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Abstract This study was aimed at evaluating the perfect

balancing position of an automatic ball balancer installed in

optical disk drives taking into consideration the effects of

the rolling friction, speed ratio, and scaling parameter on

ball positioning. A mathematical model that is employed to

derive the dynamic equations of the ABB system was

constructed. Stability of the steady-state solutions was then

analyzed. A numerical simulation and an experimental

study were conducted to verify the mathematical model.

The simulation and experimental results were in good

agreement.

List of symbols

GR Center of gravity (C.G.) of the equivalent rotor

GS Center of gravity of the equivalent stator

MR Mass of the equivalent rotor

MS Mass of the equivalent stator

OB Center of a ball

OS Rotational center of the rotor

OR Origin of the inertial coordinate

Or Center of the circular race of the balancer

q Race eccentricity

e Imbalanced eccentricity

b Lead angle for imbalance

/i Angle of ball’s positions

Bi Number of balls

m Ball mass

r Ball radius

KX Stiffness in the X direction

KY Stiffness in the Y direction

Cx Damping in the X direction

Cy Damping in the Y direction

p Speed ratio x=xn

e Scaling parameter
ffiffiffiffiffiffiffiffiffiffiffi

m=M
p

xn Natural frequency of the suspension

s Normalized time scale

R Race radius

a1 Adhesive coefficient

a0 Rolling friction coefficient of the ball balancer

h Rotating angle of the disk

1 Introduction

Imbalances are the common causes of vibrations in high-

speed optical disk drives. The perfect balancing position of

an automatic ball balancer (ABB) can almost completely

eliminate radial vibrations via the phenomenon of count-

erbalancing. A recent challenge for ABBs used in high

speed optical disk drives is the inconsistency of the balls’

positioning due to the rolling friction of the balancing balls.
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Quangang et al. (2004) and Chao et al. (2005) investigated

the influence of friction in an ABB. Van De Wouw et al.

(2005) evaluated the performance of an ABB with dry

friction. Rajalingham and Bhat (2006) incorporated contact

friction of the balancing balls in a model. Chao et al.

(2007) presented a non-planar dynamic model and an

experimental validation of a spindle-disk system equipped

with an ABB. Lu et al. (2008) proposed general guidelines

on the stability of the equilibrium positions of an ABB.

DeSmidt (2009) developed a new analysis method for

calculating the dynamics and stability of an imbalanced

flexible shaft equipped with an ABB. Liu and Ishida (2009)

presented the vibration suppression method utilizing the

discontinuous spring characteristics together with an ABB.

Chan et al. (2011) investigated the effects of the non-linear

suspensions of an ABB installed in a rotor system on ball

positioning. Cheng et al. (2008) and Lim et al. (2011)

designed an optical disk drive using speed-dependent

vibration absorbers in specific frequency ranges. Rodrigues

et al. (2011) conducted an experimental investigation of a

single-plane with a two-ball ABB. From these related

studies, it is obvious that correct ball positioning is the

most important requirement for an ABB. Therefore, The

ABB needs to be re-evaluated for design guidelines with a

thorough exploration of parameters such as the rolling

friction, scaling parameter, and speed ratio.

2 Mathematical model

The photograph of an ABB in an optical disk drive is

shown in Fig. 1. The physical system can be simplified.

This is shown schematically in Fig. 2; without a loss of

generality, the simplified system, is considered to contain a

pair of balls with mass m and radius r.

