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Abstract A novel and efficient cleavage reagent, trimethyl
aluminum, for traceless sulfinate-functionalized resin has
been developed. The synthesis of sulfonamide and urea deriv-
atives via a traceless solid-phase sulfone linker strategy
through six synthetic steps comprising utilization of trimethyl
aluminum as a novel cleavage reagent was also established.
An insight of the plausible mechanism of the cleavage reac-
tion was discussed.
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Introduction

Since the introduction of the concept of solid-phase pep-
tide synthesis in the late 1950s [1], solid-phase synthesis of
small organic molecules has emerged as an important tool in

Electronic supplementary material The online version of this
article (doi:10.1007/s11030-012-9380-3) contains supplementary
material, which is available to authorized users.

T.-W. Chung · C.-H. Chen · C.-M. Sun (B) · W.-S. Chung (B)
Department of Applied Chemistry, National Chiao Tung
University, Hsinchu 30050, Taiwan
e-mail: cmsun@mail.nctu.edu.tw

W.-S. Chung
e-mail: wschung@nctu.edu.tw

C.-C. Lin (B)
TaiGen Biotechnology Co., Ltd., 7F, 138 Shin Ming Rd.
Neihu Dist., Taipei 114, Taiwan
e-mail: cclin@taigenbiotech.com.tw

H.-J. Wu
Department of Medical Technology, Yuanpei University,
Hsinchu, Taiwan

modern chemical biology and medicinal chemistry research
[2,3]. The use of solid support can avoid extensive workup,
recrystallization, and chromatographic purification of the
product. It also allows for easy automation of the synthesis
process and convenient handling of polar molecules through-
out the synthesis. One of the key challenges in solid-phase
synthesis involves immobilizing the substrates (or reagents)
onto the solid support, thus driving the demand for the devel-
opment of new and innovative linkers [4–6]. The ideal linker
should allow easy attachment of the starting material to the
support, be stable against a planned set of reaction condi-
tions and enable selective cleavage at the end of the synthesis
without causing damage to the product [7,8]. The presence of
these appendages is acceptable if the final products comprise
these functional groups of linker; however, complications
may arise if these vestigial functionalities are redundant and
affect the activities of the compounds.

Sodium benzenesulfinate has been widely used in the
preparation of sulfone, which plays an important role in
organic synthesis [9]. Nevertheless, the application of
sulfinate-functionalized resin in solid-phase synthesis has
received relatively less attention. Previous reports from other
laboratories [10–12] have demonstrated the use of sulfinate-
functionalized resin as a solid support for solid-phase organic
synthesis (SPOS). It has been shown that the resulting sul-
fone linker derived from sulfinate-functionalized resin to be
a versatile and robust tether that offers various on-resin func-
tionalization or cleavage without additional changes. Several
cleavage strategies including Swern oxidation [10] (Scheme
1a), oxidation-elimination [13] (Scheme 1b), elimination-
cyclization [12] (Scheme 1c) have been established to lib-
erate the target molecules from the sulfinate-functionalized
resin. However, relatively little endeavors have been spent on
the development of novel cleavage strategies for sulfinate-
functionalized resin. In these regards, our goal is to develop
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Scheme 1 Cleavage strategies
for sulfinate-functionalized resin
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sulfone linker for SPOS and to explore sulfone-based chem-
ical transformations and novel cleavage strategy.

Compounds containing the urea or sulfonamide function-
alities have diverse activities [14–18] such as soluble epoxide
hydrolase inhibitors [19,20], carbonic anhydrase IX inhibitor
[21], selective aggrecanase inhibitors [22], c-Met kinase
inhibitors [23], and tyrosine kinase-3 (FLT3) inhibitors [24]
(Fig. 1). Many solution-phase synthetic methods are avail-
able for the preparation of ureas [25–27] and sulfonamides
[28–30]; however, to the best of our knowledge, there are few
reports on the solid-phase synthesis of these compounds [31–
33]. Herein, we describe the utilization of trimethyl
aluminum as a novel cleavage reagent for sulfone linker
toward the synthesis of sulfonamides and urea
derivatives.

Results and discussion

Previous reports [10–13] have detailed the use of a sulfinate-
functionalized resin (styrene/divinyl benzene copolymer
beads) as the starting point for their synthetic strategies.
The sulfone linker derived from this sulfinate resin provides
tether that is robust to various chemical transformations and
is “traceless” when cleaved under appropriate conditions.
Herein, we report the sulfinate-functionalized resin-based

chemistry to the synthesis of sulfonamides and ureas as well
as novel cleavage strategy for sulfone linker.

Solution-phase synthesis of ureas and sulfonamides

Prior to the solid-phase synthesis approach, preliminary
solution-phase studies were carried out to survey the requi-
site reaction conditions and establish the modifications for
SPOS. To begin our investigation, 1-(2-phenyl-1-(phenyl-
sulfonyl)ethyl)-4-vinylbenzene 4 was prepared by treating
sodium benzenesulfinate 1 with 1-(chloromethyl)-4-vinyl
benzene in the presence of NaI under refluxing methanol
for 18 h to give 1-(phenylsulfonylmethyl)-4-vinylbenzene 2
in 92 % yield (Scheme 2). Subsequent alkylation of 2 with
benzyl bromide and dimsyl anion provided 1-(2-phenyl-1-
(phenylsulfonyl)-ethyl)-4-vinylbenzene 3 in moderate yield
(50 %) [34]. The moderate yield is due to the presence of
accompanying dialkylation byproduct. Attempts toα-alkylate
1-(phenylsulfonylmethyl)-4-vinylbenzene 2 with n−BuLi in
THF resulted only in decomposition. Oxidative cleavage of
the vinyl group of 3 with ozone gave 4 in good yield (80 %).
Reductive amination of benzaldehyde 4 with n-hexylamine
was achieved by magnesium sulfate in THF and sodium boro-
hydride. The sulfonamide 6 was accessed by treatment of
secondary amine 5 with p-toluenesulfonyl chloride in the
presence of triethylamine in 72 % isolated yield. The viabil-
ity of the cleavage reaction was first attempted by a reaction of
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Fig. 1 Sulfonamide or
urea-containing biological
relevant heterocyclic system
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benzenesulfonamide 6 with phenyl magnesiumbromide/zinc
chloride [35]. However, no reaction took place in tetrahydro-
furan at room temperature. Using samarium (II) iodide [36]
as the cleavage reagent in tetrahydrofuran also did not pro-
vide the target product. However, employment of the lithium
naphthalenide [37] as cleavage reagent led to considerable
enhancement of the reaction yields (Scheme 3).

