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Abstract Linear estimators, including the well-adopted

linear least squares (LLS) estimator, have been extensively

utilized for wireless location estimation for their simplicity

and closed-form property. However, there exists informa-

tion lost from the linearization of the location estimator to

the nonlinear location estimation, which prevents the linear

estimator from approaching the Cramer-Rao lower bound

(CRLB). In this paper, the linearized location estimation

problem based CRLB (L-CRLB) is derived to provide a

portrayal in order to fully characterize the behavior of the

linearized location estimator. The relationships between

the L-CRLB and the CRLB are obtained and theoretically

proven in this paper. Furthermore, the geometric layout

between the mobile station (MS) and the base stations

(BSs) that can achieve the minimum L-CRLB is also

acquired. As can be suggested by the L-CRLB, an LLS

location estimator can achieve higher accuracy if the MS is

located inside the geometry confined by the BSs compared

to the case that the MS is situated outside of the geometric

layout. This result will be beneficial to the deployment of

BSs or the signal selection schemes targeting for location

estimation. Simulation results utilizing the LLS estimator

as one of the implementation of the linearized location

estimators further validate the theoretical proofs and the

effectiveness of the L-CRLB.

Keywords Linear least square (LLS) estimator �
Cramèr-Rao lower bound (CRLB)

1 Introduction

Wireless location technologies, which are designated to

estimate the position of a mobile station (MS), have drawn a

lot of attention over the past few decades. The quality-of-

service (QoS) of positioning accuracy has been announced

after the issue of emergency 911 (E-911) subscriber safety

service [1]. With the assistance of information derived from

the positioning system, the required performance and objec-

tives for the targeting MS can be achieved with augmented

robustness. In recent years, there are increasing demands for

commercial applications to adopt the location information

within their system design, such as the navigation systems,

the location-based billing, the health care systems, the wire-

less sensor networks (WSNs) [2–4] and the intelligent

transportation systems (ITSs) [5, 6]. With emergent interests

in the location-based services (LBSs) [7], location estimation

algorithms with enhanced precision become necessitate for

the applications under different circumstances.

The location estimation schemes [8, 9] have been widely

proposed and employed in the wireless communication

system. These schemes locate the position of an MS based

on the measured radio signals from its neighborhood base

stations (BSs). The representative distance measurements

for the wireless location estimation techniques are the time-

of-arrival (TOA), the time difference-of-arrival (TDOA),

and the angle-of-arrival (AOA). The TOA scheme measures

the arrival time of radio signals coming from different

wireless BSs; while the TDOA scheme measures the time

difference between the radio signals. The AOA technique is

conducted within the BS by observing the arriving angle of

signals coming from the MS. The TOA measurement is

discussed in the paper. However, it is recognized that the

equations associated with the TOA estimation schemes

are inherently nonlinear. The uncertainties induced by the
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measurement noises make it more difficult to acquire the

MS’s estimated position with tolerable precision.

There are several representative techniques which are

widely utilized in practical localization systems, such as

the Taylor series expansion (TSE) based method, the fin-

gerprinting method, and the linear least squares (LLS)

method. The TSE method utilized in [10] requires iterative

processes to obtain the location estimate from another

linearized system based on the Taylor series expansion.

The major drawback of the TSE method is that it may

suffer from the convergence problem due to an incorrect

initial guess of the MS’s position. The pattern-matching

localization based on the fingerprinting approach is another

popular method for the LEP, e.g., RADAR [11]. However,

a large amount of measurements are required to be col-

lected from a database before the estimation. The LLS [12]

is one of the popular techniques adopted in practical

localization systems, e.g., the Cricket system [13], and has

been continuously investigated from research perspectives

[14–17]. By introducing an additional variable, the LLS

scheme can transform the original nonlinear estimation

problem into a linear relationship for the computation of

MS’s position. Moreover, the closed-form characteristic of

LLS estimator is suitable for real-time implementation due

to its computation efficiency.

The location estimator discussed in this paper belongs to

non-Bayesian approach, i.e., without a priori knowledge of

the parameter. The Cramer-Rao lower bound (CRLB) [18,

19] serves as a benchmark of the non-Bayesian estimator.

An estimator that can achieve the CRLB under regularity

conditions is the maximum likelihood (ML) estimator. The

CRLB for the conventional location estimation problem

(LEP) is derived in [19]. Since the wireless location esti-

mation schemes are inherently nonlinear, the original LEP

is often transformed into a linearized location estimation

problem (L-LEP) by introducing an additional variable to

transfer the nonlinear equation into a linear equation for the

computation of MS’s position in practice. This transfor-

mation leads to a different parameterization and the anal-

ysis of the L-LEP has not been fully addressed in the

previous research work.

Based on the concept of the CRLB, the theoretic lower

bound of the L-LEP is derived as the L-LEP based CRLB

(L-CRLB) in the paper. The major target of this paper is to

derive the L-CRLB as a new performance metric for the

LLS estimator and also observes the geometric properties

associated with the proposed L-CRLB. The closed-forms

formulation of the Fisher information matrix (FIM) for the

derived L-CRLB provides a comparison between the

L-LEP and the conventional LEP. Since it is required for

the L-LEP to estimate an additional variable other than the

MS’s position, it can be proved that the value of L-CRLB

is greater than or equal to the conventional CRLB. The

geometric layout between the MS and the BSs for the

L-CRLB to be equivalent to the CRLB is also derived.

Note that the LLS method is one of the methods to solve

the L-LEP. In the paper, the unbiased property of the LLS

estimator is proven under the situation that the noiseless

distance is much greater than the combined noise for each

measurement. Besides, the LLS method becomes a ML

estimator in a linear problem when the noise is assumed to

be Gaussian distributed. It is validated in the simulations

that the L-CRLB can be served as a tight lower bound for

the mean square error of the LLS estimator. Therefore, the

L-CRLB can be adopted as the benchmark of LLS esti-

mator and all the properties of L-CRLB derived in the

paper will be feasible to characterize the behaviors of LLS

estimator. From the geometric point of view, it can be

inferred from the proposed L-CRLB that the LLS estimator

will provide better performance if the MS is located inside

the geometry constrained by the BSs; while inferior per-

formance is acquired if the MS is outside of the geometric

layout. This result can also be validates by the observations

as was simulated in [12]. By adopting the proposed

L-CRLB under different geometric layouts, the LLS esti-

mator can be regarded as an efficient estimator while the

MS is located within the geometry formed by the BSs. This

observation will be beneficial for the signal selection

schemes of measurement inputs which should try to avoid

positioning the signal sources that makes the MS to locate

outside of the geometric layout.