The equations of motion of the optical disk drive are

derived below, where M ¼ MR þMS þ nm. The equations

of motion of the equivalent rotor for multiple balls can be

derived by balancing inertial forces of the rotor, interactive

forces by balls, and resistant forces by suspension, which

are listed as the following:

M €X þ Cx
_X þ KXX ¼ MR½q€h sin hþ q _h2 cos hþ e€h sinðhþ bÞ

þ e _h2 cosðhþ bÞ� þ m
X

n

i¼1

�

q€h sin h

þq _h2 cos hþ Rð€hþ €/iÞ sinðhþ /iÞ

þRð _hþ €/iÞ2 cosðhþ /iÞ
�

M €Y þ CY
_Y þ KY Y ¼ MR½�q€h cos hþ q _h2 sin h� e€h cosðh

þ bÞ þ e _h2 sinðhþ bÞ� þ m
X

n

i¼1

�
�

� q€h cos hþ q _h2 sin h� Rð€hþ €/iÞ

� cosðhþ /iÞ þ Rð _hþ _/iÞ2 sinðhþ /iÞ
�

�

mþ I

r2

�

Rð€/i þ €hÞ ¼ m½ð €X � q€h sin h� q _h2 cos hÞ sinð/i þ hÞ

� ð €Y þ q€h cos h� q _h2 sin hÞ cosð/i þ hÞ�

� a1R _/�Mf

r
signð _/iÞ þ

ðRþ rÞ
r2

I€h

i ¼ 1; 2; 3; . . .; n

ð1Þ

where Mf is the moment of the rolling friction, which is

mainly due to the rolling friction between the balancing

ball and the outer flange of the race.

Mf ¼ a0m½Rð _hþ _uiÞ2 � ð €X � q€h sin h� q _h2 cos hÞ cosðh
þ /iÞ � ð €Y þ q€h cos h� q _h2 sin hÞ sinðhþ /iÞ� ð2Þ

3 Asymptotic analysis

By making some scaling assumptions and then employ-

ing asymptotic analysis techniques i.e., the multiple-scale

analysis, we seek approximate solutions for the system in

order to manipulate the equations of motion. Maintaining

the mass of the balancing ball, m, at a value that is

considerably smaller than the mass of the system, M,

results in e ¼
ffiffiffiffiffiffiffiffiffiffiffi

m=M
p

, which is the scaling parameter.

Using this defined parameter, the system parameters in

Eq. (1) are rearranged to an amenable form for multiple-

scale analysis.

s ¼ xnt; ex ¼ X=R; ey ¼ Y=R;xn ¼
ffiffiffiffiffiffiffiffiffiffiffi

K=M
p

; e2k1

¼ q=R; e3k2 ¼ e=R; l ¼ m
�

ðmþ I
�

r2Þ; ef ¼ C=Mxn; ek

¼ ðr þ RÞI=mr2R; a ¼ MR=M; ef0 ¼ a0=r; ef1

¼ a1=mxn; e1 � e; e2 � e2; e3 � e2;Fig. 1 Photograph of an automatic ball balancer in an optical disk

drive
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where k1 and k2 are the nondimensionalized race and center

of mass eccentricity, respectively. The system experiences

weaker excitation and the response scaling ex ¼ X=R and

ey ¼ Y=R of the system. Substituting the definition of e and

the scaling assumptions into the system, we obtain

€xþ x ¼ e
�

� f _xþ afk1ð€h sin hþ _h2 cos hÞ þ k2½€h sinðh

þ bÞ þ _h2 cosðhþ bÞ�g þ
X

n

i¼1

½e2k1ð€h sin h

þ _h2 cos hÞ þ ð€hþ €/iÞ sinðhþ /iÞ þ ð _hþ _/iÞ2

� cosðhþ /iÞ�
	

€yþ y ¼ e
�

� f _yþ afk1ð�€h cos hþ _h2 sin hÞ
þ k2½�€h cosðhþ bÞ þ _h2 sinðhþ bÞ�g

þ
X

n

i¼1

½e2k1ð�€h cos hþ _h2 sin hÞ � ð€h

þ €/iÞ cosðhþ /iÞ þ ð _hþ _/iÞ2 sinðhþ /iÞ�
	

ð€/i þ €hÞ ¼ e
�

l
�

½€xþ ek1ð�€h sin h� _h2 cos hÞ� sinð/i þ hÞ
� ½€yþ ek1ð€h cos h� _h2 sin hÞ� cosð/i þ hÞ
� f1

