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Abstract — We analytically and numerically verify that two-dimensional (2D) quasicrystalline
matter waves can be formed from the free-time evolution of multiple Gaussian waves regularly
distributed on a circular ring. We also demonstrate that an interesting recurrence phenomenon
can be manifested by adding an extra Gaussian wave on the center of multiple Gaussian waves
uniformly distributed on a ring. We finally employ an optical experiment for the coherent light
passing through the mask to analogously illustrate the formation of 2D quasicrystalline patterns

and the associated recurrence.

Copyright © EPLA, 2012

Introduction. — The hallmark of matter waves in
quantum theory is mainly revealed by the phenomena
of diffraction and interference. Moshinsky in 1952 [1]
first presented the concept of the diffraction-in-time effect
by exploring the edge diffraction of the matter plane
wave suddenly released from a shutter in one dimension.
Moshinsky also verified that the diffraction fringes in the
course of time are mathematically similar to the ones
obtained in the Fresnel diffraction of light. Subsequently,
numerous researchers have investigated various quantum
transients and diffraction effects. Felber et al. [2] and
Szriftgiser et al. [3] have first observed the diffraction
of matter waves with cold neutrons and cold atoms,
respectively. Godoy [4,5] studied the diffraction in time
in the context of Fresnel and Fraunhofer for a slit and
spherical traps. More recently, the concept of diffraction
in time has been extended to explore the topics of
matter waves diffracted by linear potential and moving
mirrors [6-8] and to investigate the transient dynamics of
atom lasers influenced by the optical confinement [9].

With the advent of technological developments, there
will be more experiments with subatomic, atomic, and
molecular particles to be relevant to the quantum tran-
sient phenomena of matter waves. It is believed that theo-
retical proposals for interesting phenomena of quantum

(2) E-mail: yfchen@cc.nctu.edu.tw

diffraction in time domain could provide valuable features
for emergent experiments. The aim of this work is to make
a theoretical proposal to generate two-dimensional (2D)
quasicrystalline patterns from the free-time evolution of
multiple Gaussian waves regularly distributed on a circu-
lar ring. The quasicrystalline structures have fascinated
artists, mathematicians, and scientists in both ancient
and modern cultures [10,11]. It will be of general inter-
est to test experimentally quasicrystalline patterns from
the quantum diffraction of matter waves. Furthermore, we
find an intriguing recurrence phenomenon from the free-
time evolution of 2D quasicrystalline patterns by adding
an extra Gaussian wave on the center of multiple Gaussian
sources uniformly distributed on a ring. Quantum recur-
rence phenomena originate from the simultaneous excita-
tion of discrete quantum levels [12] and have been studied
in atomic and molecular wave packet evolution [13-16]. We
expect that the recurrence phenomenon of matter waves
in free-time evolution can lead to some enchanting ideas
for future experiments. Finally, we exploit the diffraction
of light by spatial slits to analogously demonstrate the
formation of 2D quasicrystalline patterns and the related
recurrence.

Formation and recurrence of quasicrystalline
patterns from diffraction in time. — In terms of the
2D free propagator, the free-time evolution of the quantum
wave function ¢, (z,y) suddenly released at time ¢ =0 is
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(a) T/t =3.38 (b) T.Jt=3.10

(¢) T/t =2.88

(d) T/t =2.63 (e) T/t =2.38

Fig. 1: Numerical patterns calculated with eq. (5) for the case of ¢ =5 at different times.

(a) T/t =3.61 (b) T/t =3.33

(©) T.Jt = 3.06

(d) TJr=2.84 (e) TJt=2.61

Fig. 2: Numerical patterns calculated with eq. (5) for the case of ¢ =12 at different times.

given by [1, 2}
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Considering the initial field to be formed by ¢ Gaussian
waves regularly distributed on a circle, the wave function
can be expressed as
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where the constant a is the packet size of Gaussian
waves and the constant R is the radius of the circle.
Substitution of eq. (2) into eq. (1) leads to
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where 6 =tan"'[2ht/(ma®)] and (7, ¢) is the polar
coordinate of the point (z, y). When the time ¢ is large
enough such that t> Ty =ma?/(2h), eq. (3) can be
simplified as

U(z,y,t) = (%)
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The wave structure in eq. (4) is completely fixed by the
term in the square brackets. With the new variable K =
mR/(ht), the term in the square brackets can be expressed
as Uy(r,¢; K) = Zg;é e 1K cos(¢—(27s/a)) that represents
the 2D periodic lattices for ¢=2, 3, 4, 6 and the 2D
quasicrystalline structures for all other values of ¢ [11,17].
To be brief, the global structures of the wave functions in
eq. (4) reveal periodic or quasicrystalline patterns and are
independent of time.

When an extra Gaussian wave is added on the center of
original ¢ Gaussian waves, eq. (4) becomes

o) = (o ) 5 [ o) 01
®)

The global structure of the wave pattern in eq. (5)
can be seen to be time dependent and is associated with
the factor exp[i(mR?)/(2ht)]. In terms of a new variable
T.=mR?/(4wh), the factor exp[i(mR?)/(2ht)] is given by
expi2nT,/t]. It is clear that ¢ (z,y,t) and ¥(z,y,t+ At)
can share the same wave structure, when the phase differ-
ence satisfies 2n[T./t —T./(t+ At)] = 27. Consequently,
the time period for the recurrence of the wave pattern
in eq. (5) can be derived to be Ty, = At =1t2/(T. —t).
The time-dependent revival period T;.., is close to be a
parabolic function of the time ¢, when the time t satis-
fies t < T,.. For an instant, the characteristic time T, for
cold neutrons with R =100 um is given by 13.5us. As a
result, the revival period 7., for suddenly released cold
neutrons is generally on the order of us. Figures 1(a)—(e)
depict the numerical patterns for the wave functions in
eq. (5) for the case of ¢=5 at the times of T/t =3.38,
3.10, 2.88, 2.63, and 2.38. Figures 2(a)—(e) depict another
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Fig. 3: (Color online) Experimental setup for demonstrating the formation and recurrence of the 2D quasicrystalline patterns.