The remainder of this paper is organized as follows.

Section 2 describes the modeling and geometric properties

of both the CRLB and the L-CRLB. The realization of the

LLS estimator for the L-LEP and the situation that the LLS

estimator is unbiased are presented in Sect. 3. Section 4

illustrates the performance validation and evaluation for

the both the proposed L-CRLB and the LLS estimator.

Section 5 draws the conclusion.

2 Analysis of CRLB and L-CRLB

2.1 Mathematical modeling of signal sources

The signal model for the TOA measurements is utilized for

two-dimension (2-D) location estimation. The set r con-

tains all the available measured relative distance, i.e., r ¼
½r1; . . .; ri; . . .; rN � where N denotes the number of available

BSs. The measured relative distance between the MS and

the i-th BS can be represented as

ri ¼ c � ti ¼ fi þ ni for i ¼ 1; 2; . . .;N ð1Þ

where c is the speed of light. The parameter ti indicates the

TOA measurement obtained from the i-th BS, which is

contaminated with the measurement noise ni. The noiseless
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relative distance fi in (1) between the MS’s true position

and the i-th BS can be acquired as

fi ¼ kx� xik for i ¼ 1; 2; . . .;N ð2Þ

where x ¼ ½x; y�T represents the MS’s true position and

xi ¼ ½xi; yi�T is the location of the i-th BS. The notations k:k
denotes the Euclidean norm of a vector and [.]T represents

the transpose operator.

Definition 1 (BS’s Orientation) Considering the MS as a

vertex in geometry, the orientation of i-th BS (ai) is defined

as the angle between the MS to the i-th BS and the positive

x axis. Without loss of generality, the index i of BSs are

sorted such that the i-th BS is located at the angle

a1� a2� . . .ai. . .� aN for i = 1 to N.

Based on the definition of ai, the following geometric

relationship can also be obtained as cos ai ¼ ðxi � xÞ=fi

and sin ai ¼ ðyi � yÞ=fi.

2.2 Properties of CRLB

Definition 2 (Location Estimation Problem (LEP)) By

collecting the measurements r, the goal of the LEP is to

generate a 2-D estimate x̂ ¼ ½x̂; ŷ�T of the MS’s location.

The CRLB represents the theoretical lowest error vari-

ance of an unknown parameter for any unbiased estimator.

Note that the CRLB in the rest of this paper refers to the

CRLB for the conventional LEP. Therefore, based on the

TOA-based LEP as in (1) and (2), the variance of the MS’s

estimated position x̂ will be greater or equal to the CRLB

(C) as

Efkx̂� xk2g�C ¼ ½I�1
x �11 þ ½I�1

x �22 ð3Þ

where the CRLB C ¼ ½I�1
x �11 þ ½I�1

x �22 inherently

represents the theoretical minimum mean square error

(MMSE) of position. It is noted that ½I�1
x �11 and ½I�1

x �22

correspond to the first and second diagonal terms of the

inverse of 2 9 2 FIM Ix, which can be obtained as

Ix ¼ G � If �GT ð4Þ

where

G ¼ of

ox
¼

x1�x
f1

. . . xi�x
fi

. . . xN�x
fN

y1�y
f1

. . . yi�y
fi

. . . y�yN

fN

� �

¼ cos a1 . . . cos ai . . . cos aN

sin a1 . . . sin ai . . . sin aN

� �
ð5Þ

If ¼ E
o

of
ln f ðrjfÞ � o

of
ln f ðrjfÞ

� �T
" #

ð6Þ

The f ðrjfÞ function in (6) denotes the probability density

function for r conditioning on f, where f ¼ ½f1; . . .;
fi; . . .; fN �. The matrices G and If are introduced as the

change of variables since Ix is unobtainable owing to the

unknown MS’s true position x.

Lemma 1 Considering the TOA-based LEP, the noise

model for each measurement ri is an i.i.d. Gaussian dis-

tribution with zero mean and a fixed set of vari-

ances rri
2 as ni�Nð0; r2

ri
Þ. The minimum CRLB Cm with

respect to the angle ai can be achieved in [19] as

Cm ¼
4PN

i¼1
1

r2
ri

ð7Þ

if the following two conditions hold:

PN
i¼1

1
r2

ri

sin 2ai ¼ 0PN
i¼1

1
r2

ri

cos 2ai ¼ 0

8<
: ð8Þ

Proof Based on (1), f ðrjfÞ can be obtained as

f ðrjfÞ /
YN
i¼1

exp � 1

2r2
ri

ðri � fiÞ2
" #

ð9Þ

Therefore, the matrix If can be derived from (6) as

If ¼ diagf½r�2
r1
; r�2

r2
; . . .; r�2

ri
; . . .; r�2

rN
�g. The 2 9 2 matrix

Ix can be obtained from (4) and (6) as

Ix ¼
½Ix�11 ½Ix�12

Ix½ �21 Ix½ �22

� �

¼
PN

i¼1
1

r2
ri

cos2 ai

PN
i¼1

1
r2

ri

cos ai � sin aiPN
i¼1

1
r2

ri

cos ai � sin ai

PN
i¼1

1
r2

ri

sin2 ai

2
4

3
5

ð10Þ

In order to obtain the minimum CRLB, (3) can further be

derived as

Efðx̂� xÞ2g� ½I�1
x �11 þ ½I�1

x �22

¼ ½Ix�11 þ ½Ix�22

½Ix�11 � ½Ix�22 � ½Ix�212

� ½Ix�11 þ ½Ix�22

½Ix�11 � ½Ix�22

ð11Þ

Noted that the second inequality in (11) is valid since the

quadratic term ½Ix�212� 0 for all ai. Therefore, one of the

necessary conditions to achieve minimum CRLB will be

½Ix�12 ¼
PN

i¼1
1

r2
ri

cos ai � sin ai ¼ 0, which validates the first

equation of (8). Moreover, since cos2 ai þ sin2 ai ¼ 1 for

all ai, the numerator in (11) becomes ½Ix�11 þ ½Ix�22 ¼PN
i¼1 1=r2

ri
. Consequently, to acquire the minimum value

of CRLB corresponds to maximizing the denominator

½Ix�11 � ½Ix�22 in (11). According to the inequality of

arithmetic and geometric means, the following

relationship can be obtained:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ix�11 � ½Ix�22

q
� ½Ix�11 þ ½Ix�22

2
¼ 1

2

XN

i¼1

1

r2
ri

ð12Þ
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where the equality holds if and only if ½Ix�11 ¼ ½Ix�22, which

corresponds to the second equation in (8). By substituting

(12) into (11), the minimum CRLB can be obtained as

Cm ¼ 4=ð
PN

i¼1
1

r2
ri

Þ. This completes the proof. h

Example 1 (Network Layout with Minimum CRLB).

