . . . i, for PPDFE-II. Given the same L and 
M, the number of taps in PPDFE-I is larger than 
that of the PPDFE-II for a given order of expan- 
sion. For example, if L + M = 5 and i = 3, the 
PPDFE-I has 56 taps, while the PPDFE-II has 

E CX~(n)Xdn)l 

xf(n)xb(n - 2) ... 

xf(n - 1)x& - 1) xf(n - l)x+,(n - 2) ‘.. 
= E 

xf(n - l)xb(n - M) 
. (5) 

Xf(n - L -k l)Xb(n - 1) X&I - L i- l)Xb(n - 2) ‘.. X&I - L + l)Xb(n - M) 
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I HIGHER-ORDER EXPANSION 

(a) 

1 HIGHER-ORDEREXF’ANSION 1 ) 

(b) d(n) 

Fig. 1. Two polynomial-perceptron based DFEs: (a) PPDFE-I; (b) PPDFE-II. 
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36 taps. This is the price paid by the PPDFE-I for 
its better performance. The number of taps grows 
exponentially with increasing order of expansion. 
However, a small order such as 3 or 5 is often 
adequate to achieve required nonlinearities en- 
countered in practical applications [4]. Further- 
more, higher-order terms for which the correlation 
is insignificant can be dropped. This makes the 
proposed structure more feasible. 

3. l,-norm learning algorithm 

The lack of robustness in the least-mean square 
(LMS) algorithm is attributed to its overweighing 
of aberrant noise in the error signal. Therefore, for 
the LMS algorithm to be robust, an appropriate 
error suppressor must be equipped prior to evaluat- 
ing the increments of the tap-weights. For example, 
a robust LMS algorithm can be of the form 

W(n + 1) = W(n) + ~zc.(n)l~, 

where q is the learning gain and z( .) is an error 
suppressor. If, for example, the error signal has 
a probability density function (PDF) that re- 
sembles a logistic density, then a function of 
the form z[e(n)] = tanh[e(n)/2] can be a robust 
error suppressor [13]. However, the PDF of an 
error signal is generally not known a priori and 
hence the determination of an error suppressor is 
subject to trial and error. An alternative way to 
achieve this goal is to use the I,-norm error cri- 
terion with p < 2. The l,-norm error function [21] 
is defined by 

(11) 

where p denotes the power metric and the factor of 

P - ’ is padded simply for mathematical conveni- 
ence [17, 203. For p = 2, (11) becomes the mean 
squared error (MSE) or the &-norm error criterion. 
Similar to the rule of LMS algorithm, the negative 
gradient, - VP(n), in the p-power error surface can 
be estimated as 

- V,(n) = ) e(n)lPml Wn) 
- sfzn Ce(n)l, 
aw(n) 

(12) 

where sgn[e(n)] denotes a sign function of e(n). We 
can see from (12) that a nonlinear error function of 
the form 

4441 = sgn Ce(4lI44 Ip- ’ (13) 

is now inherently built in the tap-weight updating 
equation. 

The factor I e(n) Ip- ’ in (13) rescales I e(n) I to some 
extent if p # 2. Fig. 2 shows how 1 e(n) 1 is resealed 
by I e(n) Ip- ’ using different values of p. The value of 
le(n)l is assumed to be in the interval [0,2]. For 
p > 2, I e(n) Ip- ’ scales up large values of I e(n) I and 
scales down small values of I e(n) I. This tells why the 
use of p > 2 cannot be robust when possible statis- 
tical outliers [lo, 121 are located close to the upper 
bound of le(n)l. For p c 2, I e(n) Ip- ’ scales down 
large values of le(n)l and scales up small values of 
le(n)l to some extent. This indicates that the use 
of p < 2 can provide a robust error suppressor if 
possible statistical outliers are located close to 
the upper bound of I e(n)I. However, for p < 1, 
a numerical stability problem arises whenever 
(e(n) 1 is close to zero. This is the issue that must be 
resolved when using p < 1. Notice that using I,- 
norm with p < 2 could throw some information 
away if the distribution of le(n)l is not known 
completely. 

