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Finger-gate manipulated quantum transport in a semiconductor narrow constriction with spin-orbit
interactions and Zeeman effect
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The authors investigate quantum transport in a narrow constriction fabricated by narrow-band-gap semicon-
ductor materials with spin-orbit couplings. We consider the Rashba-Dresselhaus (RD) spin-orbit interactions
(SOIs) and the Zeeman effect induced by an in-plane magnetic field along the transport direction. The interplay
of the RD SOI and the Zeeman effect may induce a SOI–Zeeman gap and influence the transport properties.
We demonstrate that an attractive scattering potential may induce an electronlike quasi-bound-state feature and
manifest the RD–SOI–Zeeman induced Fano line shape in conductance. Furthermore, a repulsive scattering
potential may induce a holelike quasi-bound-state feature on the subband top of the lower spin branch.

DOI: 10.1103/PhysRevB.86.125321 PACS number(s): 73.23.−b, 72.25.Dc, 72.30.+q

I. INTRODUCTION

Quantum transport involving the interference nature of
a charged particle can be realized by using the split-gates-
induced narrow constriction connecting the source and drain
Ohmic contacts. The conductance through the narrow con-
striction is known to be quantized when the Fermi level of the
system is tuned energetically by applying a voltage to a nearby
gate.1,2 The quantization features can be explained within
the framework of simple noninteracting models,3–5 and the
conductance depends only on the transmission coefficient. The
related quantum devices can be utilized in various applications
including the prototypes of quantum information processing.6

Spin-orbit interaction (SOI) is a relativistic effect, in which
a charged particle moving with direction perpendicular to
an electric field experiences an effective magnetic field that
couples to the spin degree of freedom of the moving particle.
Various spin-orbit (SO) effects present in semiconductor
structures provide a promising way to spin manipulation in
two-dimensional (2D) electron gases.7,8 Band-structure behav-
iors and transport properties involving SOI in semiconductor
quantum structures have received much interest due to their
important application in the emerging field of spintronic
devices.9–11 Manipulating the spin degree of freedom offers
the possibility of devices with high-speed and very-low-power
dissipation that is one of the essential requirements for the
applications in quantum computing and memory storage.12,13

The SOI can be induced when the transporting electron
experiences a strong electric field due to the asymmetry in
the confinement potential, namely, the structure inversion
asymmetry (SIA) induced Rashba SOI.14 Especially, the
Rashba SOI may be significantly induced in two-dimensional
electron gases (2DEGs) confined by asymmetric potential in
semiconductor materials. Experimentally, the Rashba interac-
tion has been shown to achieve electron spin manipulation by
using bias-controlled gate contacts.15

In addition to the Rashba effect, there is also a Dresselhaus
SOI caused by the microscopic electric field arising from the
lack of inversion symmetry in the Bravais lattice, namely,
the bulk inversion asymmetry (BIA).16 The combined effect
of the Rashba and Dresselhaus SOI affects significantly
the spin-related properties and should be considered when

analyzing the performance of spin-resolved electronic devices.
Recently, several approaches were proposed to engineer the
spin-resolved subband structure utilizing magnetic fields17–20

or ferromagnetic materials.21,22 The SOI and in-plane magnetic
field induced Zeeman effect may modify the subband structure
leading to a SOI–Zeeman subband gap feature.23,24 However,
how the scattering potentials influence the spin-resolved
quantum transport and its interplay with the SOI–Zeeman
interactions has not yet been explored.

In this work, we consider a split-gate-induced narrow
constriction that is fabricated in a 2D quantum well with
narrow-band-gap semiconductor material. Both the Rashba
and Dresselhaus SOIs as well as an applied external in-plane
magnetic field are taken into account to investigate the influ-
ences of the subband structures. Moreover, we apply a narrow
finger gate to affect the ballistic transport properties. In the
following, we shall demonstrate analytically and numerically
that tuning the strength of the applied in-plane magnetic field
as well as the Rashba and the Dresselhaus SO coupling
constants to manipulate the subband structures, leading to
fruitful quantum transport properties.

This article is organized as follows. In Sec. II, we shall
describe our theoretical model including the Rashba and Dres-
selhaus SOIs as well as an external in-plane magnetic field.
Section III investigates the spin-resolved quantum transport
properties. Concluding remarks will be presented in Sec. IV.