Following the requirement as in Lemma 1 with N = 3 and

all the variances are equivalent rri
2 = rr

2 for i = 1 to 3, the

best geometric layout that can achieve the minimum CRLB

Cm ¼ 4r2
r=3 is acquired at either the angle sets

{a1, a2, a3} = {c, c ? 120�, c ? 240�} or {a1, a2, a3} =

{c, c ? 60�, c ? 120�} V c = [0�, 360�).

2.3 Properties of proposed L-CRLB

Definition 3 (Linearized Location Estimation Problem

(L-LEP)). In order to estimate the MS’s position x, the

nonlinear terms x2 and y2 in (2) are replaced by a new

parameter R = x2 ? y2. The goal of the L-LEP is to gen-

erate an estimate ĥ ¼ ½x̂L; ŷL; R̂�T based on the collecting

measurements r.

Note that the MS’s estimated position x̂L ¼ ½x̂L; ŷL�T of

the L-LEP is in general not optimal compared to the ori-

ginal LEP since an additional nonlinear parameter R is also

estimated, which reduces the estimation precision for x̂L

under fixed set of measurement inputs. This intuitive

observation explains that the conventional CRLB cannot be

achieved by the linearized location estimator for LEP. In

order to appropriately describe the behavior of linearized

location estimator, the L-CRLB is defined based on the

relationships in (1) and (2) as follows.

Definition 4 (L-CRLB) The L-CRLB (CL) is defined for

linearized location estimation in terms of the estimated

parameters x̂L as

Efkx̂L � xk2g�CL ¼ ½I�1
h �11 þ ½I�1

h �22 ð13Þ

where ½I�1
h �11 and ½I�1

h �22 respectively denotes the first and

second diagonal terms of the inverse of 3 9 3 FIM matrix

Ih as

Ih ¼ H � If �HT ð14Þ

with

H ¼ of

oh
¼

cos a1 . . . cos ai . . . cos aN

sin a1 . . . sin ai . . . sin aN
1

2f1
. . . 1

2fi
. . . 1

2fN

2
4

3
5 ð15Þ

and If obtained from (6).

Note that the derivation of the inequality (13) is

neglected in this paper, which can be similarly referred

from the derivation of CRLB in [20]. Based on the theory

of CRLB, the closed-forms of FIM in (14) can be formu-

lated and the relevant matrix in (15) is derived. In other

words, the proposed L-CRLB is utilized to denote the

minimum variance for any estimator that estimates

the parameter vector h from the TOA measurements. In the

following lemma, the fact that the L-CRLB is greater than

or equal to the CRLB will be proved.

Lemma 2 Considering that there exists sufficient mea-

surement inputs for location estimation with zero mean

Gaussian noises, the L-CRLB is greater than or equal to

the CRLB, i.e., CL�C.

Proof The 3 9 3 matrix Ih can be obtained from (6) and

(14) as

Ih¼
Ix B
BT C

� �

¼

PN
i¼1

1
r2

ri

cos2ai

PN
i¼1

1
r2

ri

cosai �sinai

PN
i¼1

1
r2

ri

cosai

2fiPN
i¼1

1
r2

ri

cosai �sinai

PN
i¼1

1
r2

ri

sin2ai

PN
i¼1

1
r2

ri

sinai

2fiPN
i¼1

1
r2

ri

cosai

2fi

PN
i¼1

1
r2

ri

sinai

2fi

PN
i¼1

1
4r2

ri
f2

i

2
6664

3
7775

ð16Þ

where the matrices B¼
PN

i¼1
1

r2
ri

cosai

2fi

PN
i¼1

1
r2

ri

sinai

2fi

h iT

and

C¼
PN

i¼1
1

4r2
ri
f2

i

� �
. Note that the 2 9 2 matrix Ix is the

same as that obtained from (4). Moreover, the inverse of

the covariance matrix Ih can be represented as

I�1
h ¼

½Ih��1
2�2 B0

B0T C0

� �
ð17Þ

where the 2 9 2 submatrix ½Ih��1
2�2 of I�1

h can be obtained

as ½Ih��1
2�2 ¼ ðIx � B � C�1 � BTÞ�1

based on the matrix

inversion lemma. Considering that there are sufficient

measurement inputs for the linearized location estimation,

i.e., N C 3, both the covariance matrices Ih and Ix are non-

singular which corresponds to positive definite matrices.

Consequently, the submatrix ½Ih�2�2 and their correspond-

ing inverse matrices I�1
h ; I�1

x , and ½Ih��1
2�2 are positive def-

inite. Furthermore, both C and C-1 are positive definite

since C ¼
PN

i¼1
1

4r2
ri
f2

i

� �
[ 0. Therefore, it can be shown

that ½Ih�2�2 ¼ ðIx � B � C�1 � BTÞ� Ix since C-1 is positive

definite and the equality only occurs with zero matrix

B. Given two positive definite matrices ½Ih�2�2 and

Ix; Ix� ½Ih�2�2 if and only if ½Ih��1
2�2� I�1

x [ 0. Further-

more, since ½Ih��1
2�2� I�1

x , their corresponding traces will

follow as traceð½Ih��1
2�2Þ� traceðI�1

x Þ which consequently

results in ½Ih��1
11 þ ½Ih��1

22 � ½Ix��1
11 þ ½Ix��1

22 . This completes

the proof. h
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Corollary 1 The L-CRLB is equivalent to the CRLB if the

