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A  new  rhodamine-based  chemosensor  exhibits  excellent  selectivity  for  Fe3+ ions  over  a  wide  range  of
tested  metal  ions  Ag+, Al3+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Hg2+, Mg2+, Mn2+, Ni2+,  Pb2+,  and  Zn2+ in  an
aqueous  solution.  The  binding  of Fe3+ to  chemosensor  1  produces  an  absorption  band  at  564  nm  and  an
emission  band  at 588  nm  because  Fe3+-binding  induces  ring-opening  of  the  spirolactam  in 1.  The  binding
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ratio  of  the  1–Fe3+ complexes  was  determined  to  be  1:1  according  to  a Job  plot.  The  association  con-
stant  (Ka)  of  Fe3+ binding  in chemosensor  1 was  6.9  ×  103 M−1. The  maximum  fluorescence  enhancement
caused  by  Fe3+ binding  in  chemosensor  1  occurred  at  a pH  range  of  6–7.5.  The  fluorescence  microscopy
experiments  in  this  study  demonstrated  that  chemosensor  1  can be  used  as  a  fluorescent  probe  for
detecting  Fe3+ in  living  cells.
maging agents

. Introduction

The development of chemosensors for detecting biologically and
nvironmentally important metal ions, such as Cu2+, Fe3+, Zn2+,
d2+, Hg2+, and Pb2+, has been an important research topic [1–8].

ron is the most abundant essential transition metal ion in humans,
nd acts as a cofactor for many proteins in a wide range of biochem-
cal processes. These processes include oxygen transport, electron
ransport, and oxidoreductase catalysis [9].  The regulation of iron
n the human body is a highly controlled process. Iron deficiency
eads to low oxygen delivery to cells, resulting in anemia, low blood
ressure, and decreased immunity [10]. Conversely, an overload of

ron ions in a living cell can trigger the formation of reactive oxygen
pecies (ROS) through the Fenton reaction. These ROS can damage
ipids, nucleic acids, and proteins. The cellular toxicity caused by
ron ions has been linked with several serious diseases, such as
lzheimer’s, Huntington’s, and Parkinson’s diseases [11–13].

Researchers have developed several traditional methods of
easuring iron ions in various samples, including atomic

bsorption spectrometry [14], inductively coupled plasma mass
pectroscopy (ICPMS) [15], inductively coupled plasma-atomic
mission spectrometry (ICP-AES) [16], and voltammetry [17].
lthough these methods are quantitative, they require the sophis-
icated apparatus, and are not easily employed in on-site analysis.
esearchers have recently focused on the development of selective
nd sensitive sensors for iron detection [18–31].

∗ Corresponding author.
E-mail address: spwu@mail.nctu.edu.tw (S.-P. Wu).
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Because of the paramagnetic nature of Fe3+, most reported
fluorescent Fe3+ chemosensors are based on a fluorescence
quenching mechanism [32–36].  The design of “off-on” fluorescent
Fe3+ chemosensors remains a challenging task. Rhodamine-based
chemosensors provide a solution to the fluorescence-quenching
effect caused by metal ion binding. Rhodamine derivatives undergo
equilibrium between spirolactam (nonfluorescence) and ring-
opened amide (fluorescence) forms, providing an ideal model for
the design of metal ion sensing with light “off-on” switching.
Metal ion binding triggers ring-opening of rhodamine and pro-
duces a red emission. Unfortunately, most of the currently existing
rhodamine-based sensors for Fe(III) ions are undesirably insoluble
in an aqueous solution. In order to resolve this solubility issue –
a major obstacle in the fabrication of water soluble metal ion
chemosensors – the development of suitable water-soluble metal-
binding receptors is very useful as these can be used for highly
sensitive analysis in living cells.

This study designed a rhodamine-based fluorescent chemosen-
sor for metal ion detection in an aqueous solution. Chemosensor 1
was  synthesized by the condensation of rhodamine-B hydrazine
and 2-(N-methylpiperazinylimino)acetaldehyde (Scheme 1).
Chemosensor 1 is colorless and exhibits weak fluorescence.
Binding metal ions to chemosensor 1 induced ring-opening of
rhodamine. This resulted in a red emission and a color change
from colorless to pink because of a shift in the equilibrium state
from a spirolactam to a ring-open amide. The metal ions Ag+, Al3+,

Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Fe3+, Hg2+, Mg2+, Mn2+, Ni2+,
Pb2+, and Zn2+ were tested for metal ion binding selectivity with
chemosensor 1, but Fe3+ was the only ion that caused a visible color
change (from colorless to pink) and a red emission after binding

dx.doi.org/10.1016/j.snb.2012.06.041
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:spwu@mail.nctu.edu.tw
dx.doi.org/10.1016/j.snb.2012.06.041
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Scheme 1. Synthesis of chemosensor 1.

ith chemosensor 1. The fluorescence microscopy experiments in
his study also demonstrated that chemosensor 1 can be used as a
uorescent probe for detecting Fe3+ in living cells.

