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Abstract-- In this article, the authors expand on some of their previous work on correspondence and propose 
a system that can correspond in the presence of both point and line tokens, or a mix of them. It can also work 
if some tokens present in one frame are not present in the other. The proposed algorithm is an amalgamation 
of reductionist and holist paradigms. We establish that properties which remain invariant for whole image 
sequences and sequences consisting of corresponding parts from each image frame can be used to establish 
correspondence. Extensive computer simulation results on synthesised data as well as real image sequences 
are presented to validate our claims. 
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I. INTRODUCTION 

It can be said with some confidence that the "motion 
problem", in all its various aspects, is one of the most 
important components of vision. There is literature-a- 
plenty which deals with it. The various approaches to 
measurement of visual motion can be broadly 
categorized as either relying on optical flow techniques 
or on feature based techniques. It is with the latter that 
we concern ourselves in this work. 

Feature based schemes operate by first extracting 
features, or tokens, from the raw images. They then 
establish correspondence between these features 
across different frames, and using these corresponden- 
ces obtain not only the parameters that describe the 
motion in the image sequence, but also, the three 
dimensional (3D) structure of the objects(s) in the 
image. Establishing the correspondence is clearly 
a prerequisite to further processing in feature based 
schemes. Many efforts in the area of dynamic image 
analysis, however, assume that this underlying prob- 
lem of correspondence has been resolved/1-t2j There 
even have been efforts to do image analysis without 
explicitly using point to point correspondence, tl 3-15) 
This, of course, is not to suggest that work has not been 
done on the issue. There is much literature devoted to 
the study of the correspondence problem. Salari and 
Sethi ~6) and Jain and Sethi {~v~ for instance, use conti- 
nuity of motion across several frames to track feature 
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points. Other researchers have suggested keeping 
track of feature points I~s't 9) across incremental move- 
ments. Photometric attributes of an area I2°j and local 
structure ~2 ~1 have also been used as attributes to estab- 
lish correspondence. In reference (22) the authors try to 
obtain motion parameters without using correspon- 
dence, and use that to obtain correspondence between 
3D point sets. Another technique dealing with 3D 
points, which assumes the existence of three known 
matches, is proposed in reference (23). Perspective 
invariant descriptions of planar point sets are used for 
correspondence. 124t Grimson and Lozano-Perez ~2~ 
propose a tree pruning algorithm which needs exhaus- 
tive examination of various mutual relationships be- 
tween the parameters they define for all token pairs. 
Rangarajan and Shah ~z6~ have tried to use a proximal 
uniformity constrain to obtain correspondence. In 
reference (27) the authors use multiple attributes 
(like edgeness, intensity, cornerness) and multiple con- 
straints (like intra-region smoothing, occlusion). Their 
method combines feature based and optical flow based 
schemes. Liu and Huang ~zSI propose a scheme for 
correspondence when the motion involved approxi- 
mates that of a vehicle. They assume multiple frames of 
motion being available. Moreover, since they compute 
the centroid of the feature points in every frame, they 
assume that the same feature points are available in all 
frames. Three frames with lines as features are used in 
the algorithm proposed in reference (29) to establish 
correspondence. In that work, the authors comment 
upon the uniqueness of the closed form solution ob- 
tained, and also show how optimization techniques 
can be used to improve the solution in presence of 
noise. Weng ~3°~ introduces Windowed Fourier Phase 
as a matching primitive for stereo and motion corre- 
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spondence. Assuming that the data available is 3D, we 
have also proposed a correspondence algorithm using 
neural networks, c3 ~'32) 

However, most of the earlier works operate under 
some kinds of assumptions. Some assume availability 
of 3D data, some assume that there are no missing 
tokens in successive frames, others that the motion 
between frames is smooth and continuous. Most also 
deal only with point tokens and many need multiple 
frames. Still others use multiple attributes for each 
token, or assume orthographic projections. The search 
is still on, in other words, for a robust algorithm to 
do correspondence in presence of different kinds of 
tokens, especially when not all tokens present in one 
frame are necessarily present in the other. 

In the following sections we will describe a robust 
algorithm for correspondence that we have proposed, 
which works for both point and line tokens, as also 
when there are missing tokens between frames. It 
extends an algorithm that we had proposed earlier, °3) 
which worked when the input had point tokens and 
assumed that all tokens would be present in the two 
frames. We will begin by briefly describing the philos- 
ophy behind the algorithm, and recapitulating its 
mathematical details in terms of point tokens. We will 
then present techniques for the algorithm to work for 
line tokens, as well as in the presence of missing tokens. 
Results of applying the algorithm to synthesised as 
well as real data will also be presented. 