_/i � f0fð _hþ _/iÞ2 � ½e€xþ e2k1ð�€h sin h

� _h2 cos hÞ� cosðhþ /Þ � ½e€yþ e2k1ð€h cos h

� q _h2 sin hÞ� sinðhþ /Þgsignð _/iÞ þ k€h
		

ð3Þ

From these equations, the steady-state solutions and the

corresponding stability of the system are of interest. In the

steady state, the rotor speed approaches a constant _h. For

simplicity, this constant speed is denoted by x ¼ _h. Then,

p ¼ x=xn is defined as the speed ratio, where xn is the

natural frequency of the suspension system. Furthermore, a

normalizing time scale s ¼ xnt is introduced that renders
€h ¼ 0, _h ¼ p, and h ¼ ps. To facilitate the ensuing

asymptotic analysis, the square of the speed ratio p is

represented by p2 ¼ 1þ er, where r describes the scaled

deviation of p2 from one. It is worth noting that the scaling

assumption p2 ¼ 1þ er implies that the following analysis

is valid only near the natural frequency of the system. The

solutions show that because the system undergoes weak

excitation, no sub-harmonic resonance is present.

Therefore, the approximate solutions are expected to

predict the dynamics of the system away from the

primary resonance. We use the aforementioned

definitions and assumptions to manipulate Eq. (3) into

matrices. Next, the dynamic response can be acquired from

a direct numerical simulation using MATLAB. In Eq. (3),

the overdots and double overdots denote differentiation and

double differentiation with respect to a new time scale s,

respectively. The application of the multiple-scale analysis

is given by Eq. (3). Assume that

XK
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XC
4

1

SG
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1

Fig. 2 Schematic

representation of the ABB in an

optical disk drive
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xðs; eÞ ¼ x0ðT0; T1Þ þ ex1ðT0; T1Þ þ Oðe2Þ

yðs; eÞ ¼ y0ðT0; T1Þ þ ey1ðT0; T1Þ þ Oðe2Þ

/1ðs; eÞ ¼ /10ðT0; T1Þ þ e/11ðT0; T1Þ þ Oðe2Þ

/2ðs; eÞ ¼ /20ðT0; T1Þ þ e/21ðT0; T1Þ þ Oðe2Þ

ð4Þ

where T0 ¼ s is the fast time scale and T1 ¼ es is the slow

time scale. The introduction of T0 and T1 renders

d

ds
¼ D0þ eD1þOðe2Þ; d2

ds2
¼ D2

0þ 2eD0D1þOðe2Þ; ð5Þ

where Dn ¼ o
oTn

for n¼ 0;1: Substituting assumptions (4)

and transformations (5) into Eq. (3) and ignoring Oðe2Þ
terms. We equate the coefficients accompanied by e1 and

derive the dynamics of the order e1 as

D2
0x1 þ p2x1 ¼ eipT0

"

� 2pi
oA0

oT1

� fpiA0

þ rA0 þ
ap2k1

2
þ ap2k2eib

2
þ ðpþ w10Þ

2ei/10

2

þ ðpþ w20Þ
2ei/20

2




þ e�ipT0

�

2pi
oA0

oT1

þ fpiA0 þ rA0 þ
ap2k1

2
þ ap2k2e�ib

2

þ ðpþ w10Þ
2e�i/10

2
þ ðpþ w20Þ

2e�i/20

2




D2
0y1 þ p2y1 ¼ eipT0

�

� 2pi
oB0

oT1

� fpiB0 þ rB0 �
iap2k1

2

� iap2k2eib

2
� iðpþ w10Þ

2ei/10

2

� iðpþ w20Þ
2ei/20

2




þ e�ipT0

�

2pi
oB0

oT1

þ fpiB0 þ rB0 þ
iap2k1

2
þ iap2k2e�ib

2

þ iðpþ w10Þ
2e�i/10

2
þ iðpþ w20Þ

2e�i/20

2




D2
0/11 ¼ eið2pT0þ/10Þ

�

lp2ðiA0 þ B0Þ
2




þ e�ið2pT0þ/10Þ

�
�

lp2ð�iA0 þ B0Þ
2




þ
(

� 2
ow10

oT1

þ e�iu10

�

lp2ð�iA0 þ B0Þ
2




þ ei/10

�

lp2ðiA0 þ B0Þ
2

� þ l½�f1w10

� f0ðpþ w10Þ
2
sgnðw10Þ




)