following two conditions holdPN
i¼1

1
r2

ri

sin ai

fi
¼ 0PN

i¼1
1

r2
ri

cos ai

fi
¼ 0

8<
: ð18Þ

Proof As stated in Lemma 2, the necessary and sufficient

condition for both L-CRLB and CRLB to be equivalent is

that B is a zero matrix. Therefore, the two matrix elements

in B, i.e.,
PN

i¼1 cos ai=ðr2
ri
fiÞ and

PN
i¼1 sin ai=ðr2

ri
fiÞ, will

be equal to zero. h

It can be generalized from Corollary 1 that the two error

terms e1 ¼
PN

i¼1 cos ai=ðr2
ri
fiÞ and e2 ¼

PN
i¼1 sin ai=ðr2

ri
fiÞ

will influence the value of L-CRLB, which consequently

affect the precision of linearized location estimators. Under

the geometric layout with smaller values of e1 and e2,

smaller difference between the CRLB and L-CRLB value

can be obtained, which indicates that the linearization lost

by adopting linearized location estimators is smaller. e1 and

e2 can be mapping to the x- and y-direction vectors from

the MS to the BS. The noise variance terms can be

regarded as the weighting of the direction vector. The

minimum linearization lost for the linearized location

estimator is achieved when the sum of the weighted

direction vector from the MS to the BS is equal to zero.

Besides, consider the case that the MS is situated outside of

the polygon formed by the BSs, all the angles ai will be in

the range of [0, 180�] which results in larger value of the

error terms e1 and e2. As a result, the estimation errors

acquired from the linearized location estimator will be

comparably large in this type of geometric relationship.

The following example is given to demonstrate the sce-

nario where the L-CRLB is equal to CRLB.

Example 2 (Network Layout for Equivalent L-CRLB and

CRLB) Assuming that the variances rri from all the mea-

surement noises are equivalent, the L-CRLB can achieve

the CRLB if (a) the noiseless distances fi from the MS to

all the corresponding BSs are equal, and (b) the orientation

angles ai from the MS to all the BSs are uniformly dis-

tributed in [0�, 360�) as ai ¼ 360	 � ði� 1Þ=N þ c; 8c ¼
½0	; 360	Þ and i = 1 to N.

Proof By substituting the conditions f1 ¼ f2 ¼ . . . ¼ fN

and rr1
¼ rr2

¼ . . . ¼ rrN
into (18), the necessary condi-

tion for the L-CRLB and the CRLB to be equivalent

becomes
PN

i¼1 cos ai ¼ 0 and
PN

i¼1 sin ai ¼ 0. Based on

the assumptions as stated above, an unit vector can be

utilized to represent the distance from the MS to the ith BS

as mi ¼ ½cos ai; sin ai� for i = 1 to N. In order to satisfy the

conditions for both
PN

i¼1 cos ai ¼ 0 and
PN

i¼1 sin ai ¼ 0,

the summation for projecting all unit vectors mi for i = 1 to

N on the x-axis and y-axis respectively should be equal to

zero. In order to achieve this condition, it can be verified

that the angles ai will be uniformly distributed in [0�,360�)

with its value equal to ai ¼ 360	 � ði� 1Þ=N þ c;
8c ¼ ½0	; 360	Þ. This completes the proof. h

Corollary 2 The minimum L-CRLB (CL;m) is achieved if

the conditions stated in (8) and (18) are satisfied.

Proof It has been indicated that the minimum CRLB (Cm)

can be obtained if the conditions in (8) hold. Moreover,

Corollary 1 proves that (18) should be satisfied for both

L-CRLB and CRLB to be equivalent. Therefore, the min-

imum L-CRLB (CL;m) can be achieved if (8) and (18) are

satisfied.

It can be observed from Corollary 2 that additional

condition (18) should be satisfied for achieving minimum

L-CRLB comparing with the minimum CRLB. The major

difference is that the CRLB is affected by the angles ai and

signal variances rri
2 ; while the L-CRLB additionally

depends on the distance information fi. Therefore, the

performance of the L-LEP is affected by the additional

relative distance information between the MS and BSs. In

order to provide intuitive explanation, the exemplified

network layout for achieving minimum L-CRLB is shown

as follows.

Example 3 (Network Layout with Minimum L-CRLB)

Following the requirement as in Lemmas 1 and 2 with

N = 3 and all the variances are equivalent, i.e., rri
2 = rr

2

for i = 1 to 3, and further assuming that the noiseless

distances fi from the MS to all the three BSs are equiva-

lent, the minimum L-CRLB can be achieved only at the

angle sets {a1, a2, a3} = {c, c ? 120�, c ? 240�} V c =

[0�, 360�).

Proof Considering N = 3 and rr_1 = rr_2 = rr_3 = rr

in (8), the following relationship is obtained:

sin 2a1 þ sin 2a2 þ sin 2a3 ¼ 0

cos 2a1 þ cos 2a2 þ cos 2a3 ¼ 0

�
ð19Þ

It can be verified that both conditions in (19) are only

satisfied at either one of the following angle sets:

{a1, a2, a3} = {c, c ? 120�, c ? 240�} and {a1, a2,

a3} = {c, c ? 60�, c ? 120�} V c = [0�, 360�). The

corresponding minimum CRLB can be calculated from (7)

as Cm ¼ 4r2
r=3.

On the other hand, according to Lemma 2, the condi-

tions (8) and (18) must be satisfied in order to achieve

minimum L-CRLB. Considering the N = 3 case with

f1 ¼ f2 ¼ f3, condition (18) is rewritten as
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sin a1 þ sin a2 þ sin a3 ¼ 0

cos a1 þ cos a2 þ cos a3 ¼ 0

�
ð20Þ

It can be verified that only the angle sets {a1, a2, a3} =

{c, c ? 120�, c ? 240�} V c = [0�, 360�) can satisfy all

the three conditions as defined in (19) and (20) for

achieving the minimum value of L-CRLB. This completes

the proof. h

In other words, when the MS is positioned at the center

of a regular polygon formed by the BSs, the proposed

L-CRLB will be equivalent to the CRLB based on the

conditions stated in (18). Example 3 describes the fact that

minimum CRLB can be achieved under two different set of

orientation angles; while the minimum L-CRLB is reached

by one of its subset of angles. This indicates the situation

that the L-CRLB provides a more stringent criterion

compared to the CRLB for achieving its minimum value.