2. BASICS O F  THE A L G O R I T H M  

2.1. Philosophical and logical basis 

Our approach to the correspondence problem is 
geometric and, in a sense reductionist. What we mean 
by reductionist in this context is that we solve the 
problem by using the results of computations on many 
subsets of the original problem. More formally, let 
6~ be the set of tokens obtained from two frames. 
Further, let 6~ be a subset of 5 e that satisfies the 
following property: if b ~ contains a tokens from one of 
the frames, then it also contains its corresponding 
token from the other frame. We seek a property, say X, 
such that i fX is true of:T, then it is necessarily true for 
all 5 ~, and necessarily false for any other subset. In 
essence, if something is true for the whole, then it must be 
true for the corresponding parts. Our approach is geo- 
metric, or rather motion based, in as much as we look 
for this X in the geometrical descriptors associated 
with the image sequence. There is psychological evi- 
dence to suggest that motion cues help in establishing 
correspondence. 13.) 

Given such a property, one could test if an arbitrary 
subset of tokens was of the type ~ by testing the truth 
of this property. One could also use it to establish 
correspondence. 

Claim 1. l f  a property of  type X exists for the token set, 
then it provides a necessary and sufficient condition to 
establish correspondence. 

Proof. Suppose we wish to determine the correspond- 
ing token in the second frame for the ith token in the 
first frame. If n be the number of tokens in the second 
frame, we could do this by forming n subsets of tokens. 
Each subset would consist of all the tokens except 
the ith token from the first frame and the jth, 
( j  = 1 . . . . .  n) token from the second frame. Assuming 
uniqueness of correspondence, only one of these sub- 
sets would satisfy property X, and this would be 
a necessary and sufficient condition to conclude that 
the token k dropped from the second set to obtain this 
subset is the one that corresponds to the ith token of 
the first frame. [] 

Properties like X constitute what we will call 
'strong" properties. We now introduce a weaker ver- 
sion of this property. We demand here only that if 
property wX is true of S~, then it be necessarily true for 
all ~ We make no comment about the truth or other- 
wise of the property for other subsets of 6 e. Such pro- 
perties too are useful in establishing correspondence. 

Claim 2. I f  a property of  type wX exists, then it pro- 
vides a necessary condition to establish correspondence. 

Proof. Analogous to theproofofclaim 1, we construct 
the n subsets. It then follows that only the subsets 
where wX holds can be considered as candidates for 
establishing correspondence. Note that wX being true 
for a set does not guarantee that the tokens dropped to 
obtain it were the corresponding ones. This provides 
the conceptual framework for our method. [] 

Before moving on to the mathematical description 
of the problem, allow us to say that our object in this 
work is to establish correspondence. While we use 
motion parameter in order to do that, our object is not 
to accurately compute them. Moreover, we feel that 
just as in natural vision systems, the problem of corre- 
spondence can be completely solved only by combin- 
ing a variety of visual cues. We only claim to provide 
one of the cues, albeit a cue that seems to be able to 
establish correspondence in most cases. We also limit 
ourselves in this work to establishing correspondences 
given that tokens have already been extracted. Conse- 
quently, we eschew any discussion of low level image 
processing. 

2.2. Mathematical basics 

In a previous publication, 133~ the authors have de- 
scribed a method to obtain point correspondences 
between two frames assuming that no tokens are miss- 
ing. For  completeness, we summarise the mathemat- 
ical aspects of that method here. 

The problem of correspondence can be stated as 
follows. Given A, a set of tokens from the first frame 
and B, a set of tokens from the second frame, find 
a permutation a such that the token Ai has the token 
B,~i) as its corresponding element. In the following 
description, assume that the tokens are points and that 
from the first frame to the second, each point has 
undergone a rotation of R and a translation of T. 
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Consider 

ziA i = Position vector of the ith point in the 
first frame 

z'~i)B,,~ = Position vector of the ith point in 
the second frame 

Ai = (xi, Yi, 1)' 
B,~i) = (x'~til, Y'ati), 1)t 

where (xi, Yi) and (x~,¢i), y'~,)) are, respectively, the image 
coordinates of the ith point in the first and second 
frames and z i and z~ are their depths 

Then 

z ' # t i )B~ i )=Rz iA i+T  i =  1 . . . . .  N (1) 

If we assume that the translation vector is small 
compared to the distance of the object and can be 
neglected, we can approximate equation (1) above by 

z~(1)Ba(i)  = RzIA i i = 1 . . . . .  N (2) 

Using A~'s and /~i's, the unit vectors of A i and B~, 
respectively, and multiplying each side by its trans- 
pose, the above can then be rewritten as 

" ^' = R . 4 i . 4 [ R '  i = l  . . . . .  N B. , )B~,)  (3) 

Let us sum the above equation over i. Since the 
summation is over all points, the order in which they 
appear makes no difference. The permutation a is 
thus irrelevant and can be dropped in the following 
formula. 