D2
0/21 ¼ eið2pT0þ/20Þ

�

lp2ðiA0 þ B0Þ
2




þ e�ið2pT0þ/20Þ
�

lp2ð�iA0 þ B0Þ
2




þ
(

� 2
ow20

oT1

þ e�i/20

�

lp2ð�iA0 þ B0Þ
2




þ ei/20

�

lp2ðiA0 þ B0Þ
2




þ l

�

� f1w20

� f0ðpþ w20Þ
2
sgnðw20Þ




)

ð6Þ

The solutions of Eq. (6) are x1, y1, /11, and /21 and are

expressed as follows:

x1 ¼ A1ðT1ÞeipT0 þ A1ðT1Þe�ipT0 þ 1

2ip

�

A11ðT1ÞT0eipT0

� A11ðT1ÞT0e�ipT0




y1 ¼ B1ðT1ÞeipT0 þ B1ðT1Þe�ipT0 þ 1

2ip

�

B11ðT1ÞT0eipT0

� B11ðT1ÞT0e�ipT0




/11 ¼
eið2pT0þ/10Þ

�ð2pþ w10Þ
2

�

lp2ðiA0 þ B0Þ
2




þ e�ið2pT0þ/10Þ

�ð2pþ w10Þ
2

�
�

lp2ð�iA0 þ B0Þ
2




þ
(

� 2
ow10

oT1

þ e�i/10

�

lp2ð�iA0 þ B0Þ
2




þ ei/10

�

lp2ðiA0 þ B0Þ
2




þ l

�

� f1w10 � f0ðpþ w10Þ
2
sgnðw10Þ




)

T2
0

2

/21 ¼
eið2pT0þ/20Þ

�ð2pþ w20Þ
2

�

lp2ðiA0 þ B0Þ
2




þ e�ið2pT0þ/20Þ

�ð2pþ w20Þ
2

�
�

lp2ð�iA0 þ B0Þ
2




þ
(

� 2
ow20

oT1

þ e�i/20

�

lp2ð�iA0 þ B0Þ
2




þ ei/20

�

lp2ðiA0 þ B0Þ
2




þ l

�

� f1w20 � f0ðpþ w20Þ
2
sgnðw20Þ




)

T2
0

2

ð7Þ

Because T0 is the fast time scale and T1 is the slow time

scale, the coefficients of T0 andT2
0 are zero. If they are not
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equal to zero, then x1, y1, /11, and /21 approach infinity.

Next, we obtain

A11 ¼
�

� 2pi
oA0

oT1

� fpiA0 þ rA0 þ
ap2k1

2
þ ap2k2eib

2

þ ðpþ w10Þ
2ei/10

2
þ ðpþ w20Þ

2ei/20

2




¼ 0

B11 ¼
�

� 2pi
oB0

oT1

� fpiB0 þ rB0 �
iap2k1

2
� iap2k2eib

2

� iðpþ w10Þ
2ei/10

2
� iðpþ w20Þ

2ei/20

2




¼ 0

(

� 2
ow10

oT1

þ e�i/10

�

lp2ð�iA0 þ B0Þ
2




þ ei/10

�

lp2ðiA0 þ B0Þ
2




þ l

�

� f1w10 � f0ðp

þ w10Þ
2
sgnðw10Þ




)

¼ 0

(

� 2
ow20

oT1

þ e�i/20

�

lp2ð�iA0 þ B0Þ
2




þ ei/20

�

lp2ðiA0 þ B0Þ
2




þ l

�

� f1w20 � f0ðp

þ w20Þ
2
sgnðw20Þ




)