lwl 
Fig. 2. 1 e(n) jp- f versus 1 e(n) 1 for different values of p. 
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The tap-weight updating equation for the pro- 
posed DFE is derived as follows, The equalizer 
output y(n) in Fig. 1 can be written as 

y(n) =.fCwT(GJ(n) + WOWI, (14) 

where f( .) is the activation function, we(n) is the 
threshold level for the perceptron, W(n) = [wr(n), 

W&r), ... , wN_ l(n)]T is the tap-weight vector, and 

U(n) = C% (n), u2(4, . . . , UN_ 1(n)]’ is the input vec- 
tor comprising components to be supplied to the 
perceptron. If the activation function is of the form 
f(x) = (1 - e-“)/(l + e-“), then the resulting tap- 
weight and threshold level updating equations can 
be written, respectively, as 

lV(n + 1) = W(n) + v] sgn [e(n)] 1 e(n)]“- ‘f’(n) U(n), 

(15) 

wo(n + 1) = we(n) + P wC441 I 441p- Y’W, 
(16) 

where fl is the threshold level adaptation gain and 
f’(n) is the derivative of the activation function 
with respect to its argument, that is, f’(n) = 
[l - y2(n)]/2. It can be seen from (15) or (16) that 
the 12-norm yields a standard LMS algorithm and 
the Ir-norm yields a sign algorithm. Table look-up 
method can be employed to implement the factor 
1 e(n) Ip- ’ in the algorithm. 

4. Performance analysis of the I,-norm algorithm 

The following analyses will focus on the tap- 
weight updating equation given by (15) since the 
same results can be applied directly to the threshold 
level update. To see the effect of p on the learning 
gain, we rewrite (15) as 

W(n+l)=W(n)+ V 
14n)12-P 

s(n) U(n), (17) 

where z(n) F e(n)f’(n) is the change of error at 
p = 2 and q is the learning gain at p = 2. Having 
this, the effective learning gain at arbitrary values of 
p can be written as u,(n) = q/l e(n)12-P. Further 
investigation of this requires a priori knowledge of 
1 e(n)l. For the assumed activation function f, the 

output will be limited by the interval [ - 1, 1) and 
most of it will be located close to its steady states, 
- 1 or 1 in our case, due to the nonlinearities off: 

If the desired signal has an alphabet of (- 1, l}, 
then I e(n) I will be distributed in [0,2] and most of 
them will be located close to its lower bound under 
correct decisions. Consequently, using I,-norm with 
p < 2 can treat I e(n) I in a ‘robust’ manner as dis- 
cussed in the last section. Without loss of general- 
ity, the output is assumed to be uniformly distrib- 
uted in [ - 1, l] for simplicity [19] in the following 
analyses. Having this, 1 e(n) I will be uniformly dis- 
tributed in [O, 21. 

4.1. lp-norm for p < 1 

The possible numerical problem encountered 
when using p < 1 can be solved by replacing (e(n) I 
with a small positive number 8 whenever I e(n) 1 d 8. 
Although alternative method, such as switching 
p from p< 1 to p b 1 when [e(n)1 < 8, could be 
feasible, only the former is focused in this paper. 
The following results are valid if 1 e(n) I is bounded 
in the interval [0,2] and 8 is limited by 8 < 1. 