Trimethyl aluminum is a versatile reagent encountered in
numerous organic transformations [38–40]. It usually acts as
a nonreactive methyl donor or Lewis acid and has good func-
tional group tolerance in various organic reactions. Trimethyl
aluminum has been employed in the conversion of heteroaro-
matic esters to methyl ketones [41], stereoselective methyl
transfer to aldehydes [42], synthesis of polysubstituted
aluminoisoxazoles and pyrazoles [43], new Mannich-type
reaction of hydrazones [44], and aluminum-mediated
C-glycoside synthesis [45]. Padwa et al. [46] have demon-
strated the introduction of a methyl substituent on the car-
bon atom adjacent to the sulfone by trimethylaluminum in
the total synthesis of (±)-desoxyeseroline. Following the
precedent success of Padwa, trimethyl aluminum was ulti-
mately selected as an optimum cleavage reagent for this sul-
fone linker. The use of trimethyl aluminum in toluene was
found to provide the best results in terms of reaction rate
and yield (81 %). It is noteworthy that the cleavage reac-
tion with trimethyl aluminum did not cleave the sulfonamide
bond of the targeted molecules. Plausible steps involved in
the trimethyl aluminum-mediated cleavage of sulfone linker
are depicted in Scheme 4. Initially, the sulfone is expected to
be activated by the trimethyl aluminum. The lone pair on the
oxygen donated to trimethyl aluminum to form an activated
zwitter ionic complex A, which spontaneously converted to
B through electron transfer. Subsequent methyl addition and
expulsion of the sulfone–aluminum complex furnished the
targeted product 7 (Scheme 4).

Solid-phase 1-(1-phenylpropan-2-yl)-4-vinylbenzene
synthesis

With a successful solution-phase route to sulfonamide 7 in
hand, we turned to the development of a viable solid-phase
protocol and began with the preparation of polymer bound
benzenesulfinate 8 (Scheme 5) [11]. Polystyrene/1 % divinyl-
benzene sodium sulfinate (8, 100–200 mesh) in NaI/DMF
was allowed to react with 1-(chloromethyl)-4-vinylbenzene
at 80 ◦C (Scheme 5). The aim of employment of DMF/
methanol as cosolvent is to swell the polymer support
whereas methanol was used in solution phase synthesis. The
formation of 9 was amenable to KBr FTIR monitoring (i.e.,
appearance of the sulfone stretch at 1316, 1151 cm−1). Treat-
ment of 9 with dimsyl anion [35] at −78 ◦C followed by addi-
tion of 4-(bromomethyl)benzonitrile gave resin 10, which
could be reliably analyzed with FTIR for the appearance of a
new cyano stretch (υmax2,133 cm−1). At this stage, sulfinate-
functionalized resin 10 was cleaved for our solid-phase stud-
ies because the feasibility of this proposed synthetic route up
to now can be confirmed and the optimized cleavage reagent
can be verified on the solid support. Hence, we proceeded to
cleave resin 10 with trimethyl aluminum which gave 1-(1-
phenylpropan-2-yl)-4-vinylbenzene 11 in good yield (34 %,
Scheme 5).

With the providential cleavage strategy to access the vinyl-
benzene 11 established, we proceeded to develop the solid-
phase route to the targeted compounds. Treatment of 10
with ozone in dichloromethane afforded the benzaldehyde
resin 12. This transformation was monitored by FTIR for
the appearance of a new aldehyde stretch (υmax1,700 and
2,840 cm−1). Reductive amination of resinous sulfinate 12
with primary amines and sodium borohydride generated sec-
ondary benzylamines 13. This transformation was monitored
by FTIR for the disappearance of the bezaldehyde stretch
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Scheme 2 Solution-phase study
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(υmax 1,700 cm−1 and 2,840 cm−1). Subsequent treatment of
resin 13 with sulfonyl chlorides and isocyanates in
Et3N/CH2Cl2 gave sulfonamide 14 and urea 15, respec-
tively. Since this transformation delivered no reliably diag-
nostic absorption signals in the IR spectrum, the subsequent
release step was undertaken with some trepidation. Fortu-
nately, cleavage of resin 14 and 15 by trimethyl aluminum
successfully provided the sulfonamide16 and urea 17 in
11–15 % overall yields from starting resin 8, indicating an
average yield of greater than 70 % for each step of the six
solid-phase reactions. To illustrate the versatility of this

methodology, a representative set of compounds (16 and 17)
was prepared (see Scheme 6; Table 1).

Conclusions

In conclusion, trimethyl aluminum was found to be a novel
and efficient cleavage reagent for sulfinate-functionalized
resin. Our experimental results suggest that the sulfone linker
is stable and robust under various reaction conditions and can
efficiently deliver the targeted products by this novel cleav-
age strategy. The cleavage reagent was further extended to
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Scheme 4 Plausible mechanism
for cleavage of sulfone linker by
trimethyl aluminum
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the synthesis of sulfonamides and ureas with diverse func-
tionalities. This novel cleavage strategy provides an efficient
entry to the sulfonamides and urea derivatives under mild
conditions and is compatible with a wide range of substrate.
The remarkable features of the present novel cleavage reagent
are its practical simplicity and broad scope of applicability,
which makes it useful in organic synthesis.

Experimental section

Solution-phase synthesis
of 1-benzenesulfonylmethyl-4-vinylbenzene (2)

To a solution of benzenesulfinic acid sodium salt (1.81 g,
11.0 mmol) in methanol (15 mL), 4-vinyl benzylchloride
(1.53 g, 10.0 mmol) and NaI (catalyst) were added. The
reaction mixture was refluxed at 60 − 80 ◦C for 18 h. Then
a saturated aq. Na2S2O3 solution was added to quench the

reaction. The aqueous layer was extracted with CH2Cl2, and
the organic layer was washed with H2O, brine, and then
dried over MgSO4. The crude product was crystallized from
CH2Cl2 and hexane (v/v= 1/1) to yield compound 2 (2.61 g,
92 %) as a white solid: mp 133−135 ◦C; 1H NMR (300 MHz,
CDCl3) δ 7.67–7.27 (m, 7H), 7.04 (d, 8.2 Hz, 2H), 6.68 (dd,
J = 10.9 Hz, 17.6 Hz, 1H), 5.75 (dd, J = 17.6 Hz, 0.7 Hz,
1H), 5.28 (dd, J = 10.9 Hz, 0.7 Hz, 1H), 4.30 (s, 2H); 13C
NMR (75 MHz, CDCl3) δ 138.0 (C), 137.8 (C), 136.0 (CH),
133.7 (CH), 130.9 (CH), 128.9 (CH), 128.6 (CH), 127.4
(C), 126.3 (CH), 114.8 (CH2), 62.6 (CH2); IR (KBr): 1230,
1144 cm−1; HRMS-EI (M+) calcd for C15H14O2S 258.0715,
found 258.0712.