Even though certain network layouts are suggested to

achieve minimum CRLB, it does not guarantee that the

corresponding L-CRLB can reach the same value. There-

fore, the CRLB does not provide sufficient information to

be utilized as the criterion for the linearized location esti-

mator of the L-LEP; while the L-CRLB can be more fea-

sible to reveal the geometric properties and requirements.

In order to provide better explanation on the properties

of CRLB and L-CRLB, the definitions of several geometric

relationships between the MS and the BSs are described as

follows.

Definition 5 (BS’s Adjacent Included Angle) Based on

the BS’s orientation ai, the adjacent included angle

between two neighboring i-th and (i ? 1)-th BSs is defined

as bi = ai?1 - ai for i = 1 to N - 1, and bN =

360� ? a1 - aN.

Definition 6 (BS Polygon) Considering the locations of

BSs as the vertices in geometry, the BS polygon is defined

by connecting the adjacent BSs as the edges of the polygon

from BS1 to BSN.

Definition 7 (Inside-Polygon Layout (IPL)) Given the

BS’s adjacent included angle set b ¼ fb1; . . .; bi; . . .; bNg,
an inside-polygon layout (IPL) is defined if the MS is

located inside the BS polygon where 0� \ bi \ 180� V
i from 1 to N.

Definition 8 (Outside-Polygon Layout (OPL)) Given the

BS’s adjacent included angle set b ¼ fb1; . . .; bi; . . .; bNg,
a outside-polygon layout (OPL) is defined if the MS is

located outside the BS polygon where there exists an

adjacent included angle 180� B bi \ 360� V i from 1 to N.

Lemma 3 Two types of layout, IPL and OPL, with

equivalent variances rr_i,in
2 = rr_i,out

2 and noiseless dis-

tances fi;in ¼ fi;out for i = 1 to 3 are considered between

the MS and three BSs. There can exist specific sets of IPL

and OPL that possess the same CRLB value; while the

corresponding L-CRLB value of the IPL is smaller than

that of OPL.

Proof Given an IPL, the set of BS’s adjacent included

angle is defined as bin ¼ fb1; b2; b3 ¼ 360	 � b1 � b2g
where 0� \ bi \ 180� V i = 1 to 3. The set of BS’s ori-

entation between the MS and three BSs can be represented

as ain ¼ fa1 ¼ 0; a2 ¼ b1; a3 ¼ b1 þ b2g. Without lose of

generality, a1 is set with zero degree according to the

rotation property as proven in [19] for CRLB. In order to

establish an OPL, the third BS is repositioned to the

reflected side with respect to the MS, which results in its

BS’s orientation as aout ¼ fa1 ¼ 0; a2 ¼ b1; a
0
3 ¼ b1þ

b2 � 180	g. By substituting both IPL and OPL cases with

ain ¼ f0; a2; a3g and aout ¼ f0; a2; a3 � 180	g respectively

into (3), it can be observed that same value of CRLB is

achieved by both IPL and OPL.

Moreover, in order to compare the L-CRLB for the IPL

and OPL, i.e., CL;in and CL;out, the difference of L-CRLB for

both layouts is derived from (13) to (15) with the

substitution of ain and aout as

where DIh,in and DIh,out denote the determinants of the FIM

matrix Ih,in and Ih, out for the L-CRLB of IPL and OPL

respectively. Since both Ih,in and Ih, out are positive definite,

their corresponding determinants DIh,in and DIh,out will be

positive values. Furthermore, the following conditions hold

since the BS’s orientation set ain corresponds to an IPL:

0� \ a2 \ 180�, 0� \ a3 - a2 \ 180�, and 180� \ a3 \
360�. Therefore, the following conditions hold for the

numerator terms in (21): cosða2=2Þ[ 0 since 0	\a2=2\
90	; cos½ð2a3 � a2Þ=2�\0 since 90	\ð2a3 � a2Þ=2\
270	; ð1�cos a2Þ[0 since �1\ cos a2\1, and 2 cos a2þ
2 cos a3 cosða2 � a3Þ\4 since �1\ cos a2\1 and �1\
cos a3 cosða2 � a3Þ\1. As a consequence, the difference

d ¼ CL;in � CL;out ¼ ½Ih;in��1
11 þ ½Ih;in��1

22 � ½Ih;out��1
11 � ½Ih;out��1

22

¼ 1

DIh;in DIh;out

�8 cos
a2

2
cos

2a3 � a2

2
ð1� cos a2Þ½2 cos a2 þ 2 cos a3 cosða2 � a3Þ � 4�

� � ð21Þ
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d ¼ CL;in � CL;out\0 which corresponds to the result that

the L-CRLB of the IPL is smaller than that of the OPL.

This completes the proof. h

Lemma 3 limits the discussion to a specific MS set, i.e.,

the positions of MS that can achieve the same CRLB given

the same set of BSs. A key contribution of this paper is

obtained from Lemma 3 that the proposed L-CRLB can

distinguish different geometric relationships between the

MS and its corresponding BSs, i.e., either the IPL or OPL;

while the conventional CRLB criterion observes the same

value for both cases. It is proved in Lemma 3 that the

L-CRLB for MS to locate inside the BS polygon will be

smaller than that for MS situated outside the BS polygon.

This result implicitly indicates that the estimation accuracy

from a linearized location estimator will be higher for the

IPL compared to the OPL case in general. The conjecture

to possess higher estimation precision for the IPL com-

pared to that for the OPL will be validated via simulations

in Sect. 4.

3 LLS formulation

Note that the LLS method is proposed to solve the L-LEP

instead of the conventional LEP. By combining (1) and (2)

within the LS formulation, the following matrix format can

be acquired:

Mh ¼ J ð22Þ

where

M ¼

�2x1 �2y1 1

�2x2 �2y2 1

: : :
�2xN �2yN 1

2
664

3
775 J ¼

r2
1 � j1

r2
2 � j2

:
r2

N � jN

2
664

3
775

where ji = xi
2 ? yi

2. Based on (22), the MS’s estimated

position by adopting the LLS method (i.e., x̂LLS ¼
½x̂LLS; ŷLLS�T ) can be acquired as

x̂LLS ¼ PðMT MÞ�1MT J ð23Þ

where P = [1 0 0; 0 1 0]. As observed from the differ-

ence between the L-CRLB and the conventional CRLB in

Sect. 2, the additional nonlinear parameter R prevents the

LLS to approach the CRLB. However, the LLS method

can approach the L-CRLB well under the Gaussian Noise

assumption. Note that both the CRLB and the L-CRLB

represent lower bounds for unbiased estimators. There-

fore, the target of this following lemma is to identify the

conditions for the unbiased properties to be satisfied

associated with the LLS location estimator based on TOA

signals.