In the training mode, a correct decision makes 
le(n)l to be distributed in [e, 11, whereas an incor- 
rect decision makes I e(n)1 to the distributed in 
[1,2]. Let P(e) denote the error probability in mak- 
ing the decisions. The expectation value of I e(n) l2-p 
can be found by assigning a weight of P(e) to the 
expectation value of I e(n) 12-p for ) e(n) I lying in the 
interval [ 1,2] and a weight of [ 1 - P(e)] to that for 
) e(n) / lying in the interval 10, 11, i.e., 

ECI e(n) I”-“1 

= Cl - ~~~~l~~l~~~~12~Pll~~~~l~C~~ 111 

+ ~~~~~(I~~~~12~Pll~~~~I~C~,~1~. (18) 

The two expectation values in the right-hand side 
of (18) can be obtained as 

E{le(n)12-Plle(n)l~C~, 111 

= (1 - ~-73 - p)-l(l - e3-p), W) 

E{Je(n)12-plle(n)le[1,2]} =(3-p)-1(23-p- 1). 

(20) 
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By substituting (19) and (20) into (18), we obtain 

-W4412-P1 

= [l - P(e)](l - 03-p) + P(e)(l - 0)(23-P - 1) 

(3 - P)(l - 0) 

(21) 

The average learning gain is defined by 71,” = 
E[q,(n)] = ij/E[Je(n)12-P]. This isin turn found as 

rlav = 

(3 - PM - 4 
[1 - P(e)](l - 83-p) + P(e)(l - 0)(23-p - 1)” 

(22) 

The result indicates that qav increases with decreas- 
ing p and decreases with increasing 8 and/or P(e). 
A large 0 can counteract the effect of p on r~,~. If 
P(e) M 0 and B3-p<< 1, (22) can be simplified as 

r BV = (1 - 8)(3 - p)rl. (23) 

Defining q,“/?j as the learning gain enhance- 
ment relative to the l,-norm, Fig. 3 shows qBV/ij as 

3 - 

2.6 

rl av 

T 

2 

o=o. 1 

\ 

\ 
CM.2 

1.6 ’ , 

-0.2 0.2 0.6 1 

P 

Fig. 3. Learning gain enhancement (q&) as a function of p 
under P(e) z 0. 

a function of p under P(e) z 0. It can be seen that 
~,~/ij increases with decreasing 0. However, small 
values of 8 may result in a numerical problem and 
hence 0 cannot be too small. Some empirical values 
of Q will be used in our later simulations. 

In the decision-directed mode, 1 e(n)1 will be dis- 
tributed in [e, 11. Therefore, qav can be obtained 
directly from (19) as 

vl,y = (1 - e)(3 - p)(i - e3-p)-iq. 

If 83-p<< 1, (24) can be simplified as 

(24) 

vl ay z (1 - 0)(3 - PIN. (25) 

4.2. I,-norm for 1 < p 6 2 

Since no numerical problem occurs for 
1 < p Q 2, qav can be obtained directly from (22) 
and (24) by setting t9 = 0. Therefore, in the training 
mode, ray becomes 

qaV = (3 - p)[l + P(e)(23-P - 2)1-l& 

If P(e) c 0, (26) yields 

(26) 

&“%(3 -PI@ (27) 

Finally, in the decision-directed mode, qaV is given 

by 

9a” = (3 - PI6 (28) 

The same results can also be found in c22]. Eq. (27) 
or (28) tells that qav can be, at most, enhanced by 
a factor of (3 - p). It is worth noting that the qav for 
the Ii-norm is twice of that for the 12-norm. This 
property is attractive since using Ir-norm can in- 
crease the convergence rate at a reduced computa- 
tional complexity. 

4.3. l,-norm in a higher signal-to-noise ratio 
environment 

When the signal-to-noise ratio (SNR) is high, 
P(e) tends to be negligible and (e(n)1 can be 
bounded by a small value of c1< 1 in some 
cases. Accordingly, for p < 1, E[le(n)12-P] x 
E{le(n)12-Plle(n)lE[0,a]} with 8 <a 6 1, while 
for 1 <p < 2, E[le(n)12-P] z E{le(n)12-Plle(n)lE 
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[0, LX]} with 0 < a < 1. Then we obtain 

m4412-Pl 
~ 

i 

(a - 8))‘(3 - p)-‘(a+p - 83-p), p < 1, 

&P(3 - $1, lQp<2. 

(29) 

Therefore, in both training mode and decision-di- 
rected mode, vav becomes 

x 

i 

(a - 8)(3 - p)(a3-p - 83-p)-1yl, p < 1, 

(3 - p)C2yi, l<p62. 

(30) 

5. Computer simulations 

A random sequence with alphabet { - 1, l} is 