N N 

B,~ilB~ti ) ~ aAi,4~a' (4) 
i = 1  i = 1  

Consequently, 

RQ1R' = Q2 (5) 

N ^ ~ t  _ ~ N  /~/~t and Q1 =Y~i=lAi  Ai" This for- where Q2 - z.,i= ~ i ~, 
mula implies that Qx and Q2 should have the same 
eigenvalues. We now do a SVD. 

Let Q~ = V D V  ~ and Q2 = UDUt. It follows then that 
R = U V ' .  

The technique used to compute R here is similar to 
the one proposed by Huang et al. ~22"35~ for the case of 
range data. There, they use centroids of the two range 
data frames to factor out the translation, and then 
compute R. Using the technique outlined above, we 
can compute (an approximation to) the rotation be- 
tween the two frames without a priori knowing the 
correspondences between them. Note that this results 
in four possible candidates for the rotation matrix. The 
reasons for this are detailed in reference (35). Although 
the results are better if the correct matrix can be chosen, 
correspondence can be established without selecting 
one of these, as our results indicate. ~33) In this work, we 
assume that the ground truth rotation will be less than 
90 ° . If this be the case, then in general only one of the 
rotation matrices will yield an angle of within 100 °, and 
this can be selected as R. 

However, such as an assumption is somewhat re- 
stricting, and the authors are currently working on 

schemes to be able to remove this assertion. Consider, 
for instance, the following. We know from our earlier 
discussion that 

/3~i~ = R-41 i = 1 . . . . .  N (6) 

Summing over i and dividing by N, the number of 
points will give us 

1 N 1 N 
E__I/~"t'' = ~ ~' R'~i i = 1 . . . . .  N (7) 
"=  i = l  

If we let b and a be the averages of/~i and ,41 
respectively, then we get from the above that 

b = Ra. (8) 

R thus is a function mapping a to b. R should also map 
the eigenvectors, vi of V to the eigenvectors u i of U. The 
reason we get four candidates for the rotation matrix is 
that the sign and orientation of the eigenvectors are 
not known a priori. The rotation matrix could map vi 
to u~ or -u~. However, equation (8) provides us a way 
to disambiguate. Suppose R maps v~ to u~. Then the 
angle between a and v~ should be roughly the same as 
the angle between b and u i. A similar argument holds 
with the angle between b and -u~ if v~ is mapped to 
-u~.  Since we can determine the sign and orientation 
of the eigenvectors, we can chose the exact R. In 
practice, doing this for two eigenvectors suffices, since 
the third is their cross product. 

We have implemented this scheme and carried out 
many simulations. While the scheme seems to work for 
most values of tilt, slant and rotation, it does occa- 
sionally fail to chose the correct R, especially as the 
angle of rotation is increased. It has also been observed 
that the higher the values of the tilt and slant angles, 
the better the scheme tends to perform. We are current- 
ly engaged in modifying this scheme so that it may 
work for all possible values of the R matrix. 

Let us now establish that this R can also serve as the 
"property wX" that we have talked about earlier. 
Consider first an analogy with human vision. Suppose 
that we see two frames of some object, and form some 
intuitive idea of the amount of rotation required. If we 
see the same frames with the corresponding parts 
covered, we are likely to still form the same opinion 
about the amount of rotation involved. However, if we 
see the frames with non corresponding parts covered, 
then our estimate of rotation will be different. 

Claim 3. R, the estimate to the rotation, is a property o f  
type w X  

Proof. We note that if in equation (4), the same point is 
dropped from both LHS and RHS, then the computed 
R' would be very close to R. This will not in general 
happen, however, if non-corresponding points are 
dropped from LHS and RHS. The truth of w X  corre- 
sponds in this situation to R' approximating R. 

Rather than use some matrix norm to measure how 
closely a given R' approximates R, we instead compare 
the angles of rotation that these matrices represent. 
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The angle of rotation 0 is obtained from R as 

180 
0 = - -  x cos-1(0.5 x ( t r a c e r  - 1)). 