II. MODEL AND SUBBAND STRUCTURES

The system under investigation is assumed to be a narrow-
band-gap InAs-In1−xGaxAs semiconductor heterostructure
grown in [0,0,1] crystallographic direction. We consider the
conduction band of a 2D quantum well within the effective
mass approximation. We select the length unit l∗ = 1/kF as
the inverse of the Fermi wave number kF , and the energy unit
E∗ = EF is the Fermi energy EF = h̄2k2

F /2m∗ with m∗ and h̄

being, respectively, the effective mass of an electron and the
reduced Planck constant. Correspondingly, the magnetic field
is in units of B∗ = E∗/μB with μB being the Bohr magneton,
and the Rashba and Dresselhaus SO coupling constants are in
units of α∗ = β∗ = E∗l∗. By using the above units, all physical
quantities presented in the following are dimensionless.25
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FIG. 1. (Color online) Schematic illustration of the quantum
channel defined by a pair of split gates that is fabricated by a
narrow-band-gap InAs-In1−xGaxAs semiconductor heterostructure
forming the two-dimensional electron gas (2DEG). An external
in-plane magnetic field B = B x̂ and a top finger gate are applied
to influence the spin-resolved quantum transport properties.

A pair of split gates is applied in the transverse direction
forming a quantum channel described by the unperturbed
Hamiltonian

H0 = k2 + Vc(y) (1)

that consists of a 2D kinetic energy term k2 = k2
x + k2

y and a
confining potential energy term

Vc(y) =
{

0, |y| < W/2

∞, otherwise
(2)

where W indicates the width of the quantum channel. The
transported electron is supposed to be affected by the effects
of SO interaction and the external in-plane magnetic field,
and hence can be described by the effective unperturbed
Hamiltonian

H̃0 = H0 + HSO + HZ. (3)

Here, we have assumed that the magnetic field is applied in the
transport direction x̂ such that the Zeeman interaction is simply
HZ = gBσx , in which the factor g = gs/2 with gs being the
effective gyromagnetic factor (gs = −15 for InAs). In order
to manipulate the spin-resolved quantum transport properties,
we apply a finger gate on top of split gate with an insulator
in-between, as illustrated in Fig. 1. We assume that the finger
gate is sufficiently narrow and then can be described by a
delta scattering potential form Vsc(x) = V0δ(x). The whole
quantum channel system under investigation is thus described
by the total Hamiltonian H = H̃0 + Vsc(x).

The SOI term in Eq. (3) consists of the Rashba and
Dresselhaus SOI effects HSO = HR + HD. For the transport
direction x̂ ‖ [1,0,0], the Rashba SO Hamiltonian is given by
the k-linear form

HR = α(σxky − σykx), (4)

where σi (i = {x,y,z}) are the Pauli matrices and k = (kx,ky)
is the 2D electron wave vector. The Rashba coupling strength
α is proportional to the electric field along the ẑ direction
perpendicular to the 2D electron gas. In general, the Dressel-
haus interaction has a cubic dependence on the momentum
of the carriers. For a narrow semiconductor quantum well

grown along the [0,0,1] direction, it reduces to a 2D linear
momentum-dependent form

HD = β(σxkx − σyky), (5)

where the Dresselhaus coupling strength β is determined by the
semiconductor material and the geometry of the sample. The
spin-orbit coupling contributions can be simplified as HSO =
(−ασy + βσx)kx in a narrow quantum channel.

The eigenfunction of Eq. (3) can be expressed as the
multiplication of the spatial wave functions and the spinor
state χn:

�(x,y) =
∑

n

φn(y)eikxxχn, (6)

where the transverse wave function in the subband n is of the
form

φn(y) =
√

π

W
sin

(nπ

W
y
)

(7)

with unperturbed subband energy εn = (nπ/W )2 due to the
bare confining potential. The corresponding eigenenergies can
be obtained.

A. Rashba-Zeeman effects

In the absence of the Dresselhaus SOI, the Dresselhaus
coupling strength β is identically zero. In this section, we
focus on the the Rashba-Zeeman (RZ) effect, in which the
spin-resolved subband energies can be obtained analytically26:

Eσ
n = εn + k2

x + σ

√
(gB)2 + (2αkx)2 (8)

and the spinor states

χσ
n = 1√

2

[
1

σeiθ(kx )

]
, (9)

where σ = ± indicates the upper (+) and lower (−)
spin branches and θ (kx) = tan−1(2αkx/|gB|) describes the
momentum-dependent spin orientation of an electron. Defin-
ing the group velocity of an electron in the σ spin branch

vσ
g = dEσ

n

dkx

= 2kx + σ
4α2kx√

g2B2 + 4α2k2
x

(10)

allows us to determine the local minimum (subband bottom)
and local maximum (subband top) in the subband structures
by setting the group velocity to be identically zero.