used as the input to the channel for computer 
simulations. A zero-mean white Gaussian noise is 
used as the additive interference. A linear channel 
of the form 

r(n) = 0.348s(n) + 0.870s(n - 1) + 0.348s(n - 2) 

(31) 

is first chosen to justify the effect of p on the perfor- 
mance results obtained above. The equalizer delay 
chosen is d = 2. Unless otherwise indicated, the 
order of polynomial expansion used is i = 3 for all 
the polynomial-perceptron based equalizers. The 
SNR is defined by SNR = 10 log(oz/oz), where a: 
is the signal power at the output of the channel and 
ai is the noise power. For the simplicity in repre- 
sentation, the notation (L, M) DFE is used to de- 
note a DFE having L taps in the feedforward filter 
and M taps in the feedback filter. Also, the notation 
(N,, IV,, N3) MLP is used to denote an MLP hav- 
ing N1 neurons in the hidden layer 1, NZ neurons in 
the hidden layer 2, and N3 neurons in the output 
layer. The learning curves are determined by an 
average of 800 individual trials with each compris- 
ing different input sequences and different sets of 
random initial tap-weights. The BER performances 
are evaluated by an average of 800 independent 
trials with each comprising 10 000 bits in length. In 
each trial, the first 1800 bits are used for training, 

which is considered sufficient for a nearly complete 
training. Furthermore, in the case of p < 1, some 
empirical values of 8 are used. 

5.1. Convergence properties 

In these simulations, the MSE is used as 
a measure of the convergence performance and 
SNR = 20 dB is used in all simulations. Fig. 4 
shows the learning curves of the (4,l) PPDFE-I, 
the (4, 1) PPDFE-II and a PPS equalizer of length 
5. Here, the 12-norm algorithm with f = 0.1 and 
fi = 0.05 is used for all cases. The results indicate 
that the proposed structure (PPDFE-I) converges 
much faster than the PPDFE-II as well as the PPS 
equalizer. The former justifies the prediction in 
Section 2 and the latter demonstrates the benefit of 
using a DFE in such a single-layer net. Fig. 5 com- 
pares the learning curves between the (4,l) 
PPDFE-I and a (6,3, 1) MLP (4, 1) DFE. Here, 
a (6,3,1) MLP is chosen such that the number of 
tap-weights needed are comparable with the (4,l) 
PPDFE-I. The Z2-norm BP algorithm with f = 0.1 
and /3 = 0.05 is used to train the MLP and the same 
parameters as above are again used in (4,l) 
PPDFE-I. It is seen that the (4, 1) PPDFE-I con- 
verges much faster than the MLP. 

-10 

B 

! 
-20 

-30 I x 100 

0 5 10 16 20 

number of iterations 

Fig. 4. Comparison of convergence rate for different poly- 

nomial-perceptron based equalizers: PPS of length 5, (4,1) 
PPDFE-I and (4, 1) PPDFE-II. 
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Fig. 6 shows the effect of p on the convergence 
rate for the (4, 1) PPDFE-I. Here, different values of 
p, 2, 1.2 and 0.6, are used to illustrate their effect on 
the convergence rate. Other parameters used are: 
rj = 0.1 and 0 = 0.2 f or p = 0.6. The results indicate 
that significant improvement in convergence rate 
can be achieved by using smaller values of p. The 
dependence of convergence rate on p, with noise 
floor at - 20 dB, is shown in Fig. 7. It can be seen 
that the convergence rate increases with decreasing 
p for p < 2. However, the convergence rate 
approaches a limit as further decreasing p from 

’ xl00 

0 6 10 16 20 

number of iterations 

Fig. 5. Comparison of convergence rate for the (4,l) PPDFE-I 

using i = 3 and the (6,3,1) MLP (4,1) DFE. 

0 

-10 

i -20 

J 
x -30 

-40 

-50 

