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a b s t r a c t

This paper studies a multiple-server queueing model under the assumptions of renewal
arrival processes and limited buffer size. An approximation for the loss probability and
the asymptotic behavior are studied under the heavy traffic conditions. We present an
asymptotic analysis of the loss probabilitywhen both the arrival rate and number of servers
approach infinity. In illustrative examples, the loss probabilities are estimated with heavy
traffic under three common distributions of inter-arrival times: exponential, deterministic
and Erlang-r distributions, respectively.
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1. Introduction

Motivated by the growing development of modern telecommunication systems, the studies of queueing systems with
many servers and especially analysis of the loss probability have been conducted significantly under investigation [1–4].
Connections over Internet are typically generated in mounting up population of users independently communicating with
an equivalently large population of servers and correspondents for a variety of applications [5]. According to traffic demand
and networkmanagement settings, it requires suitable bandwidth allocation of individual connection to achieve guaranteed
Quality of Service (QoS) level (see [6] for example). Due to the budget constraint, it is too costly for the network service
providers to assert a 100% guaranteed availability for all connections at any time although it is the network managers’
mission to provide available servers with suitable bandwidth. This is also not necessary because traffic flow fluctuates with
time, and connections do not last forever but occur at random times and vanish in the network once the corresponding
digital document has been transferred completely [4].

Hence, it is desirable to bring out an analytic stochastic model to determine the loss probability as an important
performance measure of network systems. For example, Maglaras and Zeevi [7] studied the equivalent behavior of
communication systems in a single-class Markovian model under revenue and social optimization objectives. Faragó [2]
gave an estimated loss probability and link utilization for general multi-rate and heterogeneous traffic, where the individual
bandwidth demands may aggregate in complex ways. Bruni et al. [8] designed a connection admission control procedure
for resource management on a telecommunication network. Taking the loss probability into account, Wang and Luh [4]
presented a solution analysis of bandwidth allocation on communication networks, where the authors obtained monotone
and concave properties of the loss probability inM/G/s/s under the Erlang loss model.

In real-world communication networks, it becomes difficult to compute numerically the loss probability for large number
of servers even though by computers [9,10]. As mentioned in [11], the main drawback with exact methods of analyzing the
GI/G/s/s queues is the often-excessive computation times required. Indeed, many problems become intractable with small
to medium-sized values of number of servers s [2].

Choi et al. [1] and Kim and Choi [12] obtained some results related to the GI/M/s/n and GIX/M/s/n queues with batch
size X , where s is the fixed (and small) number of servers and n is a variable denoting the capacity of waiting space. As the
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waiting capacity n increases to infinity, Choi et al. [1] obtained the estimation for the convergence rate of the stationary
GI/M/s/n queue-length distribution to the stationary queue-length distribution of the GI/M/s queueing system. In [12],
Kim and Choi gave an analysis of the loss probability in the GIX/M/s/n queueing systems. Recently, Abramov [13] provided
an asymptotic analysis of the loss probability of the GI/M/s/n queue as thewaiting capacity n approaches infinity. However,
in those papers, the number of servers s is fixed and hence the traffic intensity is also fixed.

Themain contribution of this paper is the asymptotic analysis of the loss probability as both the arrival rate and number of
servers approach infinity.We consider theGI/M/s/squeueing systems as the number of servers s increases to infinity,where
the traffic intensity depends on s. The aim of this paper is to provide an approximation for the loss probability as the number
of servers is huge. We present an approximation for the loss probability with the stationary probability of GI/M/∞ queues.
Computational effort with guaranteed precision level of this approximation is much less than the one for determining the
exact value of the loss probability in GI/M/s/s queueing systems as s is large. Needless to say, it has a significant advantage
when solving the huge matrix is impossible.

The remainder of the paper is organized as follows. Section 2 presents the assumptions and definitions of the proposed
queueing model under the heavy traffic conditions. An approximation of the loss probability with heavy-traffic limits
is introduced in Section 3. Three examples are given in Section 4 to demonstrate the derivation of the approximated
loss probabilities under assumptions of exponential, deterministic and Erlang-r distributions of the inter-arrival times,
respectively. Sensitivity analysis with numerical illustrations are conducted in Section 5. Concluding remarks are drawn
in Section 6. We give proofs for each proposition and theorem while providing most of them in Appendices in order not to
interrupt the flow of presentation.