The calculations presented below are carried out under the
assumption that the electron effective mass m∗ = 0.023m0,
which is appropriate to the InAs-In1−xGaxAs semiconductor
interface with the typical electron density ne ∼ 1012 cm−2.15

Accordingly, the length unit is l∗ = 1/kF = 5.0 nm, the energy
unit is E∗ = EF = 66 meV, and the spin-orbit coupling
parameters are in units of α∗ = β∗ = 3.3 × 10−10 eV m. In
the following, we select the width of the narrow constriction
W = πl∗ = 15.7 nm so that the unperturbed subband energy
is simply εn = n2. Moreover, the range of the variation of
energy E is smaller than the second unperturbed subband
energy, namely, E < ε2EF = 4EF . Furthermore, sufficient
low temperature is required to avoid thermal broadening effect,
that is, kBT < 0.1�ε (or T < 23 K). We note in passing that
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FIG. 2. (Color online) Energy spectrum versus wave number with
magnetic field strength gB = 0.02 with different values of Rashba
coupling constant: (a) α = 0.05 (weak Rashba effect, 2α2 < gB); (b)
α = 0.1 (critical Rashba effect, 2α2 = gB); and (c) α = 0.2 (strong
Rashba effect, 2α2 > gB). The Fermi energy EF = 66 meV and the
Fermi wave number kF = 2 × 106 cm−1. The magnetic field strength
is approximately 3 T when gB = 0.02 (gs = −15 for InAs). The
black and red curves indicate the plus (σ = +) and minus (σ = −)
spin branches, respectively.

the width of the scattering potential Vsc(x) should be less than
the Fermi wave length λF = 31.4 nm to be described as a delta
potential. We assume high-mobility semiconductor materials
and, hence, the impurities and defects can be neglected.

The energy spectrum for the case of RZ effect with
different coupling strength regimes is illustrated in Fig. 2.
Before we illustrate the subband gap features, it should be
reminded that the Zeeman effect is to induce an energy gap
�EZ = 2gB between the opposite spin branches. For the case
of weak Rashba SO coupling, namely, 2α2 < gB, both the spin
branches have only subband bottoms at kx = 0 with energies
at Eσ

n = εn + σgB. The subband energy spacing between the
upper (+) and the lower (−) branches is the Zeeman splitting
�ERZ = �EZ. Hence, the RZ–SO gap is dominated by the
Zeeman effect in the weak SO coupling regime.

For the case of strong Rashba coupling 2α2 > gB, the
subband bottom of the upper spin branch is still at E+

n =
εn + gB. However, the subband bottom at kx = 0 of the
lower spin branch becomes a subband top with the same

FIG. 3. (Color online) Energy (in units of Fermi energy EF ) as a
function of complex wave number kx = kR + ikI (in units of Fermi
wave number kF ). The physical parameters are α = 0.2, β = 0, gB =
0.02. The black curves represent the propagating modes and the red
curves denote the evanescent modes.

energy E+
n = εn − gB. Therefore, the subband energy spacing

between the + and − branches is still �EZ = 2gB, but
forming a subband gap. In addition to the subband top in
the lower subband branch, there are two subband bottoms
at kx = ±[α2 − (gB/2α)2]1/2 with the same energy E−

n =
εn − [α2 + (gB/2α)2].

We note in passing that if only the Rashba effect is consid-
ered, the subband structure is simply Eσ

n = εn + k2
x + σ2αkx .

Also, the subband structure manifests only lateral splitting in
momentum �kx = 2α, where the subband bottoms of σ spin
branches are at the wave numbers kσ

x = −σα with the same
energy En = εn − α2.

In order to investigate the transport properties, one has to
determine the propagating and evanescent modes for a given
energy. To this end, it is convenient to rewrite the energy
dispersion relation in the form

k2
x = (E + 2α2 − εn)

∓
√

(E + 2α2 − εn)2 + (gB)2 − (E − εn)2. (11)

In general, this equation determines four complex kx values
corresponding to either propagating or evanescent modes.

In Fig. 3, we show the energy dispersion obtained from
Eq. (11) in the complex wave-number space for the case
of 2α2 > gB so that subband gaps can be generated. It is
clearly shown that there are four evanescent modes when the
electron energy is less than the lower subband bottom. When
the electron energy is greater than the lower subband bottom
and below the subband gap, there are four propagating modes.
It is interesting to notice that when electron energy is within
the subband energy gap regime, there are two propagating
modes and two evanescent modes (the red bubble in Fig. 3).
Although the conductance calculated later only sums over the
propagating modes, a sufficient number of evanescent modes
should be taken into account to achieve numerical accuracy
when we calculate the intermediate scattering processes.