¼ 0 ð8Þ

The exponential forms in Eq. (6) are used to calculate

the trigonometric functions for simplifying the ensuing

computations. The removal of the secular terms from

Eq. (6) leads to four conditions. Incorporating formulations

for A0; �A0;B0, and �B0 in real-imaginary forms

A0 ¼ aðT1Þ þ ibðT1Þ;A0 ¼ aðT1Þ � ibðT1Þ;
B0 ¼ cðT1Þ þ idðT1Þ;B0 ¼ cðT1Þ � idðT1Þ; ð9Þ

into the four secular term removal conditions leads to the

following solutions.

oa

os
¼ e

2p

�

� fpaþ rbþ ap2k2 sin b
2

þ ðpþ w10Þ
2

sin /10

2

þ ðpþ w20Þ
2

sin /20

2




ob

os
¼ �e

2p

�

fpbþ raþ ap2k1

2
þ ap2k2 cos b

2

þ ðpþ w10Þ
2

cos /10

2
þ ðpþ w20Þ

2
cos /20

2




oc

os
¼ e

2p

�

� fpcþ rd � ap2k1

2
� ap2k2 cos b

2

� ðpþ w10Þ
2

cos /10

2
� ðpþ w20Þ

2
cos /20

2




od

os
¼ �e

2p

�

fpdþrcþ ap2k2 sinb
2

þðpþw10Þ
2

sin/10

2

þðpþw20Þ
2

sin/20

2




ow10

os
¼ e

(

lp2

2

�

ðbþ cÞcos/10þðd� aÞ sin/10




�lf1w10�lf0ðpþw10Þ
2
sgnðw10Þ

)

ow20

os
¼ e

(

lp2

2

�

ðbþ cÞcos/20þðd� aÞ sin/20




�lf1w20

�lf0ðpþw20Þ
2
sgnðw20Þ

)

d/10

ds
¼ w10

d/20

ds
¼ w20 ð10Þ

These are a set of eight first-order autonomous differ-

ential equations describing the slow dynamics of the sys-

tem. The steady-state solutions approximated based on

Eq. (10) are given in the next section.

4 Steady-state responses

To find the most important steady-state solution for the

perfect balancing position and the stability of the system’s

slow dynamics with an aim of evaluating the performance

of the ABB system, we use Eq. (10) to predict the position

of the balancing balls.

By equating Eq. (10) to zero and acknowledging that

wS10 ¼ wS20 ¼ 0, i.e., the balls are motionless in a steady

state, we find a solution for the perfect balancing position.

The solution is discussed in the following sections. This

type of solution has different ball positions corresponding

to frequencies above and below the natural frequency.

4.1 Perfect balancing solution

The solutions for the motion of suspension are negligible,

i.e., aS ¼ bS ¼ cS ¼ dS ¼ 0. The corresponding ball posi-

tions can be found easily by solving the following equation

numerically.

sin /S10 þ sin /S20 ¼ �ak2 sin b; cos /S10 þ cos /S20

¼ �ak1 � ak2 cos b;

On solving, we get Eq. (11)
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sin2ðuS10 � uS20Þ

¼ 1� a2ðk2
1 þ k2

2Þ
2

þ a2k1k2 cos b� 1

� 
2 ð11Þ

On the basis of the form of Eq. (11), we inferred that a

pair of balancing balls sticks together below the natural

frequency of suspension and diverges to distinct positions

above the natural frequency in a steady state. For this type

of solution, as aS ¼ bS ¼ cS ¼ dS ¼ 0, the system exhibits

almost no residual vibrations. This is the desired solution to

minimize radial vibrations.