2. A queueing model under heavy traffic conditions

The assumptions of renewal arrival process, exponential service times, finite servers and limited buffer size are commonly
used in queueing systems, e.g., [1,11,13,14], etc. In this paper, we assume that the inter-arrival times of customers
are independent and identically distributed (i.i.d.) random variables with cumulative distribution function (c.d.f.) A(t),
probability density function a(t) for t > 0, and mean 1/λ. We also assume that the sojourn times are i.i.d. random variables
following exponential distribution with mean 1/µ, which corresponds to the packet transmission time. Suppose that the
inter-arrival time and sojourn time are mutually independent. Customers occupy those s servers in the order they occur,
that is, the service discipline is First Come First Served.

Networkmanagers are interested in knowing the behavior of the loss probability in heavy loaded systems, and it is natural
to look for insight into system performance by considering the asymptotic behaviors as the number of servers is allowed to
increase. The most commonly used limit theorem for large-scale queueing systems under heavy traffic is that in Halfin and
Whitt [14], who considered the GI/M/s queue as s → ∞ and ρs → 1 such that

(1 − ρs)
√
s → γ (1)

with −∞ < γ < ∞. For the M/M/s queue with ρs < 1, they showed that the steady-state probability that a customer
must wait in the queue approaches a limit κ with 0 < κ < 1 as s → ∞ if and only if 0 < γ < ∞. For the GI/M/s queue,
they showed that a properly centered and normalized version of the queue length process converges to a one-dimensional
diffusion. Several applications under this heavy-traffic assumption can also be found in [3,15], and reference therein.

Here, we consider a sequence of queueing models indexed by the number of servers, s. Assume that we have the mean
arrival rate λs = sµ−γµ

√
s, where 0 < γ <

√
s, the traffic intensity of the queueing system indexed by s servers is defined

as follows.

Definition 1. The traffic intensity of the system is defined as the fraction of the time in which servers are occupied. Namely,
the traffic intensity of the system is

ρs ,
λs

sµ
= 1 − γ /

√
s, (2)

which is the average occupancy of s servers in the system.

In such a case, there exists an interesting nondegenerate limit in Halfin–Whitt heavy traffic regimes [14,15], namely, ρs → 1
and (1 − ρs)

√
s → γ as s → ∞.

Assumption 1. As the number of servers, s, increases to infinity, we assume that the traffic intensities ρs approach 1 from
below, i.e.,

lim
s→∞

ρs = 1. (3)

Assumption 1 is the so-called heavy traffic condition, which is taken from the Halfin–Whitt heavy traffic regimes [14].
Throughout the paper, wewill determine the loss probability and derive its asymptotic analysis under the stability condition
ρs < 1 but close to 1 when s approaches infinity. Assumption 1 explicitly is applied to the main results, e.g., Proposition 2,
Theorem 4, Proposition 5, and Theorem 5.
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Consider the characteristic equation

z =


∞

0
e−(sµ−sµz)tdA(t), (4)

where the variable z is assumed to be real, and Φs is denoted the least in absolute value root of the characteristic equation
(4). It is well-known that the root Φs belongs to the open interval (0, 1) if the traffic intensity ρs < 1, and it is equal to
1 otherwise [13,16]. Once we obtain the root Φs and its limit (to be discussed later), the loss probability P (ρs, s) can be
estimated immediately for any value of s. An approximation is provided in the following section for the loss probability of
GI/M/s/s queueing systems, where the traffic intensity ρs depends on s.

3. Approximation of the loss probability with heavy-traffic limits

The objective of this section is to estimate the loss probability P (ρs, s) that all s servers are occupied. Let βn(s), n = 0,
1, 2, . . . , be the probability that n customers have completed service when there are s servers in the system. From [16], we
have the following lemma.

Lemma 1. If the c.d.f. of inter-arrival times, A(t), is non-lattice, then the integral

βn(s) =


∞

0
e−sµt (sµt)n

n!
dA(t), (5)

exists for each n = 0, 1, 2, . . . .

Let A∗(z) be the Laplace–Stiltjes’ transform of the c.d.f. A(t). The generating function of βi(s), i = 0, 1, 2, . . . , is given by
∞
n=0

βn(s)zn = A∗(sµ − sµz), |z| ≤ 1. (6)

Next, we consider the characteristic equation

z − A∗(sµ − sµz) = 0, |z| ≤ 1, (7)

which is equivalent to (4).