B. Rashba-Dresselhaus-Zeeman effects

In the presence of Rashba and Dresselhaus SOI with
an in-plane magnetic field along the transport direction, the
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FIG. 4. (Color online) Energy spectrum versus wave number in
the presence of in-plane magnetic field (gB = 0.02) with different
Rashba and Dresselhaus SO coupling constants: (a) α = β = 0.02
(weak coupling); (b) α = β = 0.1 (mediate coupling); (c) α = β =
0.2 (strong coupling). The Fermi energy EF = 66 meV and the
Fermi wave vector kF = 2 × 106 cm−1. The magnetic field strength
is approximately 3 T when gB = 0.02 (gs = −15 for InAs). The
black and red curves indicate the plus (σ = +) and minus (σ = −)
spin branches, respectively.

electronic system can be described by

εn� + (
k2
x − 2αkxσy + 2βkxσx + gBσx

)
� = E�. (12)

For electrons incident from the subband n, the spinor states χn

satisfy the 2 × 2 matrix equation(
k2
x gB + 2βkx + i2αkx

gB + 2βkx − i2αkx k2
x

)
χn

= (E − εn)χn. (13)

The energy spectrum can be easily obtained of the form

E = εn + k2
x + σ

√
(2βkx + gB)2 + (2αkx)2. (14)

This equation is convenient to obtain energy spectrum as a
function of real wave vector for propagating modes.

In Fig. 4, we show the Dresselhaus effect correction to the
Rashba SOI by fixing the strength of Zeeman effect (gB =
0.02) and tuning the strength of Rashba and Dresselhaus

SOI. To analyze the the subband structures, it is convenient
to introduce the Rashba-Dresselhaus SO coupling constant
γ , namely, γ 2 = α2 + β2, for defining different coupling
regimes. Figure 4(a) demonstrates the weak SO coupling
regime γ 2 < gB. It is clearly shown that the spin-split subband
structure is slightly asymmetric due to the Dresselhaus effect.
The subband bottoms of both subband branches are no longer
at zero wave number. Instead, the energy bottoms are located
at (kx,E

+
1 ) = (−0.02,1.02) and (kx,E

−
1 ) = (0.02,0.980). The

two spin branches of a subband n manifest a Zeeman split-
ting �EZ = E+

n − E−
n = 2gB = 0.04. Hence, in the weak

coupling regime, the Zeeman effect dominates the subband
structure and the RD coupling slightly lets the subband
structure form an asymmetric lateral shift in the opposite
direction for the spin branches.

Figure 4(b) illustrates the case of intermediate SO cou-
pling regime γ 2 = gB: it is shown that the lower spin
branch becomes a shoulder subband structure at (kx,E

−
1 ) =

(−0.1002,0.99) and a clear subband bottom at (kx,E
−
1 ) =

(0.136,0.964). On the other hand, the subband bottom of the
upper branch is at (kx,E

+
1 ) = (−0.0361,1.016), and hence the

spin branches form a shoulder gap feature �Esg = 0.026 <

�EZ.
In Fig. 4(c), we show the case of strong SO coupling

regime (γ 2 > gB). In this regime, it is interesting that the
lower spin branch manifests three extreme values in energy.
First, the left subband bottom of the upper spin branch is at
(kx,E

−
1 ) = (−0.28,0.934). Second, the right subband bottom

is at (kx,E
−
1 ) = (0.28,0.905). Third, the subband top of the

lower subband branch is at (kx,E
−
1 ) = (−0.02,0.986). On

the other hand, the subband bottom of the upper branch is
at (k−

x ,E−
1 ) = (−0.02,1.015). Therefore, the subband gap in

the strong coupling regime is around �Eg = 0.029 > �Esg .
This implies that reduction of the subband gap due to the
Dresselhaus effect is a nontrivial effect.

III. QUANTUM TRANSPORT PROPERTIES

In this section, we shall investigate the quantum transport
properties subject to spin-orbit interactions and Zeeman effect
in a narrow constriction. We assume that the quantum channel
is sufficiently narrow and focus on the first two conductance
steps associated with the two spin branches of an electron. In
the following, we shall explore how the spin-mixing effect
due to the SOI–Zeeman coupling influences the transport
properties.