Solution-phase synthesis of 1-(1-benzenesulfonyl-
2-phenyl-ethyl)-4-vinyl-benzene (3)

n-BuLi (2.5 M in hexane, 8.50 mL) was added to a dry mix-
ture of DMSO (2.75 g, 35.3 mmol) in THF (150 mL) at
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Scheme 6 Solid-phase organic
synthesis of sulfonamide 16 and
urea 17
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−78 ◦C under nitrogen. The reaction mixture was warmed
to room temperature and stirred for 1 h. To this mixture a solu-
tion of 2 (1.82 g, 7.05 mmol) in THF was added at −78 ◦C,
the reaction mixture was allowed to warm to room tempera-
ture and allowed to react for 1 h. The mixture was cooled to
−78 ◦C, a solution of benzyl bromide (1.33 g, 7.76 mmol) in
THF (20 mL) was added, the reaction mixture was allowed
to warm to room temperature, and it was further stirred for
1 h. After completion of the reaction, water was added to
quench the reaction, the aqueous layer was extracted with
CH2Cl2, and the organic layer was washed with H2O and
brine, dried over MgSO4. The crude product was purified by
column chromatography using hexane/AcOEt (v/v= 4/1) as
eluent to give 3 (0.82 g, 50 %) as a white solid: mp 105–
107 ◦C; 1H NMR (300 MHz, CDCl3) δ 7.63–6.97 (m, 14H),
6.63 (dd, J = 10.9 Hz, 17.6 Hz, 1H), 5.71 (dd, J = 17.6 Hz,
0.7 Hz, 1H), 5.25 (dd, J = 10.9 Hz, 0.7 Hz, 1H), 4.30
(dd, J = 3.2 Hz, 11.7 Hz, 1H), 3.83 (dd, J = 3.2 Hz,
13.8 Hz, 1H), 3.41 (dd, J = 13.8 Hz, 11.7 Hz, 1H); 13C
NMR (75 MHz, CDCl3) δ 137.8 (C), 137.2 (C), 136.7 (C),
136.0 (CH), 133.5 (CH), 131.0 (C), 130.2 (CH), 128.9 (CH),
128.9 (CH), 128.6 (CH), 128.4 (CH), 126.6 (CH), 126.1
(CH), 114.6 (CH2), 72.7 (CH), 33.6 (CH2); IR (KBr): 1447,

1306, 1145, 1084, 610 cm−1; HRMS-EI (M+) calcd for
C22H20O2S 348.1184, found 348.1193.

Solution-phase synthesis of 4-(1-benzenesulfonyl-2-
phenyl-ethyl)-benzaldehyde (4)

A solution of 3 (0.82 g, 23.6 mmol) in CH2Cl2 (20 mL)
was cooled to −78 ◦C, and ozone was bubble through it at
−78 ◦C until the solution turned light blue. After ozonolysis
completion, the solution was added excess Me2S at −78 ◦C.
Then, the reaction mixture was stirred at room temperature
for 12 h. The solvent was evaporated, and the crude product
was purified by column chromatography to give compound 4
(0.62 g, 75 %) as a white solid: mp 111 − 113 ◦C; 1H NMR
(300 MHz, CDCl3) δ 9.93 (s, 1H), 7.70–6.93 (m, 14H), 4.40
(dd, J = 3.2 Hz, 11.8 Hz, 1H), 3.85 (dd, J = 3.2 Hz,
13.9 Hz, 1H), 3.42 (dd, J = 13.9 Hz, 11.8 Hz, 1H); 13C
NMR (75 MHz, CDCl3) δ 191.5 (CH), 138.5 (C), 136.9 (C),
136.2 (C), 136.0 (C), 133.9 (CH), 130.6 (CH), 129.4 (CH),
128.9 (CH), 128.8 (CH), 128.8 (CH), 128.5 (CH), 126.8
(CH), 72.7 (CH), 33.8 (CH2); IR (KBr): 1680, 1302, 1139,
523 cm−1; HRMS-EI (M+) calcd for C21H18O3S 348.1184,
found 348.1193.
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Table 1 Reaction substrate
scope of solid-phase synthesis
of sulfonamides and ureas

Entry isolate
yield (%)a
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Solution-phase synthesis of [4-(1-benzenesulfonyl-2-
phenyl-ethyl)-benzyl]-hexylamine (5)

To a solution of compound 4 (0.62 g, 17.7 mmol) in THF
(25 mL), n-hexylamine (0.20 g, 19.5 mmol) and MgSO4
(4 g) were added and the reaction mixture was refluxed for
5 h. The original solvent, THF, was removed by rotary evapo-
ration and new solvent, methanol (20 mL), was added. After
changing the solvent, NaBH4 (0.09 g, 27.3 mmol) was added
at 0 ◦C. Thereafter, the reaction mixture was warmed to room
temperature and allowed to react for 1 h. Then, the crude
product was filtered to remove MgSO4. The crude prod-
uct was extracted with CH2Cl2, and the organic layer was
washed with H2O and brine, and then dried over MgSO4.