Lemma 2. If A(t) is non-lattice, then there exists a positive real number 0 < Φs < 1 such that

Φs − A∗(sµ − sµΦs) = 0, (8)

equivalently, which may be written as

Φs −

∞
n=0

βn(s)Φn
s = 0. (9)

Next,we are going to estimate the loss probability by investigating the asymptotic behavior of the stationary probabilities
of s customers in service, as s → ∞. Let P(s)

= (P (s)
0 , . . . , P (s)

s ) be the stationary probability vector of customers in service. It
is easy to see that P (ρs, s) = P (s)

s . Let T(s)
= [Pm,n](s+1)×(s+1) be the one-step transition probability matrix of the embedded

Markov chain. The one-step transition probability matrix T(s) can be represented as follows

P (∞)
0,0 P (∞)

0,1 0 · · · 0
P (∞)
1,0 P (∞)

1,1 0 · · · 0
...

...
. . .

...
...

P (∞)
s−2,0 P (∞)

s−2,1 · · · P (∞)
s−2,s−1 0

P (∞)
s−1,0 P (∞)

s−1,1 · · · P (∞)
s−1,s−1 β0(s − 1)

Ps,0 Ps,1 · · · Ps,s−1 β0(s) + β1(s)


, (10)

where those elements P (∞)
m,n , 0 ≤ m ≤ s − 1, 0 ≤ n ≤ s − 1, and Ps,n, 0 ≤ n ≤ s − 1, can be explicitly determined in terms

of model parameters. It can be found that the stationary probability vector P(s)
= (P (s)

0 , . . . , P (s)
s ) is the unique solution of

P(s)T(s)
= P(s) and

s
n=0 P

(s)
n = 1. By applying the coupling method in [16] on the limiting distribution of P(s) as s → ∞, it

gives the following lemma, which will be borrowed for further development in this paper.

Lemma 3. The stationary distribution of P(s)
= (P (s)

0 , . . . , P (s)
s ) goes weakly to that of the GI/M/∞ queue as s → ∞, i.e.,

lim
s→∞

P (s)
n = P (∞)

n , n = 0, 1, . . . , s. (11)
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Then, similar to the derivation in [1], it gives

P (ρs, s) = P (s)
0

β0(s)s

(1 − β0(s) − β1(s))(1 − β1(s))s−1
. (12)

Proposition 1. If A(t) follows one of the exponential, deterministic, or Erlang-r distributions, then it gives the limit

lim
s→∞

1 − β1(s)
1 − β0(s) − β1(s)

= C1, (13)

where C1 is a constant number.

Proposition 2. If A(t) is non-lattice and (1 − ρs)
√
s → γ as s → ∞, then there exists a positive number ε > 0 such that, for

all 0 < p < ε, we have
β0(s)

1 − β1(s)

s

≈ O(ρp
s ) = C2, (14)

as s ≫ 1, where O(·) is the big O notation used to describe the limiting behavior of a function.

Theorem 4. Consider GI/M/s/s queueing systems with non-lattice c.d.f. of inter-arrival times. Assume that (1 − ρs)
√
s → γ

as s → ∞. Then, as s ≫ 1, we have the approximation of the loss probability

P (ρs, s) ≈ P∞

0 C1C2, (15)

where P∞

0 is the stationary probability that the system is empty in GI/M/∞ queues.

Proof. From (12), it can be derived that

P (ρs, s) = P (s)
0

1 − β1(s)
1 − β0(s) − β1(s)


β0(s)

1 − β1(s)

s

. (16)

First, by Lemma 3, it gives that P s
0 → P∞

0 as s → ∞. Next, by Proposition 1, there exists a constant number C1 such that

1 − β1(s)
1 − β0(s) − β1(s)

→ C1

as s → ∞. In addition, by Proposition 2, we have
β0(s)

1 − β1(s)

s

→ C2

as s ≫ 1. Hence, the approximation for the loss probability can be determined as s ≫ 1. �

In this section, we have introduced an analytic approach for determining the loss probability as the number of servers, s,
is large. An approximation is provided in Theorem 4 for the loss probability P (ρs, s) under the heavy traffic conditions that
(1−ρs)

√
s → γ as s → ∞. By Propositions 1 and 2, the limits C1 and C2 can be computedwith probabilities β0(s) and β1(s).