fig4.5,6-sigp677 

’ xl00 
0 5 10 15 20 

number of iterations 

Fig. 6. Learning curves of the (4,1) PPDFE-I at different values Fig. 8. Convergence rate of the (4,1) PPDFE-I as a function 

of p for SNR = 20 dB. 0f e. 

certain values of p (say, p = 0.6). This is largely 
caused by the constant 8 as well as the error prob- 
ability P(e). Another reason might be resorted to 
the potential limit of the algorithm with stochastic 
gradient estimate. Fig. 8 shows the dependence of 
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Fig. 7. Convergence rate of the (4,l) PPDFE-I versus p. 
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convergence rate on 0 with noise floor at - 20 dB. 
As we have expected, the convergence rate de- 
creases with increasing 0. 

5.2. BER performances 

Unless otherwise indicated, detected-bit feed- 
back is assumed in the following simulations of 
DFE. Fig. 9 gives a BER performance comparison 
for the (4, 1) PPDFE-I, the (4, 1) PPDFE-II, and 
the PPS equalizer of length 5. The result indicates 
that the proposed structure (PPDFE-I) outper- 
forms the other two, especially in a higher SNR 
environment. Parameters used here are the same, 
except f = 0.03, as that used in Fig. 4. Fig. 10 com- 
pares the BER performance between the (4,l) 
PPDFE-I and the (6,3, 1) MLP (4,l) DFE. The 
simulation result indicates that the proposed struc- 
ture is capable of achieving performance similar to 
that achieved by the MLP. Fig. 11 gives the BER 
performance of the (4,l) PPDFE-I as a function of 
p. The result indicates that the case using p = 0.6 
outperforms those using larger values of p. The 

0 

1 + PPS 

-1 

-2 

3 
E-3 - 

8 

PPDFB-II, 

PPDFE-I 

b 
-6 I 

6 10 14 18 22 

SNR, dB 

Fig. 9. BER performance for different polynomial-perceptron 
based equalizers: PPS of length 5, (4, 1) PPDFE-I and (4,l) 

PPDFE-II. 

improvement becomes more significant when the 
SNR is high. This is because the equalizer achieves 
a better tracking capability, as described by (30), in 

B-4 - 

-5 - 

-6 

-------- MLP 

0 PPDFE-I 

-7 ’ 

6 10 14 18 22 

SNR. dB 

Fig. 10. Comparison of BER performance for the (4, 1) 

PPDFE-I using i = 3 and the (6,3,1) MLP (4, 1) DFE. 
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Fig. 11. BER performance for the (4,l) PPDFE-I at different 

values of p. 
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Table 1 
Volterra coefficients for the nonlinear channel given by (32) and 

(33) 

- p=2 

-x-- p=1.2 

- p=O.6 

Linear part 
c,, = 0.408 cr = 0.816 cz = 0.408 

Second-order nonlinearities 
co0 = 0.033 co1 = 0.067 err = 0.133 
coz = 0.033 crz = 0.067 czz = 0.033 

Third-order nonhnearities 
coo0 = - 0.007 cool = - 0.041 co11 = - 0.082 
c, 11 = - 0.054 coo2 = - 0.020 
co12 = - 0.082 c1r2 = - 0.082 coz2 = - 0.020 
Cl_?2 = - 0.041 c222 = - 0.007 

-6 ’ 

0 0.1 0.2 0.3 

rl 

Fig. 12. BER performance as a function of rj for the (4,1) 
PPDFE-I. 

such a condition. It is worth noting that, besides 
a convergence rate improvement as indicated 
in Fig. 6, a BER improvement can also be achieved 
by using smaller values of p. This simulta- 
neous improvement cannot be achieved by an 
Z,-norm. Fig. 12 shows the BER performance of 
the (4, 1) PPDFE-I as a function of II. It can be 
seen that the performance using p = 2 is quite 
sensitive to the noise caused by larger values 
of f [ll]. However, this is less serious when 
using p -c 2. 

To see the ability of the new equalizer to 
cope with a nonlinear channel, a channel of the 
form 

t(n) = 0.408s(n) + 0.816s(n - 1) + 0.408s(n - 2), 

(32) 