7~ 

We can define the error in matching point i and j, eii 
to be the difference in the computed angles of rotation 
obtained when all points are used and when the subset 
obtained by dropping the those two points is used. 
Thus, we could obtain the optimal match as one which 
minimized the sum of all individual point match errors. 
This is the classic matching problem, known to be 
NP Complete. We use the following greedy heuristic 
for matching. For  each point k in the frame, we chose 
as its match the point l in the second frame such 
that 

I~kl = minjekj ,  j = (1..-n). 

In other words, we convert R from a property of type 
wX to a property of type X by asserting that it is true 
for the subset which leads to the smallest difference e in 
angles. 

So given any subset of the set of tokens from the two 
frames, computing R can decide if it contains only 
corresponding tokens. It follows from claim 1 that 
R can also establish correspondence between the 
tokens. 

In presenting the mathematics above, the following 
has been assumed: 

(1) The translational component of the motion can 
be neglected when computing R. 

(2) The object(s) in question are rigid. 
(3) The actions of the imaging device can be 

modelled by perspective projection, and its focal 
length is unity. 

The first assumption is best satisfied if the object 
were some distance away from the imaging device and 
did not have a very large translational velocity. We 
emphasise once again that the object here is not to 
accurately compute the motion parameters, but mere- 
ly use R as a means to establish correspondence. Thus 
a rough estimate to R suffices. Given correspondence, 
there is much literature on how to accurately compute 
motion. Moreover, we present simulation results that 
indicate that this assumption holds fairly well, even in 
the presence of non-negligible translation, ta3~ 

Note that in the above discussion, we have assumed 
that there is a unique R which describe the motion. If 
the object is symmetric, then the feature points ob- 
tained from it are likely to be symmetric as well. In 
such cases, there may be more than one rotation that 
explains the point positions in the two frames. In such 
scenarios, the algorithm can make errors, especially 
when the points dropped from the two frames are non 
corresponding, but symmetrically placed. However, 
the extension to this basic algorithm that we describe 
in Section 4.1 to handle missing points does not suffer 
from this problem, as long as there are some (three or 
more) non symmetric points. Of course, were all the 

points to be symmetric (say a cube), the algorithm 
would get confused. 

3. LINE TOKENS 

While expounding the mathematical basis of the 
algorithm in the previous chapter, we assumed that the 
tokens were points. Very often however, the tokens 
that are extracted from image frames are the edges of 
the objects and as such are lines. As Aggarwal and 
Wang point out, ~36~ there seems no compelling reason 
to use only point tokens as opposed to line or plane 
tokens. They propose an algorithm which uses both 
line and point correspondences to establish motion 
and structure. Huang and Liu t3v~ also propose 
a motion estimation algorithm which uses correspon- 
dences between lines. However, attempts to establish 
correspondences between line tokens have been rela- 
tively few. In reference (38) the authors use parameters 
like distance from camera and relative movement to do 
line correspondences. Faugeras et  al. ~39) use an ap- 
proach which involves prediction of line parameters in 
the next frame using Kalman filtering and then trying 
to match using some normalized distance measure. 
They represent lines with a 4D feature vector. More 
recently, Goldgof et al. ~4°~ have proposed an algorithm 
that uses 3D data to obtain correspondence for lines. 
This is done by identifying two coordinate directions 
based on line positions in the two frames. The relation- 
ship between these coordinate directions is used to 
obtain the motion parameters, from which the corre- 
spondence is recovered. The recovery process is similar 
to the one described in reference (35) and hence subject 
to a similar sensitivity to noise. An extension of this 
work, which uses scaled orthographic projections of 
the 3D points or lines, is presented in reference (41). In 
contrast, our approach uses 2D data, and uses a strat- 
egy to represent lines such that our basic point corre- 
spondence algorithm can be applied. We present this 
approach next. 

Consider any two points a and b on the lines, and the 
origin, o. Together, these uniquely identify a plane 
containing the line and passing through the origin. 
Taking the cross product of o~" and ob will generate 
a vector o~" which is the normal to this plane. Point 
c can serve as a representation of the line in question. 
We point out here that all lines in space that project to 
the given line token in the image will have c as a repre- 
sentation. Note that the choice of the two points is 
arbitrary, any two points on the line would do. This is 
because in our algorithm, we convert all inputs to unit 
vectors, as is evidenced from equation (3). Consequent- 
ly, what matters is the direction of the position vector 
of the input point. Since this direction is the normal to 
the plane, it does not matter if we chose the same points 
in the two frames or different, as long as they lie on the 
line. By the same token, this method will not be able to 
disambiguate multiple line segments which are col- 
linear. We now establish the following claim: 



On correspondence, line tokens and missing tokens 1755 

Claim 4. I f  the line is rotated by R, then the correspond- 
ing point c rotates by the same amount. 