Then, by Theorem 4, we can estimate the loss probability of the GI/M/s/s queueing system for large s with C1, C2, and the

stationary probability P (∞)
0 . For M/M/∞ queueing systems, it gives P (∞)

0 ≈ e−
λs
µ . For practical purposes, three examples

are given in the following section to demonstrate the derivation of the approximated loss probabilities.

4. Three illustrative examples

In this section, we determine the probability βn(s), limit constants C1 and C2, and the loss probability P (ρs, s) under
three common distributions for inter-arrival times: exponential, deterministic and Erlang-r distributions, respectively.

Example 1 (Exponential Distribution). Suppose that the inter-arrival time is exponentially distributed with parameter λ.
Then

βn(s) =


∞

0
e−sµt (sµt)n

n!
λe−λtdt

=
λ

n!(1 + ρs)n


∞

0
e−λ


1+ 1

ρs


t


λ


1 +

1
ρs


t
n

dt

=
ρs

(1 + ρs)n+1
, (17)
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for n = 0, 1, 2, . . . , where 0(n + 1) = n! is the Gamma function. From (17), we derive that

β0(s) =
ρs

1 + ρs
(18)

and

βn(s) =
1

1 + ρs
βn−1(s) =

ρs

(1 + ρs)n+1
, (19)

for n = 1, 2, . . . .

From (19), the limit of the probability βn(s) can be derived in the following result.

Corollary 1. If A(t) is the c.d.f. of exponential inter-arrival times and ρs < 1 for all s, then the limit of the probability βn(s) exists
as s → ∞, and

lim
s→∞

βn(s) =
1

2n+1
, (20)

for n = 0, 1, 2, . . . .

Example 2 (Deterministic Case). Assume that the inter-arrival time is deterministic with constant 1/λ = d,

a(t) = δ(t − d) =


∞, t = d,
0, t ≠ d.

In this case, the number of served customers during an inter-arrival time d follows a Poisson distribution with mean
1/ρs = sµd. So, the probability βn(s) is determined as the distribution with parameter sµd, i.e.,

βn(s) =
(sµd)ne−sµd

n!
(21)

for n = 0, 1, 2, . . . . From (21), we derive that

β0(s) = e−1/ρs , (22)

and

βn(s) =
1
nρs

βn−1(s) =
e−1/ρs

n!ρn
s

(23)

for n = 1, 2, . . . .

In the following result, we determine the limit of the probability βn(s) from (23).

Corollary 2. If the inter-arrival time is constant and ρs < 1 for all s, then the limit of the probability βn(s) exists as s → ∞, and

lim
s→∞

βn(s) =
e−1

n!
, (24)

for n = 0, 1, 2, . . . .

Example 3 (Erlang-r Distribution). Assume that the inter-arrival time is Erlang-r with mean 1/λ. Then

βn(s) =


∞

0
e−sµt (sµt)n

n!
λr t r−1e−λt

(r − 1)!
dt

=
λn+r

n!(r − 1)!ρn
s


∞

0
e−λ(1+1/ρs)t tn+r−1dt

=
ρr
s

nB(n, r)(1 + ρs)n+r
, (25)

for n = 0, 1, 2, . . . , where B(n, r) = 0(n)0(r)/0(n + r) is the Beta function. From (25), it is derived that

β0(s) =


ρs

1 + ρs

r

(26)
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and

βn(s) =
n + r − 1
n(1 + ρs)

βn−1(s) =
ρr
s

n!(r − 1)!(1 + ρs)n+r
0(n + r), (27)

for n = 1, 2, . . . .

From (27), we have the limit of the probability βn(s) as follows.

Corollary 3. If A(t) is the c.d.f. of Erlang-r inter-arrival times for r < ∞ and ρs < 1 for all s, then the limit of the probability
βn(s) exists as s → ∞, and

lim
s→∞

βn(s) =
0(n + r)

n!(r − 1)!2n+r
, (28)

for n = 0, 1, 2, . . . .

For each non-lattice A(t) and fixed positive integer s, there exists a sufficiently large integer Ns such that βn(s) is non-
increasing for all n ≥ Ns.