(a) Z,/2=3.38 (b) ZJ2=3.10

(a) Z /2 =361 (b) ZJz=3.33

case of ¢ =12 at the times of T./t =3.61, 3.33, 3.06, 2.84,
and 2.61. It can be seen that the transient dynamics of
the wave function displays the feature of 2D quasicrys-
talline structures. More intriguingly, there is a recur-
rence phenomenon, as shown in the patterns of figs. 1(a)
and (e) and the patterns of figs. 2(a) and (e).

Optical analogy. — Mathematical similarities between
paraxial optics and non-relativistic quantum mechanics
have been identified for a long time and have been recently
employed to analogously explore the quantum phenom-
ena [18]. More recently, this analogy has been applied
to the use of the oxide-confined vertical-cavity surface-
emitting lasers (VCSELS) to manifest the spatial morphol-
ogy of wave functions [19] and energy-level statistics [20]
in 2D quantum billiards. In addition to confined eigen-
states, the free-time evolution of quantum wave functions
has been verified to be mathematically similar to the
free-space propagation of the coherent light. Here we use
the diffraction of light by spatial slits to analogously
demonstrate the time evolution and recurrence of 2D
quasicrystalline patterns.

To analogously implement g+ 1 localized Gaussian
waves, we experimentally employ a collimated light to

(c)Z/z=2.88

(¢) ZJz=3.06

Fig. 4: (Color online) Experimental transverse patterns for the free-space propagation of the collimated laser light passing
through the masks with ¢ =5 (upper row) and ¢ =12 (lower row) at the positions corresponding to the results shown in fig. 1
and fig. 2.

() Z/z=2.63 (e) Z/z=2.38

(d)Z/z=2.84

(e) ZJz=2.61

illuminate the stencil mask that is precisely fabricated
to have ¢ small apertures regularly distributed on a
circle and a small hole on the center. The optical wave
emitting from the mask at z=0 to the position in the
direction of the +z-axis can be expressed as the Fresnel
transformation:

—ikz

qu(x?y’Z): )\Z
. RS (A At .
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From the comparison of eq. (1) with eq. (6) it is evident
that the time evolution of a 2D quantum state is equiv-
alent to the Fresnel transformation of a near-field opti-
cal field with the substitution of ¢t— 2z and m/h—k,
where k is the wave number of the optical wave. Conse-
quently, the recurrence distance for the optical diffrac-
tion can be analogously found to be Z,., =2?/(Z. — z)
with Z.=kR?/(4r). Figure 3 depicts the experimental
optical configuration for manifesting the free-time evolu-
tion and recurrence of the 2D quasicrystalline patterns.
The light source was a linearly polarized 20 mW He-Ne
laser with a wavelength of 632.8 nm. A beam expander

ie

(6)

10005-p3



H. C. Liang et al.

120 T T T T T T T T
—— Theoretical curve
10 m Experimental results for g=5 T
'é\ ® Experimental results for g=12
Q
~ 80 - -
©
Q
=
S
2 60 .
el
E
‘= 40 -
5}
~
20 -
o 1 ] ] ] ] ] ] ] ]
60 80 100 120 140 160 180 200 220

Distance (cm)

Fig. 5: (Color online) Experimental revival distances for the
free-space propagation of the collimated laser light passing
through the masks with ¢ =5 and ¢ = 12 and numerical results
calculated by Zye, = z2/(Zc —2).

was employed to reduce the beam divergence less than
0.1mrad. Metal masks of different forms were fabricated
with a laser stencil-cutting machine. The radii of the aper-
ture and the ring are 0.08 mm and 3.0 mm, respectively.
Interference patterns formed in the region behind the mask
were imaged by a CCD camera. With Z.=kR?/(47),
k=2n/\, A=0.632 pm, and R =3 mm, the parameter Z.
can be found to be approximately 712 cm.

Figure 4 shows the experimental transverse patterns for
the free-space propagation of the collimated light passing
through the masks corresponding to the cases shown in
fig. 1 and fig. 2 with the substitution of T./t — Z./z.
It can be seen that the experimental patterns agree
quite well with the numerical results shown in fig. 1 and
fig. 2. The good agreement validates that the free-space
propagation of coherent optical light diffracted from the
specific mask can be employed as an analogous observation
of the time evolution of matter waves with ¢ Gaussian
sources regularly distributed on a circle and a Gaussian
source on the center. Finally, we systematically measure
the revival distance as a function of the observed distance
from the optical experiment to verify the expression T}, =
t?/(T. —t) for the revival period. Figure 5 shows the
experimental revival distances and the numerical results
calculated by Z,., = 22/(Z. — z). The excellent agreement
confirms the recurrence phenomenon and the expression
Trew =12/(T. —t).

Conclusion. — In conclusion, we have analytically and
numerically explored the generation of 2D quasicrystalline
patterns from the diffraction-in-time effect of suddenly
released matter waves. We also disclose an intriguing

method to manifest the quantum recurrence phenomenon
in the free-time evolution of 2D quasicrystalline patterns.
Furthermore, we have exploited an optical diffraction
experiment to analogously demonstrate the formation and
recurrence of 2D quasicrystalline patterns in the quantum
dynamics of suddenly released matter waves. It is expected
that the present exploration could offer an important
insight into quantum and optical physics.
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