Proof. Without  loss of generality, assume that the 
same two points are chosen on the line in the two 
frames. So, the position vectors in the first frame are o~" 
and ob'. Since the rotation is described by R, the 
position vectors in the second frame shall be Ro~" and 
Rob. If c' be the position of the cross product in the 
second frame, then 

o~" = Ro~" × Rob = R(o~" x oh) = Ro~'. []  

It follows from the above that point c is a valid 
representation of the line. This transformation is 
depicted in Figs• 1 and 2. In Fig. 1, we see the lines in the 
two frames• The motion between the first and second 
frames involves a rotation of 20 ° and a translation by 
40 units along the three axes. In Fig. 2, the transformed 
points are shown for the lines in Fig. 1. In Table 1, we 
present the results of running this algorithm on syn- 
thesised data. For  the ideal case of no translation, the 
algorithm matched all correct tokens• Even with trans- 
lation between the frames, the algori thm correctly 
matched a large majority of the points. The results 
clearly demonstrate  that transformation technique we 
suggest works. In Fig. 3 we see a real image sequence. 

The ground truth data  here is that the camera moves 
a few inches leftwards and downwards, and a few feet 
towards the building• No  rotation is involved. We were 
able to correctly match five out  of the six line tokens 
used. We may point out  here that the coordinates of 
the lines were picked out using a mouse pointer, and as 
such are prone to errors• However,  as we showed in 
reference (33) the method is not  significantly affected 
by small noises in the data values. Interestingly, since 
we have converted line tokens into point tokens, the 
input to our algorithm can in fact be a mix of point 
tokens as well as the point representation of line 
tokens. This is significant because it means that we can 
use both edges and corners, which are typically se- 
lected by feature detectors, as input to our algorithm. 
Apart  from the obvious benefit of being able to use 
a larger number of features, there is also some evi- 
dencd .2~ to indicate that the presence of both edges 
and corners helps in the correspondence process. For  
the image sequence shown in Fig. 4, a combinat ion of 
point and line tokens were used as input to the algo- 
rithm. These images were taken by a camera mounted 
on a P U M A  robotic arm. The ground truth here is not  
available, but it is believed that the camera is moving 
right, down and towards the scene, and is making an 
angle of about  52 ° to the horizontal axis. Once again, 
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Table 1. Line tokens: the entries represent the number of 
tokens correctly matched out of seven 

Angle in degrees 

Translation 10 20 30 50 75 90 
0 0 0  7 7 7 7 7 7 
20 20 20 6 7 6 5 6 6 
40 40 40 5 6 5 6 6 6 

little or no rotation seems to be involved. In this case, 
we were able to match correctly eight out of the nine 
tokens. 

4. MISSING TOKENS 

In our work with the basic algorithm dealing with 
point tokens, as well as the extension dealing with line 
tokens, we have made the assumption that no tokens 
are missilag between frames, i.e. give a token from the 
first frame, its corresponding token exists in the second 
frame. This assumption seems implicit in much of the 
work dealing with correspondence. In the "real world" 
however, this assumption rarely holds. The process of 

feature extraction may fail to extract the same set of 
features in the two frames, or the data may be very 
noisy for a certain token, or the feature corresponding 
to a token may be occluded or out of the camera's view 
area in the other frame. So instead of being some kind 
of rarity, missing tokens are in fact very likely to arise 
when dealing with real images. This changes the nature 
of the problem somewhat by creating a condition 
where a given token may not have a corresponding 
counterpart in the second frame. Our algorithm, as 
outlined in Section 2.2 will fail in this case. This is 
because we can no longer make the order of point 
appearances immaterial when making the transition 
from equation (3) to equation (4). Very little work has 
been done to address this problem. Huang e t  al. ~23~ 

address this problem, but they assume availability of 
3D data for points. Rangarajan and Shah 1261 use their 
proximal uniformity constraint to predict the position 
of missing points. However, their method requires that 
all points be available in the first two frames. Salari 
et  al. ~43~ also use the continuity of motion in a similar 
fashion to handle missing points. 

We now propose a novel and simple technique 
which enables our basic algorithm to handle missing 
tokens. 
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Figure 3a 

Figure 3b 

Fig. 3. Two frames of an outdoor sequence. 
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Figure 4a 

Figure 4b 

Fig. 4. Images obtained from a camera mounted on a robotic arm. 
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4.1. Basic idea 

To simplify the exposition of the idea, let us assume 
that there are an unequal number of tokens in the two 
frames, say n in the first and m in the second. Without 
loss of generality, assume that n > m. Note that while 
an unequal number of tokens in the two frames 
guarantees that there are missing tokens, an absence of 
such inequality does not imply that all corresponding 
tokens are present. Assuming that too many tokens are 
missing and one could estimate where the missing 
tokens should have been, one could once again use the 
computation of R to determine correspondence. We 
submit that such an estimate does not have to be very 
accurate. This is because we merely wish to correspond 
those points for which the corresponding tokens exist. 
Our aim is not to predict the position of the missing 
token with any accuracy. 