The crude product was purified by column chromatography
using hexane/acetone (v/v= 2/1) as eluent to give 5 (0.58 g,
75 %) as a yellow oil: 1H NMR (300 MHz, CDCl3) δ 7.58–
6.93 (m, 14H), 4.31 (dd, J = 3.1 Hz, 11.7 Hz,1H), 3.80
(dd, J = 3.1 Hz, 13.8 Hz, 1H), 3.66 (s, 2H), 3.39 (dd,
J = 11.7 Hz, 13.8 Hz, 1H), 2.52 (t, J = 7.1 Hz, 2H),
1.48–1.27 (m, 8H), 0.87 (t, J = 6.5 Hz, 3H); 13C NMR
(75 MHz, CDCl3) δ 140.8 (C), 136.9 (C), 136.5 (C), 133.1
(CH), 129.7 (C), 129.7 (CH), 128.6 (CH), 128.6 (CH), 128.2
(CH), 128.0 (CH), 127.60 (CH), 126.2 (CH), 72.2 (CH), 53.0
(CH2), 49.0 (CH2), 33.4 (CH2), 31.4 (CH2), 29.6 (CH2),
26.6 (CH2), 22.2 (CH2), 13.7 (CH3); IR (KBr): 2927, 1306,
1145, 612 cm−1; HRMS-EI (M+) calcd for C27H33NO2S
435.2232, found 435.2242.
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Solution-phase synthesis of N-[4-(1-benzenesulfonyl-2-
phenyl-ethyl)-benzyl]-N-hexyl-4-methyl-benzene-
sulfonamide (6)

To a solution of compound 5 (0.34 g, 0.78 mmol) in CH2Cl2
(10 mL), Et3N (0.08 g, 0.78 mmol) and TsCl
(0.18 g, 0.94 mmol) were added and the reaction mixture
was stirred at room temperature for 3 h. The solvent was
evaporated, and the crude product was purified by column
chromatography to give compound 6 (0.33 g, 72 %) as a yel-
low oil: 1H NMR (300 MHz, CDCl3) δ 7.70–6.93 (m, 18H),
4.32 (dd, J = 2.9 Hz, 11.6 Hz, 1H), 4.21 (s, 2H), 3.80 (dd,
J = 2.9 Hz, 13.8 Hz, 1H), 3.37 (dd, J = 11.6 Hz, 13.8 Hz,
1H), 2.99 (t, J = 7.3 Hz, 2H), 2.38 (s, 3H), 1.06–1.26 (m,
8H), 0.81 (t, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ

143.0 (C), 137.2 (C), 136.9 (C), 136.5 (C), 136.4 (C), 133.4
(CH), 130.9 (C), 129.9 (CH), 129.4 (CH), 128.6 (CH), 128.6
(CH), 128.4 (CH), 128.1 (CH), 127.9 (CH), 126.8 (CH),
126.4 (CH), 72.2 (CH), 51.3 (CH2), 48.0 (CH2), 33.4 (CH2),
30.8 (CH2), 27.6 (CH2), 26.0 (CH2), 22.2 (CH2), 21.2 (CH3),
13.7 (CH3); IR (KBr): 2929, 1337, 1306, 1146, 1086 cm−1;
HRMS-EI (M+) calcd for C34H39NO4S2 589.2320, found
589.2331.

Solution-Phase Synthesis of N-Hexyl-4-methyl-N-[4-(1-
methyl-2-phenyl-ethyl)-benzyl]-benzenesulfonamide (7)

To a solution of compound 6 (0.33 g, 0.56 mmol) in CH2Cl2
(10 mL), trimethylaluminum (2.0 M, 2.24 mL,
4.48 mmol) was added at 0 ◦C and the reaction mixture was
warmed to room temperature to react for 1 h. After reac-
tion completion, saturated aq. NH4Cl solution was added to
quench the reaction. The aqueous layer was extracted with
CH2Cl2, and the organic layer was washed with H2O and
brine, dried over MgSO4. The solvent was evaporated and
gave the yellow oil compound 7 (0.21 g, 81 %) without purifi-
cation. 1H NMR (300 MHz, CDCl3) δ 7.71 (d, J = 8.3 Hz,
2H), 7.02–7.70 (m, 11H), 4.26 (s, 2H), 2.75–3.08 (m, 5H),
2.40 (s, 3H), 1.06–1.27 (m, 11H), 0.80 (t, J = 6.7 Hz, 3H);
13C NMR (75 MHz, CDCl3) δ 146.3 (C), 142.9 (C), 140.5
(C), 137.1 (C), 134.0 (C), 129.5 (CH), 129.0 (CH), 128.2
(CH), 127.9 (CH), 127.0 (CH), 127.0 (CH), 125.7 (CH), 51.5
(CH2), 47.9 (CH2), 44.9 (CH2), 41.4 (CH), 31.1 (CH2), 27.7
(CH2), 26.1 (CH2), 22.3 (CH2), 21.4 (CH3), 21.0 (CH3),
13.8 (CH3); IR (KBr): 2926, 1339, 1159, 1091, 656, 549
cm−1; HRMS-EI (M+) calcd for C29H37NO2S 463.2545,
found 463.2554.

Preparation of sulfinated-functionalized resin (8)

Cyclohexane (200 mL) was distilled directly into a flask-
containing polystyrene (40 g). Under a nitrogen atmosphere,
TMEDA (30 mL) was introduced, the mixture was cooled to

0 ◦C with gentle stirring, and n-BuLi (2.5 M, 153 mL) was
added. The resin changed from off-white to orange and the
reaction mixture was refluxed for 18 h. The resulting brown
lithiated polymer was washed with dry THF (3×500 mL),
cooled to −78 ◦C, and SO2 (g) was bubbled through the
THF-swollen polymer for 1 h. The reaction was quenched by
addition of H2O (1-h slow addition), the polymer was washed
with THF, THF/H2O (4/1), THF, and ether, and the collected
resin was dried under high vacuum for 24 h. IR (KBr): 2923,
1634, 1600, 1493, 1452, 1131, 1027, 966 cm−1.

Solid-phase synthesis of polymer-bound
1-benzenesulfonylmethyl-4-vinyl-benzene (9)

Sulfinated-functionalized resin 8 (10.0 g) was swollen in
DMF and methanol (4:1) (100 mL), 4-vinyl benzylchloride
(8.47 g, 50.0 mmol), and NaI (10.0 g) were added. The reac-
tion mixture was heated at 60 − 80 ◦C for 12 h. The resin
was filtered and washed sequentially with MeOH (50 mL ×
3), DCM (50 mL × 3), MeOH (50 mL × 3), ether (50 mL ×
3) and dried overnight in a vacuum oven at 40 ◦C to afford
resin 9. IR (KBr): 2920, 2849, 1599, 1492, 1452, 1320, 1302,
1148, 1126, 697 cm−1.

General procedures for the synthesis of polymer-bound
1-(1-benzene-sulfonyl-2-phenyl-ethyl)-4-vinyl-benzene

To a solution of resin 9 (1.1 g) in THF (20 mL), dry DMSO
(25.0 equiv) and n-BuLi (2.5 M in hexane, 15.0 equiv) were
added at −78 ◦C. The reaction mixture was warmed to room
temperature and stirred for 1 h. Thereafter the mixture was
cooled to −78 ◦C, a solution of benzyl bromide (5.0 equiv)
in THF (20 mL) was added, and the reaction mixture was
warmed to room temperature and stirred for 1 h. The resin
was filtered and washed sequentially with MeOH (50 mL ×
3), DCM (50 mL × 3), MeOH (50 mL × 3), ether (50 mL ×
3), and dried overnight in a vacuum oven at 40 ◦C to afford
products.