Proposition 3. Under the condition that the c.d.f. of inter-arrival times, A(t), is non-lattice, we find that (i) if A(t) is the c.d.f.
of exponential inter-arrival times, the probability βn(s) is non-increasing for all n ≥ 0; (ii) if the inter-arrival time is constant,
there exists an integer Nd = ⌈1/ρs⌉ such that the probability βn(s) is non-increasing for all n ≥ Nd, where the ceiling function
⌈x⌉ outputs the smallest integer greater than or equal to x; (iii) if A(t) is the c.d.f. of Erlang-r inter-arrival times, there exists an
integer

Nr =


r − 1
ρs


such that the probability βn(s) is non-increasing for all n ≥ Nr .

Proof. (i) Because ρs > 0 for each positive integer s, it is clear that

βn(s) =
ρs

(1 + ρs)n+1
≥

ρs

(1 + ρs)n+2
= βn+1(s)

for all n = 0, 1, 2, . . . . So, βn(s) is non-increasing for all n ≥ 0.
(ii) If n ≥ Nd = ⌈1/ρs⌉, it implies nρs ≥ 1 and it can be derived that

βn−1(s) =
e−1/ρs

(n − 1)!ρn−1
s

≥
e−1/ρs

n!ρn
s

= βn(s).

Hence, βn(s) is non-increasing for all n ≥ Nd = ⌈1/ρs⌉.
(iii) It can be derived that

βn(s) =
n + r − 1
n(1 + ρs)

βn−1(s)

for n = 1, 2, . . . . If n ≥ Nr = ⌈
r−1
ρs

⌉, it implies βn(s) ≤ βn−1(s). Therefore, βn(s) is non-increasing for all n ≥ Nr =

⌈
r−1
ρs

⌉. �

Proposition 4. If A(t) follows one of the exponential, deterministic, or Erlang-r distributions, we have the limit in (13) as
follows. (i) If A(t) is the c.d.f. of exponential inter-arrival times, it gives the limit

CExp
1 = 3. (29)

(ii) If the inter-arrival time is constant, it gives the limit

CDet
1 =

e − 1
e − 2

, (30)

where the number e is the base of the natural logarithms. (iii) If A(t) is the c.d.f. of Erlang-r inter-arrival times, it gives the limit

CEr
1 =

2r+1
− r

2r+1 − 2 − r
, (31)

for positive integer r ≥ 2.
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Proof. (i) Because ρs → 1 as s → ∞, it gives the following limit

CExp
1 = lim

s→∞

1 − β1(s)
1 − β0(s) − β1(s)

= lim
s→∞

(ρ2
s + ρs + 1) = 3.

(ii) As s → ∞, it gives the following limit

CDet
1 = lim

s→∞

1 − β1(s)
1 − β0(s) − β1(s)

= lim
s→∞

ρse1/ρs − 1
ρse1/ρs − ρs − 1

=
e − 1
e − 2

.

(iii) For positive integer r ≥ 2, it gives the following limit

CEr
1 = lim

s→∞

1 − β1(s)
1 − β0(s) − β1(s)

=
(1 + ρs)

r+1
− rρr

s

(1 + ρs)r+1 − ρr
s (1 + ρs) − rρr

s

=
2r+1

− r
2r+1 − 2 − r

. �

Proposition 5. If A(t) is non-lattice and (1 − ρs)
√
s → γ as s → ∞, we have the constant number in (14) as follows. (i) If

A(t) is the c.d.f. of exponential inter-arrival times, it gives

CExp
2 ≈


ρs + ρ2

s

1 + ρs + ρ2
s

s

, s ≫ 1. (32)

(ii) If the inter-arrival time is constant, it gives

CDet
2 ≈


ρs

ρse1/ρs − 1

s

, s ≫ 1. (33)

(iii) If A(t) is the c.d.f. of Erlang-r inter-arrival times, it gives

CEr
2 ≈


ρr
s (1 + ρs)

(1 + ρs)r+1 − rρr
s

s

, s ≫ 1. (34)

Proof. (i) Because ρs → 1 as s ≫ 1, it gives the following limit

CExp
2 ≈


β0(s)

1 − β1(s)

s

=


ρs + ρ2

s

1 + ρs + ρ2
s

s

.