. Materials and methods

.1. Materials and instrumentation

All reagents were obtained from commercial sources and used
s received without further purification. UV/Vis spectra were
ecorded on an Agilent 8453 UV/Vis spectrometer. Fluorescence
pectra measurements were performed on a Hitachi F-7000 flu-
rescence spectrophotometer. NMR  spectra were obtained on a
ruker DRX-300 and DRX-500 NMR  spectrometer. Fluorescent
ictures were taken on a ZEISS Axio Scope A1 Fluorescence Micro-
cope.

.2. Synthesis of 2-(N-methylpiperazinylimino)acetaldehyde

Glyoxal (232.8 mg,  4.0 mmol, dissolved in 20 mL  MeOH) and
ormic acid (0.5 mL)  were slowly added to a solution of 1-amino-
-methylpiperazine (115.0 mg,  1.0 mmol) in 10 mL  MeOH. The
eaction mixture was stirred at room temperature for 6 h. The
olvent was evaporated under reduced pressure, and the crude
roduct was purified by column chromatography (ethyl acetate:
ethanol = 1:1) to give the compound as a yellow oil. Yield: 116 mg

75%). 1H NMR  (300 MHz, CD3OD): ı 9.35 (d, J = 7.2 Hz, 1H), 7.02 (d,
 = 7.5 Hz, 1H), 3.52 (t, J = 5.4 Hz, 4H), 2.67 (t, J = 5.4 Hz, 4H), 2.40 (s,
H). 13C NMR  (75 MHz, CD3OD): ı 191.9, 131.2, 53.8, 49.8, 44.9. MS
EI): m/z  (%) = 155.1 (19), 99.1 (100) 56.0 (97). HRMS (EI): m/z calcd
or C7H13N3O 155.1059; found 155.1054.

.3. Synthesis of chemosensor 1

2-(N-methylpiperazinylimino)acetaldehyde (155 mg,
.0 mmol) was added to the solution of rhodamine B hydrazine
547 mg,  1.2 mmol) in 15 mL  MeOH. The reaction mixture was
tirred at room temperature for 4 h. The solvent was  evaporated
nder reduced pressure, and the crude product was purified
y column chromatography (ethyl acetate:methanol = 2:1) to
ive compound 1 as a dark red solid. Yield: 273 mg  (46%);
.p. 144–145 ◦C. 1H NMR  (500 MHz, CD3OD): ı 7.88 (m,  2H),

.49–7.43 (m,  2H), 7.07 (d, J = 7.5 Hz 1H), 6.93 (d, J = 7.5 Hz,
H), 6.41 (d, J = 2.5 Hz, 2H), 6.37 (d, J = 9.0 Hz, 2H), 6.29 (dd,

 = 2.5, 9.0 Hz, 2H), 3.31 (q, J = 7.0 Hz, 8H), 3.07 (t, J = 5.5 Hz, 4H),
13
.50 (t, J = 5.5 Hz, 4H), 2.25 (s, 3H), 1.09 (t, J = 7.0 Hz, 12H). C

MR  (125 MHz, CD3OD): ı 167.3, 154.4, 154.0, 150.5, 148.8,
35.2, 135.0, 129.7, 128.6, 128.4, 124.7, 124.1, 109.5, 105.9,
9.4, 67.4, 54.9, 50.7, 45.8, 45.3, 12.9. MS  (FAB): m/z = 594.5
rs B 171– 172 (2012) 1110– 1116 1111

[M + H]+. HRMS (FAB): calcd. for C35H43N7O2 593.3478; found
593.3480.

2.4. The pH dependence on Fe3+ binding in chemosensor 1
studied by fluorescence spectroscopy

Chemosensor 1 (50 �M)  was added with Fe3+ (200 �M)  in 1.0 mL
water–methanol solution (v/v = 9/1, 2 mM buffer). The buffers
were: pH 3–4, KH2PO4–HCl; pH 5–6.5, Hepes; pH 7–10, Tris–HCl.