Synthesis of polymer-bound 4-[2-benzenesulfonyl-2-
(4-vinyl-phenyl)-ethyl]-benzonitrile (10)

IR (KBr): 2921, 2227, 1600, 1493, 1452, 1302, 1141,
698 cm−1.

Synthesis of polymer-bound 1-(1-benzenesulfonyl-
2-(4-bromo)phenyl -ethyl)-4-vinyl-benzene (10a).

IR (KBr): 2923, 1598, 1490, 1451, 1300, 1140, 1085, 1072,
1011, 698 cm−1.
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Synthesis of polymer-bound
1-(1-benzenesulfonyl-2-(3-methoxy)-
phenyl-ethyl)-4-vinylbenzene (10d)

IR (KBr): 3024, 2917, 1600, 1492, 1452, 1259, 1139, 1041,
758, 697 cm−1.

Synthesis of polymer-bound
1-(1-benzenesulfonyl-2-(4-methyl)
phenyl-ethyl)-4-vinylbenzene (10h)

IR (KBr): 3023, 2921, 1599, 1513, 1492, 1452, 1300, 1138,
758, 697, 619 cm−1.

Synthesis of polymer-bound 1-(1-benzenesulfonyl-2-
phenyl-ethyl) -4-vinylbenzene (10j)

IR (KBr): 3025, 2921, 1600, 1493, 1452, 1300, 1138, 1084,
749, 697 cm−1.

General procedures for the synthesis of polymer-bound
4-(1-benzenesulfonyl-2-phenyl-ethyl)-benzaldehyde

The solution of olefin resin (4.3 g) in CH2Cl2 (50 mL) was
cooled to −78 ◦C, and ozone was bubble through it at −78 ◦C
until the solution turned light blue. The resin was filtered and
washed sequentially with MeOH (50 mL × 3), DCM (50 mL
× 3), MeOH (50 mL × 3), ether (50 mL × 3) and dried
overnight in a vacuum oven at 40 ◦C to afford products.

Synthesis of polymer-bound
4-[1-benzenesulfonyl-2-(4-bromo-phenyl)
-ethyl]-benzaldehyde (12a)

IR (KBr): 2924, 1704, 1606, 1490, 1451, 1301, 1139, 1011,
758, 698 cm−1.

Synthesis of polymer-bound
4-[1-benzenesulfonyl-2-(3-methoxy
-phenyl)-ethyl]-benzaldehyde (12d)

IR (KBr): 3025, 2922, 1701, 1601, 1492, 1452, 1302, 1260,
1140, 1083, 1041, 757, 697 cm−1.

Synthesis of polymer-bound
4-(1-benzenesulfonyl-2-p-tolyl-ethyl) -benzaldehyde (12h)

IR (KBr): 3024, 2921, 1702, 1605, 1493, 1452, 1302, 1139,
1084, 1042, 759, 698 cm−1.

Synthesis of polymer-bound
4-(1-benzenesulfonyl-2-phenyl-ethyl) -benzaldehyde (12j)

IR (KBr): 3025, 2923, 1704, 1602, 1493, 1452, 1386, 1302,
1139, 1084, 759 cm−1.

General procedures for the synthesis of polymer-bound
hexylamine and bezylamine

To a solution of benzaldehyde resin (2.0 g) in DMF (30 mL)
was added n-hexyl amine or benzyl amine (5.0 equiv) and
refluxed for 12 h. Then, NaBH4 (5.0 equiv) was added at
0 ◦C and stirred for 5 h at room temperature. The resin was
filtered and washed sequentially with MeOH (50 mL × 3),
DCM (50 mL × 3), MeOH (50 mL × 3), ether (50 mL ×
3) and dried overnight in a vacuum oven at 40 ◦C to afford
products.

Synthesis of polymer-bound
4-[1-benzenesulfonyl-2-(4-bromo
-phenyl)-ethyl]-benzyl-hexylamine (13a)

IR (KBr): 3025, 2930, 1599, 1490, 1451, 1300, 1139, 1011,
698 cm−1.

Synthesis of polymer-bound
4-[1-benzenesulfonyl-2-(4-bromo
-phenyl)-ethyl]-benzyl-benzylamine (13c)

IR (KBr): 3024, 2923, 1600, 1491, 1452, 1301, 1141, 1011,
758, 698, 620 cm−1.

Synthesis of polymer-bound
4-[1-benzenesulfonyl-2-(3-methoxy
-phenyl)-ethyl]-benzyl-benzylamine (13d)

IR (KBr): 3024, 2921, 1601, 1493, 1452, 1302, 1142, 759,
698, 620 cm−1.

Synthesis of polymer-bound
4-[1-benzenesulfonyl-2-(3-methoxy
-phenyl)-ethyl]-benzyl-hexylamine (13f)

IR (KBr): 3024, 2923, 1601, 1493, 1452, 1139, 1084, 1040,
758, 697 cm−1.

Synthesis of polymer-bound
[4-(1-benzenesulfonyl-2-p-tolyl-ethyl)
-benzyl]-benzylamine (13h)

IR (KBr): 3024, 2923, 1600, 1493, 1452, 1301, 1183, 1139,
1040, 759, 697 cm−1.
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Synthesis of polymer-bound
[4-(1-benzenesulfonyl-2-p-tolyl-ethyl)
-benzyl]-hexylamine (13i)

IR (KBr): 3024, 2923, 1600, 1493, 1452, 1301, 1138, 1040,
759, 697 cm−1.

Synthesis of polymer-bound
[4-(1-benzenesulfonyl-2-phenyl-ethyl)
-benzyl]-benzylamine (13j)

IR (KBr): 3025, 2923, 1600, 1492, 1452, 1297, 1136, 757,
696 cm−1.

General procedures for the synthesis of polymer-bound
sulfonamide and urea

To a solution of swollen amine resin (2.0 g) in CH2Cl2
(20 mL), Et3N (10 mmol, 5.0 equiv) and TsCl (10 mmol,
5.0 equiv) or phenyl isocyanate (10.0 mmol, 5.0 equiv) were
added and the reaction mixture was stirred at ambient temper-
ature for 8 h. The resin was filtered and washed sequentially
with MeOH (50 mL × 3), DCM (50 mL × 3), MeOH (50 mL
× 3), ether (50 mL × 3) and dried overnight in a vacuum oven
at 40 ◦C to afford products.