Lemma 4 The LLS estimator is an unbiased estimator for

the location estimation providing that all the TOA mea-

surements are line-of-sight (LOS) signals and the corre-

sponding noiseless distance is much greater than the

combined noise for each measurement.

Proof The primary concern of this proof is to acquire the

expected value of estimation error Dx̂LLS ¼ ½Dx̂LLS;DŷLLS�T ,

which can be obtained by rewriting (23) as

Dx̂LLS ¼ P � ðMT MÞ�1MTDJ ð24Þ

It is noted that (24) indicates that the estimation error

vector Dx̂LLS is incurred by the variation within the vector

J. The value of DJ is obtained by considering the variations

from the measurement inputs, i.e., ri ¼ fi þ ni in (1), with

N = 3 case as

DJ ¼
2f1n1 þ ðn1Þ2
2f2n2 þ ðn2Þ2
2f3n3 þ ðn3Þ2

2
4

3
5 ’

2f1n1

2f2n2

2f2n3

2
4

3
5 ð25Þ

It is noted that the approximation from the second equality

within (25) is valid by considering that the noiseless

distance fi is in general much greater than the combined

noise effect ni in practice, i.e., fi [ [ ni. Without lose of

generality, coordinate transformation can be adopted

within (24) such that (x1, y1) = (0, 0). The expected

value of estimation error can therefore be acquired by

expanding (24) as

E½Dx̂LLS� ¼ E
f3n3y2 � f2n2y3 � f1n1ðy3 � y2Þ

x2y3 � x3y2

� �

¼ f3y2 � E½n3� � f2y3 � E½n2� � f1ðy3 � y2Þ � E½n1�
x2y3 � x3y2

ð26Þ

E½DŷLLS� ¼ E
f3n3x2 � f2n2x3 � f1n1ðx3 � x2Þ

x2y3 � x3y2

� �

¼ f3x2 � E½n3� � f2x3 � E½n2� � f1ðx3 � x2Þ � E½n1�
x2y3 � x3y2

ð27Þ

From (26) and (27), it can be clearly observed that the

expected value of estimation error is zero under the

assumption that its associated measurement are considered

LOS signals as zero mean random variables, i.e.,

E[ni] = 0 V i. This completes the proof. h

Lemma 4 reveals the fact that the LLS estimator can be

regarded as an unbiased estimator under the condition

fi [ [ ni, which is considered reasonable in practice.

Since the L-CRLB represents the theoretical lower bound

for any unbiased estimator in the L-LEP, it can therefore be

utilized as the lower bound for the LLS estimator. More-

over, the mean square error of LLS estimator can also be
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derived from (26) and (27) under the situation that the

measurement noises are independent with each other, i.e.,

E½ni � nj� ¼ 0 8i 6¼ j, which is obtained as follows:

E½Dx̂2
LS� ¼

f2
2y2

3r
2
n2
þ f2

3y2
2r

2
n3
þ f2

1ðy3 � y2Þ2r2
n1

ðx3y2 � x2y3Þ2
ð28Þ

E½Dŷ2
LS� ¼

f2
2x2

3r
2
n2
þ f2

3x2
2r

2
n3
þ f2

1ðx3 � x2Þ2r2
n1

ðx3y2 � x2y3Þ2
ð29Þ

Noted that (28) and (29) are also derived based on the

condition that fi [ [ ni. Meanwhile, it is interesting to

notice that the variance of LLS estimator calculated from

(28) and (29) will be numerically identical to the L-CRLB

computed via (13), which will be validated and shown in

the following section. Therefore, the LLS estimator will

approach its defined lower bound L-CRLB under the sit-

uation with smaller measurement noises. Furthermore, the

L-CRLB will become the conventional CRLB under spe-

cific geometric layout as described in Corollary 1. As a

result, under specific conditions as stated above, the LLS

estimator can be claimed as the best estimator since it can

finally reach the theoretical lower bound, i.e., CRLB, for

unbiased estimators.

4 Performance evaluation

In order to verify the effectiveness of L-CRLB derived in

Sect. 2.3, different scenarios are provided in the section to

validate the correctness of the formulation. The model for

the measurement noise of TOA signal ni as in (1) is

selected as the Gaussian distribution with zero mean and

standard deviation rr_i, i.e., ni�Nð0; r2
ri
Þ. Section 4.1

presents the contour plots in order to numerically describe

the difference between the CRLB and L-CRLB, which also

validate the correctness of Lemmas 1 to 2 and Corollaries 1

to 2. Section 4.2 simulates the performance of LLS method

by comparing the L-CRLB and LLS estimator in the

regular BS polygon layout. Section 4.3 illustrates the

performance comparison of LLS estimator under both the

IPL and OPL cases. Performance comparison under real-

istic WSN scenario is described in Sect. 4.4.

4.1 Numerical validation of CRLB and L-CRLB

with a regular triangular layout

In order to observe the difference between the CRLB and

L-CRLB, their corresponding contour plots under the num-

ber of BSs N = 3 are shown in Fig. 1(a) and (b), respec-

tively. Note that the three BSs are located at the vertexes of a

regular triangular which are denoted with red circles in

Fig. 1(a) and (b). The positions of BSs are x1 ¼ ½300; 200�T

with a1 ¼ 0	; x2 ¼ ½150; 286:6�T with a2 = 120�, and x3 ¼
½150; 113:4�T with a3 = 240�. Based on the three BS’s

positions, each individual contour point represents the cor-

responding CRLB or L-CRLB value when the MS is situated

at that geographical location. The standard deviation of

measurement noises rr_i is chosen as 1 m for simplicity. It

can be observed from Fig. 1(a) that there are four minimum

points for the CRLB value equal to Cm ¼ 1:33 with MS’s

positions as x ¼ ½200; 200�T ; ½100; 200�T ; ½260; 120�T , and

[260,280]T. The conditions for minimum CRLB can be

verified by substituting the corresponding parameters into the

condition (8). The minimum CRLB value can also be vali-

dated to satisfy (7), which demonstrates the correctness of

Lemma 1.