A. Rahsba-Zeeman effects

To consider an electron incident along the transport direc-
tion x, it is convenient to denote the wave number of rightgoing
(leftgoing) modes as kσ (qσ ), in which the subscript σ could
be by “1” or “2” indicating the “outer” or the “inner” modes,
as illustrated in Fig. 5. The scattering wave function for an
electron incident from the source electrode can be written in
the form

ψ(x) = eikσ xχ (kσ ) +
∑

σ

rσ eiqσ xχ (qσ ) if x < 0, (15)

ψ(x) =
∑

σ

tσ eikσ xχ (kσ ) if x > 0. (16)
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FIG. 5. (Color online) Schematic illustration of the energy
spectrum with labeling modes. Here, k1 and q1 indicate the outer
rightgoing and outer leftgoing modes, respectively. Similarly, k2

and q2 indicate the inner rightgoing and inner leftgoing modes,
respectively. In the gap energy regime, both the inner modes are
evanescent modes.

Here, we have omitted the subband index for simplicity. By
taking into account the spin branches as well as the spin-flip
scattering mechanisms, the scattering wave functions can be
generally expressed as

ψ(x) = eikσ x

[
aσ

bσ

]
+ rσ eiqσ x

[
cσ

dσ

]
+ rσ̄ eiqσ̄ x

[
cσ̄

dσ̄

]
if x > 0, (17)

ψ(x) = tσ eikσ x

⌊
aσ

bσ

⌋
+ tσ̄ eikσ̄ x

[
aσ̄

bσ̄

]
if x > 0, (18)

where aσ = 1
√

2 and bσ = −eiθ(kσ )/
√

2 with θ (kσ ) =
tan−1[2αkσ /(gB)] are the spinor elements of the incident
wave. In addition, cσ = 1/

√
2 and dσ = −eiθ(qσ )/

√
2 with

θ (qσ ) = tan−1[2αqσ /(gB)] are the spin-state elements of
the reflection wave. Moreover, the spin-state elements of the
spin-flip transmission wave are given by

aσ̄ =
{

(gB + 2αkσ̄ )2

(gB + 2αkσ̄ )2 + ∣∣g2B2 − 4α2k2
σ̄

∣∣
}1/2

(19)

and

bσ̄ = aσ̄

√
g2B2 − 4α2k2

σ̄

gB + 2αkσ̄

. (20)

Similarly, we can obtain the spin-state elements of the spin-flip
reflection wave, given by

cσ̄ =
{

(gB + 2αqσ̄ )2

(gB + 2αqσ̄ )2 + ∣∣g2B2 − 4α2q2
σ̄

∣∣
}1/2

(21)

and

dσ̄ = cσ̄

√
g2B2 − 4α2q2

σ̄

gB + 2αqσ̄

. (22)

By matching the boundary conditions at around the scat-
tering potential induced by the finger gate, it is easy to obtain
the matrix equation of motion for the spin-resolved transport

involving the finger-gate induced spin-flip scattering⎡⎢⎢⎢⎣
−cσ −cσ̄ aσ aσ̄

−dσ −dσ̄ bσ bσ̄

−qσ cσ −qσ̄ cσ̄ (kσ + iV0)aσ (kσ̄ + iV0)aσ̄

−qσ dσ −qσ̄ dσ̄ (kσ + iV0)bσ (kσ̄ + iV0)bσ̄

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

rσ

rσ̄

tσ

tσ̄

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
aσ

bσ

kσ aσ

kσ bσ

⎤⎥⎥⎥⎦ . (23)

To calculate conductance in the noninteracting electron
model, we employ the framework of the Landauer-Büttiker
formula.3,4 For a given energy, solving for the spin-nonflip
and -flip reflection coefficients rσ and rσ̄ , as well as the
spin-nonflip and -flip transmission coefficients tσ and tσ̄ , we
can thus express the zero-temperature conductance as

G = G0

∑
σL,σR

vσR

vσL

|tσL,σR
|2 . (24)

Here, G0 = e2/h is the conductance quantum of a single spin
branch, and σL and σR indicate, respectively, the spin branches
of the incident and transmission waves in the left and right
leads. Therefore, vσR

and vσL
represent the group velocity at

the corresponding modes.
In Fig. 6, we demonstrate the transport properties in the

presence of an attractive scattering potential due to the finger
gate by fixing the in-plane magnetic field (gB = 0.02) while
tuning the strength of Rashba SOI. In general, the attractive
scattering potential plays a role to suppress the conductance.
We present the conductance as a function of electron energy
with different strength of attractive potential: V0 = 0.0 (dotted
line), V0 = −0.1 (dashed line), V0 = −0.2 (dashed-dotted
line), V0 = −0.3 (solid line). Here, we fix the Zeeman effect to
be gB = 0.02, in other words the magnetic field B = 3 T if the
factor gs = −15 for InAs-based material. Moreover, we tune
the Rashba parameter as follows: (a) α = 0.05 (2α2 < gB,
weak SO coupling); (b) α = 0.1 (2α2 = gB, intermediate SO
coupling); (c) α = 0.2 (2α2 > gB, strong SO coupling).