Since we do not have any a priori knowledge of the 
object or its motion, we need to come up with some 
sort of a statistical scheme. We observe first that most 
feature detectors do pick up feature points from the 
object boundary. Thus it should be safe to assume that 
the tokens we have contains some form the boundaries 
of the object. Beyond this, of course, we have no 
knowledge about the method of feature extraction, so 
we assume that the feature detection mechanism is 
equally likely to pick up any point from the object. In 
other words, we argue that the points that are used as 
tokens can be regarded as having been randomly 
sampled from the object, and that they follow a uni- 
form distribution. This enables us to devise a simple 
scheme to "generate" points in the second frame. 
We find out the maximum and minimum amongst 
the. x and y coordinates of the m points. We then 
generate in the second frame, n - m  points. Each of 
these "generated points" has a x coordinate that is 
a random number chosen between the maximum and 
minimum x of the m original points. It's y coordinate is 
chosen similarly. We now show, that this process is the 
maximum likelihood estimation of the x and y coordi- 
nates of the points. We present first, a standard result 
about uniform distribution. ~44) 

Lemma 1. Let xl  ... x . be random variables from a uni- 
form distribution U (ct, fl). Then U (xl, x,) is the M L E  to 
this distribution. 

Proof. The likelihood function in this instance is 

1 
L(Olxl . . . . .  x.) (fl - or)" lt~'~)(Xl)l~- ~'tq(x") 

which is clearly maximised when f l -  ~ is minimum. 
Note that ~ and fl are subject to the conditions ~ _< xi 
and fl > x.. Hence the maxima occurs when ~ = xl and 
f l ~ -  X n 

Claim 5. Our method for 9eneratin9 points is a M L E  

Proof. Follows trivially from lemma 1. Our method 
simply uses the MLE distribution for the X and 
Y coordinates. 

Note that if n was the same as m, then we would not 
have generated any tokens. 

Given the new augmented set of tokens, we once 
again run our correspondence algorithm on it. How- 
ever, we now know that some tokens may not have 
their corresponding tokens present. We handle this 
condition as follows. Suppose that for the ith token, we 
compute the new rotation angle from R' by successive- 
ly dropping points from the second frame. If we find 
that for no k(k = 1...n) does R' come within some 
predetermined threshold of R, then we declare that 
i has no match in the second frame. We empirically 
chose this threshold to be 10 ° in our case. Of course, 
the "generated points" are not sought to be correspon- 
ded. So the algorithm to do the match is as follows 

(1) If there are no missing points, go to step 3. 
(2) Using the MLE scheme presented, generate the 

missing points. 
(3) Run the basic algorithm. 
(4) If "enough" points are matched, stop. Otherwise 

go to step 2. [] 

We carried out simulations of this idea using syn- 
thesised data. In general, we observed that it would 
correctly match between 30 60% of the tokens when 
up to 15-20% were missing in the second frame. If the 
algorithm was repeated often enough, it would gen- 
erally match 80% of the tokens correctly. Of course, 
the fewer the number of missing tokens, the smaller 
wuld be this "often enough" number. 

While interesting in themselves, these results are no 
sufficient. For one, it takes many iterations before 
a significant number of correct matches are obtained. 
To obtain a large percentage of correct matches using 
this scheme will thus need an inordinate amount of 
time. Moreover, all the matches that the algorithm 
establishes are not necessarily correct. We observed 
that while most of the matches found by the algorithm 
were correct, some incorrect matches would invariably 
slip in. If the threshold of acceptable difference was 
reduced significantly to avoid such a situation, valid 
matches would get rejected as well. One would there- 
fore wish to use such a method only if a better alterna- 
tive was not available. In the next section, we examine 
how and under what conditions this performance can 
be improved and propose a new scheme that can 
obtain almost all of the correct matches. 

4.2. Can we do better: The Growing Phase 

As Aloimonos et al. have observed, t45~ it is very 
often the case that some ground truth information 
regarding correspondence is available from other cues. 
They use such pre-established correspondences to ob- 
tain even more correspondences. In order to improve 
the performance of our algorithm in the presence of 
missing tokens, we require the satisfaction of a much 
weaker constraint, namely the verification of some 
hypothesised correspondences. We assume in what 
follows that given a set of hypothesised point to point 
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correspondences, we can decide which of those are 
correct. 