We use perturbation methods to make Eq. (10) linear

and assume that each solution a, b, c, d, /10, /20, w10, and

w20 has small perturbation values Da, Db, Dc, Dd, D/1,

D/2, Dw1, and Dw2, respectively, in Eq. (12):

a ¼ aS þ Da b ¼ bS þ Db c ¼ cS þ Dc

d ¼ dS þ Dd /10 ¼ /S10 þ D/1 /20 ¼ /S20 þ D/2

w10 ¼ wS10 þ Dw1 w20 ¼ wS20 þ Dw2

ð12Þ

Next, we express matrix Ax as follows:

If DXðsÞ ¼ es s, then½Ax � I S�DXðsÞ ¼ 0, where S is an

eigenvalue, [Ax – IS] = 0 is the perturbation characteristic

equation, and I is the unit matrix. Hence, from this solution,

we obtain eigenvalues of the system and can estimate its

stability. If all the eigenvalue has real parts that are less than

zero, the system is stable, otherwise, the system is unstable.

5 Time response and stability analysis

Figure 3a shows the position of a pair of balls at initial

angles 0� and 30�. At 130�, the balls are positioned at

b� /1j j and b� /2j j (see Fig. 3b) because of the inherent

imbalance in the ABB.

With the obtained solutions, a stability analysis is per-

formed to determine the stability of each steady-state

solution. Design guidelines are assured for achieving the

desired performance by the ABB system. The analysis is

carried out using stability diagrams constructed with

respect to variations in the main design parameters, oper-

ating speed ratio (p ¼ x=xn) and scaling parameter

(e ¼
ffiffiffiffiffiffiffiffiffiffiffi

m=M
p

). Figure 4 shows the stability diagram for the

perfect balancing solution. This solution renders the best

radial vibration reduction among all solutions. To ensure

the stability of this perfect balancing solution, we need to

design an ABB system such that (p,e) falls in the square

region in Fig. 4.

DXðsÞ ¼ DaDbDcDd D/1 D/2 Dw1 Dw2½ �T

Ax ¼

� e1
2

er
2p 0 0 ep

4
cos/S10

ep
4

cos/S20
e
2
sin/S10

e
2
sin/S20

� er
2p � e1

2
0 0 ep

4
sin/S10

ep
4

sin/S20 � e
2
cos/S10 � e

2
cos/S20

0 0 � e1
2

er
2p

ep
4

sin/S10
ep
4

sin/S20 � e
2
cos/S10 � e

2
cos/S20

0 0 � er
2p � e1

2
�ep

4
cos/S10

�ep
4

cos/S20 � e
2
sin/S10 � e

2
sin/S20

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
�elp2

2
sin/S10

elp2

2
cos/S10

elp2

2
cos/S10

elp2

2
sin/S10 0 0 ð�el11� 2el10pÞ=2 0

�elp2

2
sin/S20

elp2

2
cos/S20

elp2

2
cos/S20

elp2

2
sin/S20 0 0 0 ð�el11� 2el10pÞ=2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Ball 1

Ball 2

Ball 2 Ball 1

Desired ball positions

GR

30o
90o
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130o

GR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-200
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-50
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Fig. 3 Variation in position of the balls as a0 ¼ 1� 10�6 m
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To obtain such a design, three conditions related to the

system parameters must be satisfied. First, the system has

to operate above the resonance frequency, i.e., p [ 1:3.

Second, the maximal counterbalance (two balls sticking

together) has to be greater than the inherent imbalance, i.e.,

2mR [ MRe, which corresponds to the area e� 0:03 in

Fig. 4. Third, the total mass of the balls has to be suffi-

ciently small for e to not exceed a certain level to avoid

degradation of the stability of the ABB system, which

corresponds to the curve representing the upper boundary

of the square region in Fig. 4.

Next, we present some numerical simulation results.

Figure 5 shows the computed ranges of the desired perfect

balancing solution with respect to the rotor speeds of p = 6

for e = 0.18, e = 0.15, and e = 0.1, respectively. When

the lead angle for imbalance in the mass of the balancing

balls is b = 180�, the ranges of the angular displacement of

the ball positions are symmetrical. These design parameters

can automatically satisfy the balance requirement when a0

approaches 0 m. However, the mass of the balancing balls

can almost completely eliminate radial vibrations via the

concept of counterbalancing. We find that the angular

displacement of the ball positions varies in a wide range

when a0 approaches 2 9 10-6 m, as shown in Fig. 5.