Figure 6(a) illustrates the transport properties in the weak
SO coupling regime (2α2 < gB). When the attractive potential
is weak (V0 = −0.1), the conductance manifests a clear dip
structure and forms an electronlike quasi-bound-state at the
subband bottom of the upper spin branch. When the potential
strength increases (V0 = −0.3), the dip structure becomes a
broad valley structure and is shifted toward the low-energy
regime, indicating the shorter lifetime. This broadening effect
is suppressed in the mediate SO coupling regime (2α2 = gB),
as shown in Fig. 6(b). It is interesting to notice in Fig. 6(c) that
the conductance manifests an abrupt drop to unity in the energy
regime 0.98 < E < 1.02 due to the spin-gap feature as shown
previously in Fig. 2(c). It is interesting that the conductance
dip structure is not broadened for larger scattering potential
V0. This indicates that the lifetime of the quasi-bound-state
feature is enhanced in the strong Rashba SO coupling regime.

In Fig. 7, we demonstrate the transport properties in the
presence of a repulsive scattering potential due to the finger
gate by fixing the in-plane magnetic field (gB = 0.02) while
tuning the strength of Rashba SOI. In general, the repulsive
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FIG. 6. (Color online) Conductance as a function of electron
energy with different strength of attractive potential: V0 = 0.0 (dotted
black line), V0 = −0.1 (dashed red line), V0 = −0.2 (dashed-dotted
blue line), V0 = −0.3 (solid green line). We fix the Zeeman effect
gB = 0.02 (or B = 3 T if gs = −15 for InAs-based material), while
we tune the Rashba parameter: (a) α = 0.05 (2α2 < gB, weak SO
coupling); (b) α = 0.1 (2α2 = gB, intermediate SO coupling); (c)
α = 0.2 (2α2 > gB, strong SO coupling).

potential plays a role to strongly suppress the conductance
in the low-kinetic-energy regime. We exhibit the conductance
as a function of electron energy with different strength of
repulsive scattering potential: V0 = 0.0 (dotted line), V0 = 0.1
(dashed line), V0 = 0.2 (dashed-dotted line), V0 = 0.3 (solid
line). Here, we fix the Zeeman effect to be gB = 0.02, namely,
the magnetic field B = 3 T if the factor gs = −15 for InAs-
based material. Then, we tune the strength of the Rashba SOI:
(a) α = 0.05 (2α2 < gB, weak SO coupling); (b) α = 0.1
(2α2 = gB, intermediate SO coupling); (c) α = 0.2 (2α2 >

gB, strong SO coupling).
For the case of weak SO coupling regime shown in

Fig. 7(a), the conductance is strongly suppressed in the

FIG. 7. (Color online) Conductance as a function of electron
energy with different strength of repulsive scattering potential:
V0 = 0.0 (dotted black line), V0 = 0.1 (dashed red line), V0 = 0.2
(dashed-dotted blue line), V0 = 0.3 (solid green line). We fix the
Zeeman effect gB = 0.02 and tune the parameter of Rashba SOI: (a)
α = 0.05 (2α2 < gB, weak SO coupling); (b) α = 0.1 (2α2 = gB,
intermediate SO coupling); (c) α = 0.2 (2α2 > gB, strong SO
coupling).

low-kinetic-energy regime and behaves monotonically in-
creasing. For the case of intermediate SO coupling regime
shown in Fig. 7(b), the conductance is more strongly sup-
pressed in the low-kinetic-energy-regime than in the case
of the weak SO coupling regime. It is interesting to notice
when the repulsive potential is strong enough (V0 = 0.3),
the conductance is even suppressed to zero at energy E ≈
0.984E∗. This is a clue of a holelike quasi-bound-state feature
with very short lifetime due to the shoulderlike structure of
the lower subband branch shown in Fig. 7(b). For the case of
strong SO coupling regime, since the subband structure can
form a subband gap, as is shown in Fig. 7(c), it allows us
to form a significant holelike quasi-bound-state feature at the
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subband top of the lower spin branch. The conductance thus
manifests a dip structure energy E ≈ 0.984E∗.