Synthesis of polymer-boundN-4-[1-Benzenesulfonyl-
2-(4-bromo-phenyl)-ethyl]-benzyl-N-hexyl-4-
methyl-benzenesulfonamide (14a)

IR (KBr): 2925, 2853, 1599, 1491, 1452, 1303, 1155, 1143,
1089, 1011, 760, 698 cm−1.

Synthesis of polymer-bound
1-4-[1-benzenesulfonyl-2-(4-bromo
-phenyl)-ethyl]-benzyl-1-hexyl-3-phenylurea (15b)

IR (KBr): 2922, 1665, 1596, 1525, 1490, 1442, 1301, 1139,
1010, 753, 698 cm−1.

Synthesis of polymer-boundn-4-[1-benzenesulfonyl-2-
(4-bromo-phenyl)-ethyl]-benzyl-N-benzyl-4-
methyl-benzenesulfonamide (14c)

IR (KBr): 3024, 2921, 1600, 1492, 1452, 1304, 1144, 1011,
758, 698, 618 cm−1.

Synthesis of polymer-boundN-4-[1-benzenesulfonyl-
2-(3-methoxy-phenyl)-ethyl]-benzyl-N-benzyl-4-
methyl-benzenesulfonamide (14d)

IR (KBr): 3026, 2925, 1600, 1493, 1452, 1304, 1143, 1087,
759, 698 cm−1.

Synthesis of polymer-bound
1-4-[1-benzenesulfonyl-2-(3-methoxy
-phenyl)-ethyl]-benzyl-1-benzyl-3-phenylurea (15e)

IR (KBr): 3025, 2924, 1671, 1600, 1493, 1453, 1302, 1141,
1040, 756, 698 cm−1.

Synthesis of polymer-boundN-4-[1-benzenesulfonyl-
2-(3-methoxy-phenyl)-ethyl]-benzyl-N-hexyl-4-
methyl-benzenesulfonamide (14f)

IR (KBr): 3024, 2924, 1600, 1492, 1452, 1138, 1085, 1028,
756 cm−1.

Synthesis of polymer-bound
1-4-[1-benzenesulfonyl-2-(3-methoxy
-phenyl)-ethyl]-benzyl-1-hexyl-3-phenylurea (15g)

IR (KBr): 3024, 2922, 1670, 1600, 1492, 1452, 1302, 1140,
1040, 755, 697 cm−1.

Synthesis of polymer-bound
1-[4-(1-benzenesulfonyl-2-p-tolyl-ethyl)
-benzyl]-1-benzyl-3-phenylurea (15h)

IR (KBr): 3025, 2921, 1671, 1599, 1493, 1452, 1302, 1220,
1140, 756, 699 cm−1.

Synthesis of polymer-bound
1-[4-(1-benzenesulfonyl-2-p-tolyl-ethyl)
-benzyl]-1-hexyl-3-phenylurea (15i)

IR (KBr): 3023, 2921, 1668, 1597, 1493, 1444, 1302, 1139,
1041, 756, 699 cm−1.

Synthesis of polymer-boundN-[4-(1-benzenesulfonyl-2-
phenyl-ethyl)-benzyl]-N
-benzyl-4-methyl-benzenesulfonamide (14j)

IR (KBr): 3023, 2920, 1701, 1636, 1600, 1492, 1451, 1300,
1136, 756, 696 cm−1.
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Synthesis of polymer-bound
1-[4-(1-benzenesulfonyl-2-phenyl-ethyl)
-benzyl]-1-benzyl-3-phenylurea (15k)

IR (KBr): 3026, 2925, 1671, 1599, 1493, 1452, 1301, 1139,
757, 697 cm−1.

General procedures for cleavage of the products from
the solid support

To a solution of swollen resin (2.0 g) in CH2Cl2 (30 mL),
trimethylaluminum (2.0 M in toluene, 32.0 mmol) was added
at 0 ◦C and the reaction mixture was warmed to room temper-
ature and reacted for 8 h. The reaction mixture was poured
into a flask containing ice and the aqueous layer was extracted
with CH2Cl2, and the organic layer was washed with H2O
and brine, dried over MgSO4. The crude product was purified
by column chromatography (hexane/ethyl acetate = 4/1) and
preparative TLC to give products as yellow oil with overall
yields in the range of 11–15 %.

Synthesis of 4-[2-(4-vinyl-phenyl)-propyl]-
benzonitrile (11)

1H NMR (300 MHz, CDCl3) δ 7.48 (d, J = 8.2 Hz, 2H),
7.31 (d, J = 8.2 Hz, 2H), 7.13–7.05 (m, 4H), 6.68 (dd,
J = 10.9 Hz, 17.6 Hz, 1H), 5.70 (dd, J = 17.6 Hz, 0.6 Hz,
1H), 5.20 (dd, J = 0.6 Hz, 10.9 Hz, 1H), 3.03–2.84 (m, 3H),
1.26 (d, J = 6.6 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ

146.2 (C), 145.3 (C), 136.4 (CH), 135.7 (C), 131.8 (CH),
129.8 (CH), 127.1 (CH), 126.2 (CH), 119.0 (C), 113.2 (CH2),
109.7 (C), 44.9 (CH2), 41.3 (CH), 21.3 (CH3); IR (KBr):
2926, 2927, 2226, 1700, 1606,832 cm−1; HRMS-EI (M+)

calcd for C18H17N 247.1361, found 247.1357.

Synthesis of N-4-[2-(4-bromo-phenyl)-1-methyl-
ethyl]-benzyl-N-hexyl-4-methyl-benzenesulfonamide (16a)

1H NMR (300 MHz, CDCl3) δ 7.70 (d, J = 8.3 Hz, 2H),
7.29 (dd, J = 8.3 Hz, J = 2.0 Hz, 4H), 7.16 and 7.05 (ABq,
J = 8.1 Hz, 4H), 6.87 (d, J = 8.3 Hz, 2H), 4.25 (s, 2H),
3.03 (t, J = 7.5 Hz, 2H), 2.71–2.80 (m, 3H), 2.41 (s, 3H),
1.05–1.29 (m, 11H), 0.78 (t, J = 6.8 Hz, 3H); 13C NMR
(75 MHz, CDCl3) δ 145.8 (C), 143.0 (C), 139.5 (C), 137.2
(C), 134.3 (C), 131.1 (CH), 130.8 (CH), 129.6 (CH), 128.3
(CH), 127.1 (CH), 127.1 (CH), 119.6 (C), 51.5 (CH2), 48.0
(CH2), 44.3 (CH2), 41.4 (CH), 31.2 (CH2), 27.8 (CH2), 26.2
(CH2), 22.4 (CH2), 21.5 (CH3), 21.2 (CH3), 13.9 (CH3); IR
(KBr): 2957, 2927, 1488, 1339, 1158, 1091, 1011, 656, 549
cm−1; HRMS-EI (M+) calcd for C29H36BrNO2S 541.1650,
found 541.1666.