Let us now see how we can improve the performance 
of our algorithm. Once again, we refer back to our 
initial discussion in Section 2.1. Suppose we had a sub- 
set of tokens 6 : '  (of the form 67), and were given two 
more tokens. We could decide if these tokens corre- 
sponded by simply adding them to ~ '  and seeing if this 
augmented set was also of the type 6?. Given a set of 
tokens ~ ,  and a subset of it ~"  which is of the form 67, 
we can go on augmenting ~ '  and depleting ~' until  all 
the corresponding points were in the former, and the 
latter was left with tokens which did not  have any 
corresponding members in the other frame. This is, in 
a sense, the exact reverse of reduction, and uses the idea 
that whatever is true of  the correspondin 9 parts must be 
reflected in the whole. For the lack of a more appropri-  
ate term, we call it holist. 

In terms of our  algorithm, this means the following. 
First, generate points for the frame which has the 
smaller number  of points. Then, use the basic algo- 
rithm to obtain correspondence. Using some external 
"Oracle",  verify which of the hypothesised correspon- 
dences are correct. Refine the estimate of R using only 
those token pairs which are correctly corresponded. It 
can be shown that as long as there are three correct 
matches, the process of refining R will come up with an 
accurate value for it. So in essence, all we need to 
demand from our estimation process is that it allows 
some three points to be correctly matched. 

Using this core of correct matches, we can Grow the 
solution using the idea outlined in the previous para- 
graph. Using the analogy with human reasoning once 
again, imagine that we are shown two frames contain- 
ing corresponding parts of the object. From these, we 
make an estimate of the rotation involved. Now, if 
these parts are augmented by uncovering more corre- 
sponding parts, then our estimate of rotation will not 
change. However, if we uncover non  corresponding 
parts in the two frames, then obviously our rotation 
estimate will be different. Note that for such reasoning 
to work accurately, we must initially see a "large 
enough" part of the object. In procedural terms, con- 
sider an unmatched token in the first frame, say i. The 
R' computed by adding this and another token from 
the second frame will be the closest to the R obtained 
by refinement when the token from the second frame is 
the one that corresponds to it. Thus more correspon- 
dences can be obtained from the original ones. Again, 
since a token is not  guaranteed to have a match we set 
up a threshold. The computed R' has to be within this 
threshold to be considered. We set this at 5 ° for our 
simulations. 

The above algorithm can be outlined as follows: 

(1) If there are no missing points, run the basic 
algorithm and stop. 

(2) Using the MLE scheme presented, generate the 
missing points. 

(3) Run the basic algorithm. 

Table 2. One missing token: for each angle, the first entry is 
the average iterations needed and the second entry is the 

average number of tokens correctly matched 

Angle in degrees 

Iterations Matches 

Translation 30 50 70 

0 0 0 1.66 13.94 1.14 14 1 13 
20 20 20 1.1 11.3 3.9 10.86 1 10.08 

Table 3. Two missing tokens: for each angle, the first entry is 
the average iterations needed and the second entry is the 

average number of tokens correctly matched 

Angle in degrees 

Iterations Matches 

Translation 30 50 70 

0 0 0 3.1 12.94 1.6 13 1 13 
20 20 20 2.1 11.12 1.7 10.86 I 10 

Table 4. Four missing tokens: for each angle, the first entry is 
the average iterations needed and the second entry is the 

average number of tokens correctly matched 

Angle in degrees 

Iterations Matches 

Translation 30 50 70 

0 0 0 11.16 10.92 8.3 11 1.76 11 
20 20 20 15.7 9.7 37.48 8.18 17.04 8.08 

(4) If all points are matched, stop. 
(5) From the matches proposed by the basic algo- 

rithm, select the valid ones. 
(6) Using these valid matches, G R O W  more correct 

matches by incrementally adding token pairs and test- 
ing if they are a valid match. 

(7) stop. 

We tested this idea as usual on both synthesised data 
as well as real images. As the accompanying results 
show, it works extremely well. Tables 2, 3 and 4 show 
the results with the synthesised data. The original data 
set consists of 15 points, and we show the average 
number  of iterations needed before three (or more) 
tokens were correctly matched, and the total number  
of points the algorithm could correctly match after the 
refinement and growing phases. The averages were 
taken over 50 runs. The intuitively obvious trend of 
more iterations being required if more points are 
missing is reflected in the data. There are, of course, 
minor  aberrations in the trend, since we have averaged 
only Over 50 runs. 