B. Rashba-Dresselhaus-Zeeman effects

In this section, we shall explore the transport properties
of a narrow constriction by fixing the Zeeman effect while
manipulating the strength of the RD–SOI and tuning the
amplitude of scattering potential that can be either attractive or
repulsive. All the physical parameters shown in the following
are the same with the physical parameters in the previous
section discussing the case of R–SOI. The transport calculation
for the case of RD–SOI is similar to the case of R–SOI but has
to be solved numerically, which is not shown here.

In Fig. 8, we investigate how an attractive scattering
potential influences the transport properties by tuning Rashba
and the Dresselhaus effects and fixing the in-plane magnetic
field; the corresponding energy spectra are shown in Fig. 4. The
conductance is presented as a function of electron energy with
different strengths of attractive scattering potential: V0 = 0.0
(dotted line), V0 = −0.1 (dashed line), V0 = −0.2 (dashed-
dotted line), V0 = −0.3 (solid line). We fix the in-plane
magnetic field so that the Zeeman effect gB = 0.02. In
addition, the Rashba and Dresselhaus SO coupling constants
are selected to cover three coupling regimes: (a) α = β =
0.02 (γ 2 < gB, weak SO coupling regime); (b) α = β = 0.1
(γ 2 = gB, intermediate SO coupling regime); (c) α = β =
0.2 (γ 2 > gB, strong SO coupling regime).

For the case of the weak SO coupling regime shown in
Fig. 8(a), the attractive scattering potential may induce a Fano
structure in conductance. This is because a true bound state can
be induced by the attractive scattering potential at energy E =
E+

1 − V 2
0 /4, in which the binding energy Eb = V 2

0 /4 = 0.0025
(dashed line), 0.01 (dashed-dotted line), and 0.0225 (solid
line). The Fano structure is at E ≈ 0.99E∗ for potential V0 =
−0.3. It is interesting to notice that the bounded upper-spin-
branch electron bounded energy interfere with the extended
lower-spin-branch electron and form the RD–Zeeman induced
Fano structure. For the case of the intermediate SO coupling
regime shown in Fig. 8(b), we can see a clear quasi-bound-state
feature at the subband bottom of the upper spin branch. For
the case of strong SO coupling regime shown in Fig. 8(c),
the Fano structure is red-shifted to E ≈ 0.91E∗ for potential
V0 = −0.3. In the SOI–Zeeman induced subband gap region,
we see a more significant quasi-bound-state formed at around
E ≈ 1.02E∗.

In Fig. 9, we investigate how a repulsive scattering potential
influences the transport properties by tuning Rashba and the
Dresselhaus effects and fixing the in-plane magnetic field;
the corresponding energy spectra are shown in Fig. 4. The
conductance is plotted as a function of electron energy with
different strength of repulsive scattering potential: V0 = 0.0
(dotted line), V0 = 0.1 (dashed line), V0 = 0.2 (dashed-dotted
line), V0 = 0.3 (solid line). We fix the in-plane magnetic
field so that the Zeeman effect gB = 0.02. In addition, we
tune the Rashba and Dresselhaus SO coupling constants as
(a) α = β = 0.02 (γ 2 < gB, weak spin-orbit coupling regime);
(b) α = β = 0.1 (γ 2 = gB, intermediate spin-orbit coupling
regime); (c) α = β = 0.2 (γ 2 > gB, strong spin-orbit coupling
regime).

FIG. 8. (Color online) Conductance as a function of electron
energy with different strength of attractive scattering potential:
V0 = 0.0 (dotted black line), V0 = −0.1 (dashed red line), V0 = −0.2
(dashed-dotted blue line), V0 = −0.3 (solid green line). We fix
the in-plane magnetic field (gB = 0.02) and tune the Rashba and
Dresselhaus SO-coupling constants: (a) α = β = 0.02 (γ 2 < gB,
weak SO coupling regime); (b) α = β = 0.1 (γ 2 = gB, intermediate
SO coupling regime); (c) α = β = 0.2 (γ 2 > gB, strong SO coupling
regime).