2.5. Determination of the binding stoichiometry and the
association constants for the binding of Fe3+ to chemosensor 1

The binding stoichiometry of the 1–Fe3+ complex was  deter-
mined from a Job plot [37]. The fluorescence intensity at
588 nm was  plotted against the molar fraction of chemosen-
sor 1 with a total concentration of the sensor and Fe3+ ion
of 50 �M.  The molar fraction at maximum emission intensity
represents the binding stoichiometry of the 1–Fe3+ complex.
The maximum emission intensity was reached at a molar frac-
tion of 0.5 (Fig. 5). This result indicates that chemosensor 1
forms a 1:1 complex with Fe3+. The association constant (Ka)
of 1–Fe3+ complexes was  determined by the Benesi–Hildebrand
Eq. (1) [38,39]:

1
F − F0

= 1

{Ka × (Fmax − F0) × [Fe3+]}
+ 1

Fmax − F0
, (1)

where F is the fluorescence intensity at 588 nm at any given Fe3+

concentration, F0 is the fluorescence intensity at 588 nm in the
absence of Fe3+, and Fmax is the maxima fluorescence intensity at
588 nm in the presence of Fe3+ in solution. The association constant
Ka was  evaluated graphically by plotting 1/(F − F0) against 1/[Fe3+].
Data were linearly fitted according to Eq. (1) and the Ka value was
obtained from the slope and intercept of the line.

2.6. Cell culture

The cell line HeLa was provided by the Food Industry Research
and Development Institute (Taiwan). HeLa cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum (FBS) at 37 ◦C under an atmosphere of 5%
CO2. Cells were plated on 18 mm  glass coverslips and allowed to
adhere for 24 h.

2.7. Fluorescence imaging

Experiments to assess the Fe3+ uptake were performed in
phosphate-buffered saline (PBS) with 20 �M FeCl3. The cells cul-
tured in DMEM were treated with 10 mM solutions of FeCl3 (2 �L;
final concentration: 20 �M)  dissolved in sterilized PBS (pH = 7.4)
and incubated at 37 ◦C for 30 min. The treated cells were washed
with PBS (2 mL  × 3 mL)  to remove remaining metal ions. DMEM
(2 mL)  was added to the cell culture, which was then treated with
a 10 mM solution of chemosensor 1 (2 �L; final concentration:
20 �M)  dissolved in DMSO. The samples were incubated at 37 ◦C
for 30 min. The culture medium was removed, and the treated
cells were washed with PBS (2 mL  × 3 mL)  before observation. Flu-

orescence imaging was  performed with a ZEISS Axio Scope A1
fluorescence microscope. Cells loaded with chemosensor 1 were
excited at 545 nm by using a 50 W Hg lamp. An emission filter of
570 nm was  used.
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Fe titration against chemosensor 1 was monitored using
UV–vis and fluorescence spectra (Fig. 3). The UV–vis spectra show
a new absorption band at 564 nm during Fe3+ titration. Fe3+ bind-
ing with chemosensor 1 caused the ring-opening of rhodamine
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.1. Synthesis of chemosensor 1

Scheme 1 outlines the procedure for synthesizing chemosen-
or 1. 2-(N-methylpiperazinylimino)acetaldehyde was obtained
rom the reaction of 1-amino-4-methylpiperazine and glyoxal.
hemosensor 1 was synthesized through the reaction of rhodamine

 hydrazide and 2-(N-methylpiperazinylimino) acetaldehyde,
hich formed an imine bond. The structure of chemosensor 1
as confirmed using 1H NMR, 13C NMR, and MS  spectra (see

upplementary data). Chemosensor 1 is colorless and nonfluo-
escent, indicating that the spirocyclic form of 1 was retained in
olution.

.2. Cation-sensing properties

The sensing ability of chemosensor 1 was tested by mixing it
ith the metal ions Ag+, Al3+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Fe3+,
g2+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+. The Fe3+ ion was  the only ion

o cause a change in color (from colorless to pink) and red fluores-
ence in chemosensor 1 (Fig. 1). Other metal ions produced minor