In Figs 4 and 5, we show real image sequences on 
which the algorithm was tested. The ground truth data 
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Figure 5a 

Figure 5b 

Fig. 5. Image sequence taken from a tripod mounted camera. 
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for Fig. 4 has been discussed before. Eleven points were 
used from this image, and the algorithm worked fairly 
quickly ( < 10 iterations) with up to four being drop- 
ped. For Fig. 5, the ground truth involves the camera 
being rotated by about 25 to 30 degrees and negligible 
translation. This time, the 10 lines were extracted from 
the figure and used as input. Once again, for up to four 
lines being dropped, the algorithm was fairly quick in 
obtaining the correct matches. In both the above cases, 
all tokens were matched correctly most of the time. 
These results clearly demonstrate the success of the 
algorithm. 

While outlining the idea to handle missing tokens 
(Section 4.1), we have been vague at two points. Firstly, 
we said "assuming not too many points are missing". 
After running extensive simulations, we say with some 
confidence that up to 25 % of points can be missing for 
the algorithm to not take inordinately long to obtain 
correspondence. Even if more points were missing the 
algorithm should, given "sufficient" iterations, manage 
to correctly match three points, thence managing to 
grow the solution. In general, however, as the trends 
from the experimental data clearly show, the number 
of iterations needed seems to grow quite fast as more 
points are missing. Secondly, we said "such an estimate 
does not have to be very accurate" when talking about 
generating tokens. The question naturally arises as to 
how accurate does this estimate have to be. In refer- 
ence (26), the authors use information from frames 
k and k - 1, as well as the smoothness constrains to 
generate the missing point in frame k + 1. Our simula- 
tion results clearly show that even a model as simple 
and naive as uniformly distributed random points 
serves the purpose of establishing correspondence. 
This, we feel, is eloquent testimony to the ideas of 
refinement and growing. 

5. DISCUSSION 

Feature based schemes for image sequence analysis 
have for long assumed that the underlying problem of 
correspondence has been resolved. Most algorithms 
to establish correspondence have, however, operated 
under restrictive assumption. In this work, the authors 
have presented an improvement to their previously 
proposed algorithm which enables it to use both line as 
well as point tokens, and even handle the case of 
missing tokens. It is also fairly immune to noise in the 
input data. This makes the proposed algorithm suit- 
able for handling tokens obtained from feature extrac- 
tors operating on real images. 

The basic ideas underlying the algorithms are in- 
spired by the way human thinking seems to work 
about the motion of an object, viz., whatever is true o f  
the whole must be true for  its parts and whatever is true 
o f  a part must be reflected in the whole. The algorithm 
operates only for rigid bodies, and assumes that the 
effect of translation can be ignored when computing 
the rotation matrix for the purpose of correspondence. 
We have presented arguments to justify this not so 

obvious assumption and show its validity. We have 
also presented extensive simulation results, both on 
synthesised data, as well as on real images, that not just 
establish the veracity of our algorithm, but also a pos- 
teriori justify our assumptions. 

However, the ability of this method to establish 
correspondence correctly does not detract from our 
belief that in any real visual system, correspondence 
must be established using a variety of cues. We submit 
that a motion based approach like ours provides one of 
the most important cues that aid in this process. 

A word on the computational complexity of the 
algorithm. As was noted in reference (33), the basic 
algorithm requires O(n 2) computations of R to obtain 
correspondence. The process of converting line tokens 
into their point representation is linear in the number 
of tokens, and so does not add to the complexity. Nor 
does the process of growing, which also needs O(n 2) 
computations of R. 

The way the algorithm is structured to handle miss- 
ing tokens, it can be expanded to deal with a case of 
correspondence when there are two (or more) objects 
exercising different motion, assuming some not too 
restrictive assumptions can be made about the image 
sequence. The authors are currently engaged in devel- 
oping this idea. Also, since the algorithm can establish 
correspondence between two frames, and does not 
require multiple frames, it can also be used to do image 
to model correspondences. In the basic algorithm, as 
well as in the growing phase, the computations (of R) 
to establish correspondence can be done in parallel for 
all points. So also the process of converting line tokens 
to point tokens. Thus there is a high degree of inherent 
parallelism in the algorithm which can be exploited 
fairly easily. 

In conclusion, we present an efficient algorithm to 
do correspondence in an image sequence that can 
handle both point and line tokens and works well even 
if tokens are missing. These features make the algo- 
rithm, which has an inherent parallel structure, suit- 
able for analysis of real images. 
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