For the case of the weak SO coupling regime shown in
Fig. 9(a), the repulsive scattering potential can not form bound
states even for the case of strong potential amplitude V0 = 0.3,
in which the conductance behaves monotonically increasing
and the conductance is suppressed to G ≈ 0.7G0. For the case
of the intermediate SO coupling regime shown in Fig. 9(b), it
is interesting to note that the conductance manifests a holelike
quasi-bound-state feature on the top of shoulder subband top
(E = 0.99E∗), as is shown in Fig. 4(b). For the case of the
strong SO coupling regime shown in Fig. 9(c), the general
feature in conductance is the strong drop from 2G0 to G0

in the subband gap of the two spin branches. Moreover, it is
clearly shown that the holelike quasi-bound-state feature can
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FIG. 9. (Color online) Conductance as a function of electron
energy with different strength of repulsive scattering potential:
V0 = 0.0 (dotted black line), V0 = 0.1 (dashed red line), V0 = 0.2
(dashed-dotted blue line), V0 = 0.3 (solid green line). We fix the
in-plane magnetic field (gB = 0.02) and tune the Rashba and
Dresselhaus SO coupling constants: (a) α = β = 0.02 (γ 2 < gB,
weak SO coupling regime); (b) α = β = 0.1 (γ 2 = gB, intermediate
SO coupling regime); (c) α = β = 0.2 (γ 2 > gB, strong SO coupling
regime).

be induced on the subband top of the lower spin branch and
form a very clear dip structure in conductance.

IV. CONCLUDING REMARKS

We consider a narrow constriction with the Rashba and
Dresselhaus spin-orbit interactions under an in-plane magnetic
field applied in the transport direction. A top finger gate is used
to generate an attractive or a repulsive scattering potential.
This allows us to investigate the coherent quantum transport
properties involving spin-flip scattering. The competition of
the spin-orbit scattering and the Zeeman effect plays an
important role to the subband structures and the transport
properties. The Zeeman effect allows us to separate the R–SOI

and RD–SOI into three regimes: the weak, mediate, and strong
SO coupling regimes.

In the weak SO coupling regime with Zeeman effect, the
subband structure remains the quadratic form. It is symmet-
ric if only the Rashba SOI dominates, while asymmetric
if both the Rashba and Dresselhaus SOIs are significant.
For the case of attractive potential with only the Rashba
SOI, it allows electron occupying the upper spin branch
to form a true-bound-state feature with binding energy
V 2

0 /4, and the conductance manifests a valley structure. It
is important to note that the presence of both the Rashba
and the Dresselhaus SOIs may enhance the interference
between the localized upper-spin-branch state and the ex-
tended lower-spin-branch state, and hence the conductance
manifests a Fano structure. For the case of repulsive potential,
the conductance behaves monotonically increasing for both
R–SOI and RD–SOI.

In the intermediate SO coupling regime with Zeeman effect,
the subband structure of the lower spin branch exhibits a
quadratic structure for R–SOI and a shoulderlike structure
for RD–SOI. For the case of attractive potential with R–
SOI, the conductance manifests a quasi-bound-state feature
below the upper branch. Moreover, for the case of attractive
potential with RD–SOI, we have found a kink structure in
conductance at the shoulder of the lower spin branch. For
the case of repulsive potential with R–SOI, the conductance
is strongly suppressed and monotonically increasing. How-
ever, for the case of repulsive potential with RD–SOI, the
conductance can manifest a clear holelike quasi-bound-state
feature.

In the strong SO coupling regime with Zeeman effect,
the subband structure of the lower spin branch exhibits a
subband top structure for both the R–SOI and RD–SOI. In
addition, the two subband bottoms of the lower spin branch
with the same energy for R–SOI and with different energy
for RD–SOI. For the case of attractive potential with R–SOI,
the conductance manifests a quasi-bound-state feature below
the upper branch. However, the conductance structure for the
case of attractive potential with RD–SOI is more complicated.
We have found a true-bound-state feature in conductance with
Fano line shape depending on the strength of the scattering
potential. This behavior is due to the different energy of two
subband bottoms in the lower spin branch. In addition, an
electronlike quasi-bound-state can be found at the subband
bottom of the upper spin branch. For the case of the repulsive
potential with R–SOI, we have found a clear holelike quasi-
bound-state feature at the subband top of the lower spin branch.
This holelike quasi-bound-state feature is more significant
with longer lifetime for the case of repulsive potential with
RD–SOI.

In conclusion, we have investigated the interplay of
the Rashba-Dresselhaus spin-orbit interaction and the in-
plane magnetic field induced Zeeman effect to influence
the spin-resolved coherent transport. By tuning the fin-
ger gate, we have demonstrated how the attractive and
repulsive scattering potentials affect the conductance fea-
tures. We have analyzed in detail the nontrivial subband
and quantum transport properties concerning the SOI–
Zeeman induced electronlike and holelike quasi-bound-state
features.
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