r(n) = t(n) + 0.2?(n) - O.lt3(n) (33) 

is chosen [3, 6, 181 for evaluating the performance 
of our approach. The linear part in (32) results in 
severe intersymbol interference, and the nonlinear 
part in (33) guarantees poor performance for the 
conventional DFE (CDFE). Combining (32) and 

(33) yields the Volterra series representation [l] of 
the form 

r(n) = i CiS(n - i) + i i CijS(n - i)S(n -j) 

i=O i=O j=i 

+ f: i i cijks(n - i)S(n - j)s(n - k), (34) 
i=Oj=ik=j 

with coefficients Ci, Cij and cijk given in Table 1. The 
binary nature of s(n) makes it impossible to identify 
a nonlinear channel by using a direct modeling [6]. 
Consequently, an adaptive equalizer requiring 
a channel estimator, such as the adaptive MLSE, 
cannot perform well in such a situation. 

Fig. 13 shows the BER simulation results of the 
(4, 1) Bayesian DFE [3-$91, the (4, 1) PPDFE-I, 

Ol 

+ Bayesian 

-X- PPDFE-I 
_ 

+ CDFE 

-6- 

4 8 12 16 20 24 

SNR. dB 

Fig. 13. Comparison of BER performance for the Bayesian 
(4,l) DFE, the (4, 1) CDFE, the (4,l) PPDFE-I and the MLSE 
under a nonlinear channel. 



156 C.-H. Chang et al. JSignal Processing 47 (1995) 145&158 

“I 

z 
-2 

z-3 i 

$ -4 I 

-6 I 
-6j 

4 8 121620242832 

SNR, d0 

PPDFE-I 

i=3 

-X- PPDFE-I 

i=l 

+ CDFE 

Fig. 14. Comparison of BER performance for the (2,3) 
PPDFE-I and the (2,3) CDFE under channel (35). 

the (4,1) CDFE, and the MLSE under this nonlin- 
ear channel. Here, correct-bit feedback is assumed 
for all cases. Other parameters used are: I,-norm 
algorithm with p = 1.2 and f = /? = 0.1 for the 
PPDFE-I and LMS algorithm with # = 0.01 for 
the CDFE. Note that, in the LMS, q = 0.01 is 
deliberately chosen so that the CDFE can appro- 
ximately achieve its best possible performance. 
A correct estimate of the channel response is as- 
sumed for both the Bayesian criterion and the 
MLSE. The result demonstrates that our equalizer 
has a performance close to that offered by the 
Bayesian criterion, which is optimal in a min- 
imum BER sense for symbol-by-symbol-decision 
equalizer. Also, it shows that the CDFE performs 
very poorly under the channel considered. This is 
due to its limited capabilities in partitioning the 
signal space. 

Finally, to illustrate the advantage of higher- 
order expansion used in our structure, a linear 
channel with severe interference [lS] as described 

by 

r(n) = 0.227s(n) + 0.460s(n - 1) + 0.688s(n - 2) 

+ 0.460s(n - 3) + 0.227s(n - 4) (35) 

is chosen to evaluate the performance. Fig. 14 com- 
pares the performance of a (2,3) PPDFE-I using 

different orders of polynomial expansion (i = 1 and 
i = 3) and a (2,3) CDFE. Note that correct-bit 
feedback is again assumed for all cases. It is worth 
noting that the third-order PPDFE-I can equalize 
such a difficult channel, while the CDFE and the 
first-order PPDFE-I cannot perform well, under 
this condition. This justifies the benefit of using 
higher-order expansion over the signal vector pre- 
sented in a DFE. 

6. Comparison with other nonlinear equalizers 

It is known that the performance of the equalizer 
with detection based on the entire sequence can be 
better than those based on a symbol-by-symbol 
basis, provided that the characteristic of the chan- 
nel is known. However, if the channel response is 
not known a priori, a procedure of channel estima- 
tion is necessary [ 1.51. An inaccurate estimate may 
degrade the performance. The new equalizer does 
not require a channel estimate yet achieves a per- 
formance comparable to the Bayesian criterion. 
Furthermore, the implementation complexity of 