(ii) If the inter-arrival time is constant, it gives the limit

CDet
2 ≈


β0(s)

1 − β1(s)

s

=


ρs

ρse1/ρs − 1

s

as s ≫ 1.
(iii) For positive integer r > 1, it gives the following limit

CEr
2 ≈


β0(s)

1 − β1(s)

s

=


ρr
s (1 + ρs)

(1 + ρs)r+1 − rρr
s

s

,

as s ≫ 1. �

Theorem 5. Consider three queueing systems with inter-arrival times of exponential, deterministic and Erlang-r, r ≥ 2, distri-
butions respectively. Given the traffic intensity ρs = 1 −

γ
√
s → 1 from below, for 0 < γ <

√
s, as the number of servers s ≫ 1,

we have

P Exp(ρs, s) ≥ P Det(ρs, s) ≥ P Erlang(ρs, s). (35)

Proof. By Theorem 4, the loss probability can be determined as P (ρs, s) ≈ P∞

0 C1C2, where the probability P∞

0 is constant
for given fixed s and ρs in GI/M/∞ queues. From Proposition 4, we have shown that the sequence of

1 − β1(s)
1 − β0(s) − β1(s)

converges to CExp
1 = 3 as s ≫ 1 for the exponential inter-arrival times. In addition, as s ≫ 1, the sequence converges to

CDet
1 = (e− 1)/(e− 2) for the deterministic inter-arrival times, and it converges to CEr

1 = (2r+1
− r)/(2r+1

− 2− r) for the
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Fig. 1. Probability β0(s) versus a number of servers s.

 

 

 

Fig. 2. Probability β1(s) versus a number of servers s.

Erlang-r inter-arrival times. It can be easily checked that

3 ≥
e − 1
e − 2

≥
2r+1

− r
2r+1 − 2 − r

≥
2r+2

− (r + 1)
2r+2 − 2 − (r + 1)

(36)

for all positive integers r ≥ 2. Hence, we have the inequality CExp
1 ≥ CDet

1 ≥ CEr
1 . Next, for comparison of limit CExp

2 , CDet
2 and

CEr
2 , we consider the term

β0(s)
1 − β1(s)

in (14) for exponential, deterministic and Erlang-r , inter-arrival times, respectively. It can be derived that the term
β0(s)/(1 − β1(s)) for exponential distributions is the largest, and that is the least for Erlang-r distributions. Then, we have
CExp
2 ≥ CDet

2 ≥ CEr
2 . Therefore, inequality (35) holds by applying approximation (15) in Theorem 4. �

5. Numerical illustrations of heavy-traffic limits

We compare the numerical results of the probability βn(s) and loss probability P (ρs, s) in cases of Exponential,
Deterministic, Erlang-2 and Erlang-3 inter-arrival times. Here, the traffic intensity ρs = 1 −

γ
√
s is applied from (1), where

γ = 0.35 is given. The number of servers, s, varies from 50 to 1500.
In Fig. 1, it can be observed that the probability β0(s) of Exponential inter-arrival times is always the largest among four

examples, and β0(s) of Erlang-3 inter-arrival times is the least. Moreover, the probability β0(s) is increasing as the number
of servers s increases. Regarding the probability β1(s), we find that in the Deterministic case it is the largest and it is the
least in the Erlang-3 case, which is shown in Fig. 2. It is also observed that the probability β1(s) is increasing as the number
of servers s increases.
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Fig. 3. Limit C1 versus a number of servers s.

 

 

 
 

Fig. 4. The logarithm of C2 versus a number of servers s.

 

 

Fig. 5. The logarithm of loss probability log(P (ρs, s)) versus a number of servers s.

FromFig. 3, it can be seen that the limit C1 is increasing as the number of servers s becomes larger.We find that the limit C1
determined from Exponential inter-arrival times is always larger than that of Deterministic case, and the limit C1 of Erlang-3
case is the least. It can be seen in Fig. 4 that the number C2 is very small for all four examples. Numerical results are observed
with the logarithm of C2, i.e., log(C2). It implies that the loss probability becomes very small, which is shown in Fig. 5. Hence,
the loss probability is also depicted with the logarithm log(P (ρs, s)). We find that C2 determined from Exponential inter-
arrival times is always larger than others, and C2 of Erlang-3 case is the least. Similarly, the loss probability under Exponential
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inter-arrival time distribution is the largest, and the loss probability determined fromErlang-3 inter-arrival times is the least.
The order of those loss probabilities has been shown theoretically in Theorem 5.