hanges or no changes in color and fluorescence. The quantitative
uorescence spectra of chemosensor 1 were recorded in the pres-
nce of several metal ions. Fe3+ was the only metal ion to cause a
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the references to color in this figure legend, the reader is referred to the web  version
of  the article.)
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To determine the binding stoichiometry of the 1–Fe3+ complex,
the emission intensity of chemosensor 1 at 588 nm was plotted as a
function of its molar fraction under a constant total concentration.
Fig. 5 shows the resulting Job plot. The maximum emission inten-
sity was reached at a molar fraction of 0.5. This indicates a 1:1 ratio
for the 1–Fe3+ complex (i.e., one Fe3+ ion binds to one molecule of
chemosensor 1). The formation of a 1:1 1–Fe3+ complex was  con-
firmed by ESI-MS, in which the peak at m/z = 719.3 indicates a 1:1
stoichiometry for the [1 + FeCl2]+ complex (see Fig. S5 in the supple-
mentary data). The association constant Ka of the 1–Fe3+ complex
was  evaluated graphically by plotting 1/�F  against 1/[Fe3+] (Fig. 6).
The data were linearly fitted to the Benesi–Hildebrand equation
and the Ka value was obtained from the slope and intercept of the
line. The association constant (Ka) for Fe3+ binding in chemosen-
sor 1 was determined to be 6.90 × 103 M−1. The detection limit of
chemosensor 1 as a fluorescent sensor for the analysis of Fe3+ was
determined from the plot of fluorescence intensity as a function of
the concentration of Fe3+ (see Fig. 7). It was found that chemosensor
1 has a detection limit of 2.2 �M,  which is allowed for the detection
plexes, H NMR  spectroscopy (Fig. 8) was employed. Fe is a
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Fig. 8. 1H NMR  spectra of chemosensor 1 (10 mM)  in the presence of 1 equivalent of Fe3+ in CD3OD.
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F
t

aramagnetic metal ion and can affect the proton signals that are
lose to the Fe3+ binding site. The proton signals He, Hf and Hg are
hifted downfield upon addition of Fe3+. This indicated the opening
f the spirolactam ring upon coordination to Fe3+ with associated
harge transfer in the xanthene moiety. The proton signals Hh, Hi,
j, Hk and Hl are also shifted downfield upon addition of Fe3+. These
bservations show that Fe3+ binds to chemosenor 1 through one
xygen atom, two imine nitrogen atoms, and one nitrogen atom at

 piperazine moiety (Fig. 9).
A pH titration of chemosensor 1 was conducted to investi-

ate a suitable pH range for Fe3+ sensing. Fig. 10 shows that the
mission intensities of metal-free chemosensor 1 are low, at a
H range of 6–10. The emission intensity increases dramatically
hen the pH value is lower than 4. This is because of protonation-

nduced ring opening in chemosensor 1. After mixing chemosensor
 with Fe3+, the emission intensity at 588 nm is markedly higher

t a pH range of 3.0–7.5. The emission intensity decreases at
H > 7.5. This indicates poor stability of the 1–Fe3+ complexes at
igh pH values. Because chemosensor 1 undergoes ring-opening

ig. 11. Fluorescence images of HeLa cells treated with 1 and FeCl3. (left) Bright field ima
he  references to color in this figure legend, the reader is referred to the web version of th
rs B 171– 172 (2012) 1110– 1116 1115

at low pH, the best pH range for Fe3+ sensing is approximately
6–7.5.

3.3. Living cell imaging

Chemosensor 1 was  used for living cell imaging. To detect Fe3+ in
living cells, HeLa cells were cultured in DMEM supplemented with
10% FBS at 37 ◦C and 5% CO2. Cells were plated on 18 mm  glass cov-
erslips and allowed to adhere for 24 h. HeLa cells were treated with
20 �M FeCl3 for 30 min  and washed with PBS 3 times. The cells were
then incubated with chemosensor 1 (20 �M)  for 30 min and washed
with PBS to remove the remaining sensor. The images of the HeLa
cells were obtained using a fluorescence microscope. Fig. 11 shows
the images of HeLa cells with chemosensor 1 after treatment of
Fe3+. An overlay of fluorescence and bright-field images shows that
the fluorescence signals are localized in the intracellular area, indi-
cating a subcellular distribution of Fe3+ and good cell-membrane
permeability of chemosensor 1.

4. Conclusion

The new fluorescence chemosensor 1 displays an excellent
selectivity for Fe3+ ions over competing metal ions. The fluores-
cence of chemosensor 1 was  significantly enhanced in the presence
of Fe3+, and the addition of Ag+, Al3+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+,
Fe2+, Hg2+, Mg2+, Mn2+, Ni2+, Pb2+, or Zn2+ barely affected the
fluorescence. This rhodamine-based Fe3+ chemosensor is also an
effective method for Fe3+ sensing in living cell imaging.
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ge; (middle) fluorescence image; and (right) merged image. (For interpretation of
e article.)
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