However, p and e are the other main system parameters that

can affect the angular displacement of the ball positions

within a wide range. The results of the numerical simula-

tion are shown in Fig. 5. From this result, an overlap region

can be seen with an increase in the rolling friction.

The lead angle is opposite to the balancing balls. The angle

of two balancing balls, which is in e = 0.1, is getting closer

than it in e = 0.15 and e = 0.18, respectively as shown in

Fig. 5. From Fig. 6, it is observed that when p = 3 and

p = 6, the desired ranges change at the same time. However,

Fig. 4 Stability diagram of scaling parameter e versus speed ratio

p for the perfect balancing solution

Fig. 5 Ranges of angular displacement of the balls’ position for the

perfect balancing solution with e

Fig. 6 Range of angular displacements of ball positions for perfect

balancing solution with p = 3 and p = 6

Fig. 7 Photograph of experimental setup for measuring positions of

the balls

Microsyst Technol (2012) 18:1343–1351 1349

123



we find that p can affect the desired angular range. We find

that when p = 3, the ranges of the angular displacement of

the balls’ position becomes narrower than that when p = 6.

Therefore, the ranges of angular displacement of the balls’

position at p = 6 and p = 3 can overlap as shown in Fig. 6.

6 Experimental study

The performance of the ABB is characterized by the

residual vibration of the rotor system, which is caused by

the failure of the balls’ position to counterbalance the mass

imbalance. In this study, we used an optical disk drive

system with a high-speed camera to verify the results

obtained by the computer simulations along with software

to record the balls’ positions. The photograph of the

experimental setup for measuring the positions of the balls

is shown in Fig. 7.

The circular races were made from Si3N4. The Si3N4

balls and races were required to be sufficiently smooth to

ensure that the rolling friction was greatly reduced.

Figure 8a shows the comparison of the experimental results

(a)

(b)

Fig. 8 a Range of the balls’

positions for the perfect

balancing solution with

p = 4.47; b experimental

results of the balls’ positions
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with the simulation results, with p = 4.47 and the rolling

friction was 2 9 10-6 m. We found that the range for the

two balancing balls was 30� when the rolling friction was

2 9 10-6 m. The inherent imbalance of the rotor system

was identified prior to the experiments. To record the balls’

positions corresponding to mass imbalance using the soft-

ware, reference points were used to denote the unbalanced

mass (GR). The experiment was carried out as follows. The

motor was powered by a power supply through the control

box to accelerate the rotational speeds of the rotor to the

desired speeds. We used a high-speed camera to observe

GR with respect to the angular displacements of the two

balancing balls from the transient state to the steady state,

as shown in Fig. 8b. The final rotor speed is approximately

3,000 rpm (p = 4.47). The balancing balls are observed to

be positioning at the boundary of the solution ranges.

From these results, we find the position of the balancing

balls to be at the boundary of the solution ranges, when the

rotor rotational speeds are above the first natural frequency.

We verified that the angular displacement of the positions

of the balls is the key factor affecting the ABB perfor-

mance. In this research, it was important to monitor and

record the angular displacement of the balancing balls’

positions related to the unbalanced mass from its static

state up to the desired speed. The experimental results

verified the validity of the established mathematical model,

which in turn confirmed the analytical results.

7 Conclusions

This study investigated the effects of the rolling friction,

speed ratio, and scaling parameter on the position of the

balls in an ABB to obtain a perfect balancing position. The

rolling friction of the balls against the racer was found to be

the main reason for residual vibrations. The ABB can be

designed using the mathematical model parameters in the

stable regions. The range of the angular displacement of

the balls’ position in the perfect balancing solution is also

affected by factors such as the speed ratio and scaling

parameter. The constructed experimental apparatus was

successfully used to verify the mathematical model.
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