the MLSE may preclude its use in some real-time 
applications. Although the use of Viterbi algorithm 
[7] may reduce the complexity significantly, the 
requirement of computations and memory is still 
demanding. The new approach has much less de- 
manding in computation and no memory 
requirement. 

In [6], Chen et al. showed that the radial basis 
function (RBF) equalizer and the optimal Bayesian 
solution are equivalent in structure. The result in- 
dicated that the RBF equalizer has similar perfor- 
mance to the Bayesian approach given a known 
channel order and noise variance. However, perfor- 
mance degradation occurs when the above para- 
meters are not known a priori. Our approach 
achieves similar performance without any know- 
ledge of the channel and the noise. 

One disadvantage of our structure is its large 
number of tap-weights needed in some practical 
applications. Fortunately, a number of higher- 
order terms that tend to be inconsequential can 
be neglected. A good example for this can be 
found in [l]. It indicated that a significant MSE 



C.-H. Chang et al. /Signal Processing 47 (1995) 145-158 157 

improvement can be achieved even using only a few 
nonlinear terms for the equalization over a nonlin- 
ear satellite channel. 

7. Conclusions 

A new equalizer, including a DFE equipped with 
polynomial-perceptron model of nonlinearities and 
an [,-norm based robust learning algorithm, is pre- 
sented in this paper. The structure exerts the benefit 
of using a DFE with a polynomial-perceptron 
structure. The algorithm is robust in the sense of 
dealing with aberrant noise by the effect of p < 2 on 
the error signal. A detailed performance analysis of 
the algorithm including a consideration on the pos- 
sible numerical problem arising when p < 1 is given 
in this paper. The algorithm is advantageous due to 
its robustness as well as its simplicity. Computer 
simulation results show that the proposed equalizer 
simultaneously accomplishes faster convergence 
rate and satisfactory BER performance. Parti- 
cularly, it is shown that our equalizer can approach 
the performance offered by the Bayesian criterion 
and achieves significant improvement in BER per- 
formance for channels having severe interference. 
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Notation 

P threshold level adaptation gain 
d equalizer delay 

VLJ gradient vector in the p-power error sur- 
face 

% gradient vector estimate in the p-power 
error surface 

8 change of error at p = 2 
e error signal 
E expectation operator 

&P l,-norm error function 

'P 
12 
M 

p(e) 
P 
r 

S 

w 
2 

0” 
2 

0s 

8 

u 

UO 

V 

W 

w 0 

X 

xF 

Xtl 

Y 
Z 

learning gain 
learning gain at p = 2 
average learning gain 
effective learning gain at arbitrary values 

of P 
learning gain enhancement 
activation function 
first derivative off 
order of polynomial expansion 
number of taps in the feedforward part of 
a DFE 
p-power error metric 
mean squared error metric 
number of taps in the feedback filter of 
a DFE 
time index 
number of weights needed for the percep- 
tron 
error probability in making decisions 
power of error metric 
output of a channel 
transmitted signal 
sign operator 
noise power 
signal power 
small positive number 
perceptron input vector 
input of unity value 
decision error 
perceptron weight vector 
threshold level for the perceptron 
input vector represented by a DFE 
feedforward signal vector in X 
feedback signal vector in X 
perceptron output 
error suppressor function 
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