Synthesis of 1-4-[2-(4-bromo-phenyl)-1-methyl-
ethyl]-benzyl-1-hexyl-3-phenylurea (17b)

1H NMR (300 MHz, CDCl3) δ 7.33–7.12 (m, 11H), 6.90 (d,
J = 8.3 Hz, 2H), 6.25 (s, 1H), 4.52 (s, 2H), 3.38 (t, J =
7.6 Hz, 2H), 2.99–2.74 (m, 3H), 1.38–1.23 (m, 11H), 0.86–
0.91(b, 3H); 13C NMR (75 MHz, CDCl3) δ 155.5 (C), 146.0
(C), 139.5 (C), 139.2 (C), 135.3 (C), 131.2 (CH), 130.9 (CH),
128.9 (CH), 127.8 (CH), 127.0 (CH), 123.0 (CH), 119.8
(CH), 119.8 (C), 50.7 (CH2), 48.3 (CH2), 44.3 (CH2), 41.5
(CH), 31.6(CH2), 28.5 (CH2), 26.7 (CH2), 22.6 (CH2), 21.4
(CH3), 14.1 (CH3); IR (KBr): 2923, 1339, 1158, 1093, 1011,
657, 550 cm−1; HRMS-EI (M+) calcd for C29H35BrNO2

506.1933, found 506.1946.

Synthesis of N-benzyl-N-4-[2-(4-bromo-phenyl)-1-methyl-
ethyl]-benzyl-4-methyl-benzenesulfonamide (16c)

1H NMR (300 MHz, CDCl3) δ 7.74 (d, J = 8.2 Hz, 2H),
7.35–6.87 (m, 15H), 4.23–4.33 (m, 4H), 2.93–2.63 (m, 3H),
2.46 (s, 3H), 1.21 (d, J = 6.8 Hz, 3H); 13C NMR (75 MHz,
CDCl3) δ 145.8 (C), 143.2 (C), 139.6 (C), 137.8 (C), 135.8
(C), 133.4 (C), 131.1 (CH), 130.8 (CH), 129.7 (CH), 128.7
(CH), 128.5 (CH), 128.3 (CH), 127.6 (CH), 127.3 (CH),
127.0 (CH), 50.4 (CH2), 50.3 (CH2), 44.3 (CH2), 41.4 (CH),
21.5 (CH3), 21.2 (CH3); HRMS-EI (M+) calcd for
C30H30BrNO2S 547.1181, found 547.1158.

Synthesis of N-benzyl-N-4-[2-(3-methoxy-phenyl)-
1-methyl-ethyl]-benzyl-4-methyl-benzenesulfonamide
(16d)

1H NMR (300 MHz, CDCl3) δ 7.73 (d, J = 8.2 Hz, 2H),
7.31–6.91 (m, 12H), 6.72–6.59 (m, 3H), 4.34 (s, 2H), 4.29
(s, 2H), 3.74 (s, 3H), 2.99–2.66 (m, 3H), 2.44 (s, 3H), 1.20
(d, J = 6.8 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 159.3
(C), 146.4 (C), 143.2 (C), 142.3 (C), 137.9 (C), 135.9 (C),
133.2 (C), 129.7 (CH), 129.1 (CH), 128.7 (CH), 128.7 (CH),
128.4 (CH), 127.6 (CH), 127.3 (CH), 127.1 (CH), 121.5
(CH), 114.9 (CH), 111.00 (CH), 55.1 (CH3), 50.3 (CH2),
50.2 (CH2), 44.9 (CH2), 41.4 (CH), 21.5 (CH3), 21.2 (CH3);
HRMS-EI (M+) calcd for C31H33NO3S 499.2181, found
499.2179.

Synthesis of 1-benzyl-1-4-[2-(3-methoxy-phenyl)-1-methyl
-ethyl]-benzyl-3-phenylurea (17e)

1H NMR (300 MHz, CDCl3) δ 7.37–6.2 (m, 18H), 6.33 (s,
1H), 4.61 (s, 2H), 4.56 (s, 2H), 3.74 (s, 3H), 3.04–2.71
(m, 3H), 1.25 (d, J = 6.8 Hz, 3H); 13C NMR (75 MHz,
CDCl3) δ 159.4 (C), 155.9 (C), 146.7 (C), 142.2 (C), 138.9
(C), 137.3 (C), 134.6 (C), 129.0 (CH), 128.9 (CH), 128.8
(CH), 127.7 (CH), 127.7 (CH), 127.4 (CH), 127.3 (CH),
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123.0 (CH), 121.6 (CH), 119.8 (CH), 114.9(CH), 111.1 (CH),
55.1 (CH3), 50.8 (CH2), 50.5 (CH2), 44.9 (CH2), 41.4 (CH),
21.3 (CH3); IR (KBr): 2925, 1646, 1598, 1531, 1444 cm−1;
HRMS-EI (M+) calcd for C31H32N2O2 464.2464, found
464.2473.

Synthesis of N-hexyl-N-4-[2-(3-methoxy-phenyl)-
1-methyl-ethyl]-benzyl-4-methyl-
benzenesulfonamide (16f)

1H NMR (300 MHz, CDCl3) δ 7.73 (d, J = 8.2 Hz, 2H),
7.33–7.10 (m, 7H), 6.74–6.62 (m, 3H), 4.28 (s, 2H), 3.76 (s,
3H), 3.10–2.73 (m, 5H), 2.45 (s, 3H), 1.31–1.08 (m, 11H),
0.81 (t, J = 6.7 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ

159.4 (C), 146.5 (C), 143.0 (C), 142.3 (C), 137.3 (C), 134.1
(C), 129.6 (CH), 129.0 (CH), 128.3 (CH), 127.2 (CH), 127.1
(CH), 121.6 (CH), 114.8 (CH), 111.1 (CH), 55.1 (CH3), 51.5
(CH2), 47.9 (CH2), 45.0 (CH2), 41.4 (CH), 31.2 (CH2), 27.8
(CH2), 26.2 (CH2), 22.4 (CH2), 21.5 (CH3), 21.2 (CH3),
13.9 (CH3); IR (KBr): 2926, 1338, 1260, 1157, 1090, 655,
549 cm−1; HRMS-EI (M+) calcd for C30H39NO3S 493.2651,
found 493.2662.