On the other hand, by comparing Fig. 1(a) and (b), it is

observed that the distribution of L-CRLB is different from

that of CRLB. The only minimum L-CRLB value identical

to that of the CRLB, i.e., CL;m ¼ Cm ¼ 1:33, is located at

the center of regular triangle formed by the three BSs, i.e.,

x ¼ ½200; 200�T . Starting at the MS’s position with mini-

mum L-CRLB, the L-CRLB value will increase in all

directions. Except for the minimum L-CRLB at the center

of the triangle, the relationship that CL [ C can be observed

from both Fig. 1(a) and (b). Moreover, the difference

between the L-CRLB and CRLB inside the triangle is
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Fig. 1 a CRLB contour under

N = 3; b L-CRLB contour

under N = 3. Red circles denote

the positions of BSs (Color

figure online)
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smaller than that outside of the triangle. The reason can be

contributed to the estimation of parameter R by adopting

the L-CRLB criterion, which introduces the two terms e1

and e2. Owing to the nonlinear behavior of location esti-

mation, the additional consideration of R within the

L-CRLB can better characterize the performance of line-

arized location estimator for the L-LEP. The correctness of

minimum L-CRLB value obtained from Fig. 1(b) can also

be verified by substituting corresponding parameters into

the conditions stated in Lemma 2, i.e., the conditions (8)

and (18) can all be satisfied. By comparing the results from

Fig. 1(a) and (b), Corollaries 1 to 2 and Examples 2 to 3

can all be validated by substituting the corresponding

numerical values.

4.2 Performance validation of LLS estimator

with a regular BS polygon layout

In this subsection, the performance of LLS estimator is

simulated to further validate the relationship between the

estimator and the lower bound. Figure 2 illustrates the

performance comparison under different noise standard

deviations in the regular triangular layout, i.e., N = 3. The

coordinates of the 3 BSs are listed in the 3 BS case of

Table 1, and the MS is located at the coordinate

x ¼ ½200; 200�T . Moreover, Fig. 3 shows the performance

comparison between different numbers BSs of regular BS

polygon layout where the MS lies at x ¼ ½200; 200�T and

the standard deviation of measurement noise is equal to

10 m. The BS’s coordinates correspond to different num-

bers of BSs’ layout are listed in Table 1. Regarding the

comparison metrics, instead of showing the variances, the

root mean square error (RMSE) is obtained in order

to clearly illustrate the difference between different

curves, i.e., RMSE =
PNr

i¼1 kx� x̂ðiÞk2=Nr

h i1=2

, where

Nr = 10,000 indicates the number of simulation runs. As

for the curves within Figs. 2 and 3, the LLS estimator

denotes the RMSE of x̂LLS acquired from (23) by simu-

lating the Gaussian noises with corresponding noise stan-

dard deviations. Since the CRLB and the L-CRLB

represent the variance of an unbiased estimator, both the

CRLB and L-CRLB curves are obtained by taking the

square root in order to compared with the RMSE values of

LLS estimator. Furthermore, the curve of LLS standard

deviation in Fig. 2 is obtained as the square root of LLS

variance derived from (28) and (29).

It can be observed from Fig. 2 that the CRLB, L-CRLB,

and LLS standard deviation can achieve the same values in

the regular triangular layout. The reason for the CRLB and

L-CRLB to possess the same value is identical to the
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Fig. 2 Performance comparison for location estimation with MS at

the center of a regular triangle formed by 3 BSs as listed in Table 1:

RMSE versus standard deviation of measurement noise. The CRLB,

L-CRLB, and LLS standard deviation achieve the same values

Table 1 Simulation parameters
Number of BSs i-th BS’s Coordinate xi in meter

3 BSs 0�: [300,200]T 120�: [150,286.6]T 240�: [150,113.4]T

4 BSs 0�: [300,200]T 90�: [200,300]T 180�: [100,200]T

270�: [200,100]T

5 BSs 0�: [300,200]T 72�: [230.9,295.1]T 144�: [119.1,258.8]T

216�: [119.1,141.2]T 288�: [230.9,104.9]T

6 BSs 0�: [300,200]T 60�: [250,286.6]T 120�: [150,286.6]T

180�: [100,200]T 240�: [150,113.4]T 300�: [250,113.4]T

7 BSs 0�: [300,200]T 51.4�: [262.3,278.2]T 102.8�: [177.7,297.5]T

154.3�: [109.9,243.4]T 205.7�: [109.9,156.6]T 257.1�: [177.7,102.5]T

308.6�: [262.3,121.8]T

8 BSs 0�: [300,200]T 45�: [270.7,270.7]T 90�: [200,300]T

135�: [129.3,270.7]T 180�: [100,200]T 225�: [129.3,129.3]T

270�: [200,100]T 315�: [270.7,129.3]T
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conditions as stated in Lemmas 1 and 2. As described in

Sect. 3, the LLS standard deviation is numerically vali-

dated in this figure to be identical to the square roots of

CRLB and L-CRLB under the condition fi [ [ ni. The

performance of LLS estimator obtained from simulations

can also approach both lower bounds, i.e., the CRLB and

L-CRLB, under the cases with smaller measurement

noises. This result demonstrates that the LLS estimator can

be considered as an efficient estimator for the LEP and

L-LEP under smaller measurement noises. On the other

hand, as the noise becomes larger which disobeys the

relationship fi [ [ ni, it is observed that the RMSE of

LLS estimator will be slightly higher than that obtained

from the L-CRLB.

Figure 3 validates the performance of LLS estimator in

the regular BS polygon layouts under different numbers of

BSs. In order to observe the difference between the LLS

estimator and the L-CRLB, the error confidential level (d) is

defined as the difference between the RMSE of LLS esti-

mator (RLLS) and the square root of L-CRLB (RL), i.e.,

d ¼ jRLLS �RLj=RL. In Fig. 3, the error confidential levels

can be obtained as d = [0.67, 0.53, 0.20, 0.27, 0.41, 0.17]

% under the number of BSs equal to [3–8]. It is observed that

the LLS estimator can closely approach both of the lower

bounds CRLB and L-CRLB under different numbers of

available BSs.