6. Conclusion

In this paper, we introduce a heavy-traffic queueing model as the number of servers is huge. An approximation and its
asymptotic analysis are derived for the loss probability of the queueing system, where the traffic intensity increases to one
from below. In illustrative examples, the loss probabilities are estimated numerically under the assumptions of exponential,
deterministic and Erlang-r distributions for the inter-arrival times, respectively. For the class of problems studied with
different parameters, it is concluded that the approximation is adequate for practical purposes. The asymptotic analysis of
the loss probability could be applied to investigate the optimal buffer size in capacitated communication systems so that
the loss probability is kept below a specific threshold. Future works would be conducted in the direction of the design of
reservation protocols, scheduling policies, or feedback algorithms to guarantee the convergence of approximated solutions.
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Appendix. Proofs of propositions

Proof of Lemma 2. Let Y (z) = A∗(sµ − sµz). Since Y (0) = β0 > 0, Y (1) = 1, and Y ′(1) = 1/ρs > 1, there exists at
least one real root between 0 and 1 for the characteristic equation (7). For real z, 0 < z ≤ 1, by changing variables via
z = es, −∞ < s ≤ 0, (7) becomes

es = Y (es), −∞ < s ≤ 0, (37)

and so

s = ln Y (es), −∞ < s ≤ 0. (38)

Note that, Hölder’s inequality gives

Y (e(ps1+(1−p)s2)) ≤

Y (es1)

p 
Y (es2)

1−p (39)

for all s1, s2 ≤ 0 and 0 ≤ p ≤ 1. Thus

ln Y (eps1+(1−p)s2) ≤ p ln Y (es1) + (1 − p) ln Y (es2) (40)

for all s1, s2 ≤ 0 and 0 ≤ p ≤ 1. Therefore, the right hand side of (38) is convex. Then (38) has exactly one negative root
and the root is simple. Thus, (7) has exactly one real root between 0 and 1, and the root is also simple. Denote by Φs the real
root of (7) between 0 and 1. By Rouché’s theorem, the number of zeros of z − A∗(sµ− sµz) and z, counted by multiplicities,
on {z ∈ C : |z| < η} are the same for any η, Φs < η < 1. It is easy to see that z − A∗(sµ − sµz) has no other zeros on
{z ∈ C : |z| = Φs} except the simple zero Φs. Thus, we conclude that the characteristic equation (7) has exactly one root Φs
on {z ∈ C : |z| < 1}. �

Proof of Proposition 1. From (5), we can determine β0(s) and β1(s) for different examples of inter-arrival time
distributions. By Corollaries 1–3, there exist those limit lims→∞ βn(s) for n = 0, 1. Because the limits of β0(s) and β1(s)
exist as s → ∞, and 1 − β0(s) − β1(s) > 0 for all s, the limit of

1 − β1(s)
1 − β0(s) − β1(s)

exists as s → ∞ and equals to a constant number. �

Proof of Proposition 2. It is obvious that the following inequalities hold

0 ≤
β0(s)

1 − β1(s)
=

β0(s)

β0(s) +

∞
n=2

βn(s)
≤ 1.

Then, we have

0 ≤


β0(s)

1 − β1(s)

s

< 1.
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Hence, the sequence
β0(s)

1 − β1(s)

s

is bounded. Moreover, it can be derived that

1 ≥


β0(2)

1 − β1(2)

1

≥


β0(s)

1 − β1(s)

s

for all s ≫ 1, and we have
β0(s)

1 − β1(s)

s

decreases when increasing s ≫ 1. Therefore, it have been shown that [β0(s)/(1 − β1(s))]s is bounded and monotone as
s ≫ 1. So, the limit of

β0(s)
1 − β1(s)

s

exists as s ≫ 1 and equals to a constant number. �

Proof of Corollary 1. From (19), we derive

lim
s→∞

βn(s) = lim
s→∞

ρs

(1 + ρs)n+1
=

1
2n+1

with the help of assumption that traffic intensities ρs approach 1 from below as s → ∞. �

Proof of Corollary 2. From (23), we derive

lim
s→∞

βn(s) = lim
s→∞

e−1/ρs

n!ρn(s)
=

e−1

n!

with the help of assumption that traffic intensities ρs approach 1 from below as s → ∞. �

Proof of Corollary 3. From (27), we have

lim
s→∞

βn(s) = lim
s→∞

ρr
s

n!(r − 1)!(1 + ρs)n+r
0(n + r)

=
0(n + r)

n!(r − 1)!2n+r

with the help of assumption that traffic intensities ρs approach 1 from below as s → ∞. �
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