Synthesis of 1-hexyl-1-4-[2-(3-methoxy-phenyl)-1
-methyl-ethyl]-benzyl-3-phenylurea (17g)

1H NMR (300 MHz, CDCl3) δ 7.26–7.09 (m, 10H), 6.72–
6.63(m, 3H), 6.26 (s, 1H), 4.52 (s, 2H), 3.74 (s, 3H), 3.38
(t, J = 7.6 Hz, 2H), 3.04–2.73 (m, 3H), 1.32–1.23 (m, 11H),
0.89 (t, J = 6.6 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ

159.4 (C), 155.5 (C), 146.6 (C), 142.2 (C), 139.1 (C), 135.0
(C), 129.0 (CH), 128.8 (CH), 127.7 (CH), 126.9 (CH), 122.8
(CH), 121.6 (CH), 119.7 (CH), 114.9 (CH), 111.1 (CH), 55.1
(CH3), 50.7 (CH2), 48.2 (CH2), 44.9 (CH2), 41.4 (CH), 31.6
(CH2), 28.4 (CH2), 26.7 (CH2), 22.6 (CH2), 21.3 (CH3),
14.0 (CH3); IR (KBr): 2957, 2927, 1641, 1596, 1531, 1444,
1260 cm−1; HRMS-EI (M+) calcd for C30H38N2O2 458.2933,
found 458.2940.

Synthesis of 1-benzyl-1-[4-(1-methyl-2-p-tolyl-
ethyl)-benzyl]-3-phenylurea (17h)

1H NMR (300 MHz, CDCl3) δ 7.39–6.95 (m, 18H), 6.33
(s, 1H), 4.64 (s, 2H), 4.57 (s, 2H), 3.02–2.70 (m, 3H), 2.31
(s, 3H), 1.25 (d, J = 6.6 Hz, 3H); 13C NMR (75 MHz,
CDCl3) δ 156.0 (C), 146.9 (C), 39.0 (C), 137.5 (C), 137.4 (C),
135.4 (C), 134.7 (C), 129.0 (CH), 129.0 (CH), 128.9 (CH),
128.9 (CH), 127.8 (CH), 127.8 (CH), 127.5 (CH), 127.3
(CH), 123.1 (CH), 119.8 (CH), 50.9 (CH2), 50.6 (CH2), 44.6
(CH2), 41.6 (CH), 21.3 (CH3), 21.1 (CH3); HRMS-EI (M+)

calcd for C31H32N2O 448.2515, found 448.2523.

Synthesis of 1-hexyl-1-[4-(1-methyl-2-p-tolyl-ethyl)-
benzyl]-3-phenylurea (17i)

1H NMR (300 MHz, CDCl3) δ 7.28–6.97 (m, 13H), 6.27 (s,
1H), 4.54 (s, 2H), 3.40 (t, J = 7.6 Hz, 2H), 3.02–2.71 (m,
3H), 2.30 (s, 3H), 1.33–1.23 (m, 11H), 0.90 (t, J = 6.6 Hz,
3H); 13C NMR (75 MHz, CDCl3) δ 155.5 (C), 146.7 (C),
139.1 (C), 137.5 (C), 135.3 (C), 134.9 (C), 129.0 (CH),
128.8 (CH), 128.8 (CH), 127.7 (CH), 126.9 (CH), 122.9
(CH), 119.7 (CH), 50.8 (CH2), 48.3 (CH2), 44.5 (CH2), 41.6
(CH), 31.6 (CH2), 28.4 (CH2), 26.7 (CH2), 22.6 (CH2), 21.2
(CH3), 21.0 (CH3), 14.0 (CH3); HRMS-EI (M+) calcd for
C30H38N2O 442.2984, found 442.2983.

Synthesis ofN-benzyl-4-methyl-N-[4-(1-methyl-2-phenyl-
ethyl)-benzyl]-benzenesulfonamide (16j)

1H NMR (300 MHz, CDCl3) δ 7.75 (d, J = 6.6 Hz, 2H),
7.33–6.94 (m, 16H), 4.31 (s, 2H), 4.29 (s, 2H), 3.01–2.71
(m, 3H), 2.46 (s, 3H), 1.22 (d, J = 6.6 Hz, 3H); 13C NMR
(75 MHz, CDCl3) δ 146.4 (C), 143.2 (C), 140.6 (C), 137.7
(C), 135.8 (C), 133.1 (C), 129.6 (CH), 129.1 (CH), 128.6
(CH), 128.5 (CH), 128.3 (CH), 128.0 (CH), 127.5 (CH),
127.2 (CH), 127.0 (CH), 125.8 (CH), 50.3 (CH2), 50.2 (CH2),
44.9 (CH2), 41.5 (CH), 21.5 (CH3), 21.1 (CH3); IR (KBr):
2926, 1741, 1455, 1159, 1094 cm−1; HRMS-EI (M+) calcd
for C30H31N2OS 469.2075, found 469.2079.

Synthesis of 1-benzyl-1-[4-(1-methyl-2-phenyl-ethyl)-
benzyl]-3-phenylurea (17k)

1H NMR (300 MHz, CDCl3) δ 7.36–6.98 (m, 19H), 6.34 (s,
1H), 4.61 (s, 2H), 4.54 (s, 2H), 3.06–2.74 (m, 3H), 1.24 (d,
J = 6.7 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 155.9 (C),
146.6 (C), 140.5 (C), 138.9 (C), 137.3 (C), 134.6 (C), 129.1
(CH), 128.9 (CH), 128.8 (CH), 128.8 (CH), 128.1 (CH),
127.7 (CH), 127.4 (CH), 127.3 (CH), 125.9 (CH), 123.0
(CH), 119.8 (CH), 50.8 (CH2), 50.5 (CH2), 44.9 (CH2),
41.5 (CH), 21.2 (CH3); IR (KBr): 2927, 1742, 1456, 1163
cm−1; HRMS-EI (M+) calcd for C30H30N2O 4345.2358,
found 434.2354.
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