4.3 Performance comparison of LLS estimation

with IPL and OPL

In the subsection, the IPL and OPL which achieve the same

CRLB value are adopted to validate the correctness of

Lemma 3. The MS is placed at the position x ¼
½200; 200�T m, and the distances from all the BSs to the MS

are designed to be equal to 100 m. The angle set for the IPL

is assigned as {0�, 70�, 240�}, and that for the OPL is

{0�, 60�, 70�}. That is, the three BSs of IPL is placed at

[300, 200]T, [234.2, 294]T, and [150,113.4]T, and that for

the OPL is located at [300, 200]T, [250, 286.6]T, and

[234.2,294]T. It is noted that the square roots of CRLB for

both the IPL and the OPL are obtained to have the same

value as 1.34.

The left subplot of Fig. 4 shows the performance of LLS

estimator comparing with both CRLB and L-CRLB under

the IPL; while the right subplot of Fig. 4 corresponds to that

for the OPL. In order to clearly show the difference between

these curves, different scales are utilized in both plots. It can

be observed that the performance of LLS estimator still

matches that of the L-CRLB under the cases with smaller

measurement noises for both plots, which again shows that

the L-CRLB can closely characterize the behaviors of LLS

estimator. However, the difference between the L-CRLB

and the CRLB in the OPL is comparably larger than the IPL

case, which validates the correctness of Lemma 3. There-

fore, it is concluded that the LLS estimator can provide

better performance in the IPL compared to the OPL even

though both layouts result in same value of CRLB.

4.4 Performance comparison of LLS estimation

in a WSN scenario

In order to consider more realistic environments, Fig. 5

illustrates the simulation scenarios of a WSN with a grid-
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based placement for the coordinates of both MSs and

BSs. There are total 13 BSs (denoted by red circles) and

the MS’s positions (denoted by green crosses) are placed

at 100 different locations uniformly distributed in a two-

dimensional 100 m 9 100 m rectangular region. The MS

selects the closest BSs and estimates its position upon

receiving the distance measurements from those selected

BSs. As will be shown in Fig. 6, the number of BSs are

selected from three to eight respectively for performance

comparison. According to the random deployment of

MSs, it is intuitive that some MSs will be located in IPL

and the others are in OPL. In order to clearly illustrate

either inside or outside polygon in a grid-based placement

in Fig. 5, the network layout is partitioned into triangular

regions by connecting the BSs with blue lines considering

the case that the required number of BSs is equal to three.

The MSs within each triangular area will connect to the

BSs located at the three vertexes since those are the three

closest BSs to the MSs. For example, as shown in Fig. 5,

MS1 is classified into IPL since it is located inside the BS

polygon, i.e., the triangular area, connected by BS1, BS2,

and BS3. On the other hand, MS2 belongs to OPL owing

to the reason that it is located outside of the triangular

region formed by the three closest BSs, i.e., BS1, BS2,

and BS3.

Based on the grid-based WSN setup, Fig. 6 shows the

performance evaluation of LLS estimator in comparison

with both CRLB and L-CRLB under different numbers of

received BSs with IPL and OPL cases in the left and right

subplots, respectively. For either IPL or OPL cases, the

RMSE is computed to include all the MSs classified

in either IPL or OPL respectively, i.e., RMSE =PNI

j¼1

PNr

i¼1 kxj � x̂jðiÞk2=ðNr � NIÞ
h i1=2

, where Nr = 1,000

indicates the number of simulation runs and NI represents

the number of MSs in either IPL or OPL. Both the CRLB

and L-CRLB are also obtained by averaging the corre-

sponding values from different MS’s positions. Therefore,

the simulations can represent average estimation results

for a grid-based WSN scenarios under either IPL or OPL

case. Comparing with the CRLB, it is observed that the

proposed L-CRLB can better characterize the simulation

results for LLS estimator under both the IPL and OPL

cases. Moreover, the LLS estimator can still provide

better performance within the IPL in comparison with that

in the OPL. This conclusion is both validated via theo-

retical proof in Lemma 3 and simulation results in Fig. 5.

Furthermore, the LLS performance under the IPL can be

similar to that under the OPL which utilizes additional

measurement input. For example, as shown in Fig. 5, the

RMSE of the 4 BSs case under the IPL can be obtained as

10.7 m; while the RMSE of the 5 BSs case under the

OPL is 10.65 m. However, additional number of BSs

utilized in a location estimate requires more communi-

cation overheads.

Since the multi-path, delay, and small fading are loca-

tion-dependent, different noise settings within the same

network layout in Fig. 5 are utilized to discuss the effect

from measurement noises. Instead of considering a single

standard deviation of measurement noise as 10 m, the

standard deviation of measurement noise rn is designed to

be uniformly sampled from [0, 20], i.e., rn * U[0,20].

The left and right plots of Fig. 7 illustrate the RMSE
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performance of MSs in IPL and OPL, respectively. The

measured relative distance between the MS and BS in (1)

can be generated based on rn since ni�Nð0; r2
nÞ. With the

consideration of various levels of measurement noise, it

can be observed that the LLS estimator with weighted

matrix obtained from noise standard deviation can still

approach the L-CRLB in both IPL and OPL cases. As a

consequence, from the study of geometric effect of LLS

estimator, it is suggested that the OPL should be avoided in

order to increase the precision of MS’s location estimation.

This conclusion will be valuable for either cellular net-

works or WSNs while either conducting the deployment of

BSs or implementing a BS selection algorithm.

5 Conclusion

This paper derives the linearized location estimation

problem based Cramèr-Rao lower bound (L-CRLB) which

provides the analytical form to discuss the geometric effect

for the linear least square (LLS) estimator. The geometric

properties and the relationships between the L-CRLB and

conventional CRLB are obtained with theoretical proofs. It

is validated in the simulations that the L-CRLB can provide

the tight lower bound for the LLS estimator, especially

under the situations with smaller measurement noises.

Moreover, the proposed L-CRLB can be utilized to

describe the performance difference of an LLS estimator

under different geometric layouts. The MS locates inside a

BS-constrained geometry will provide higher estimation

accuracy comparing with the case that the MS is situated

outside of the BS-confined geometry layout.
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