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Peer-to-peer (P2P) storage systems are expected to be fast, fault-tolerant, scalable, and reliable. Thus, high data
availability is an essential feature of P2P storage systems. In this article, we present a scheme that utilizes a
regenerating code (RC) with caching to improve the performance of content services provided by P2P storage
systems. Erasure coding is commonly employed to support high availability, but this technique requires the
original file to produce redundant data. In contrast, RC solves the problem by collecting the encoded
information. However, RC requires more peers to decode the blocks, which is difficult in a P2P environment
because more peers must simultaneously remain active to hold the file blocks. Based on the RC, we store the
information for a peer that has recently accessed blocks and utilized the data in the peer’s LRU cache to increase
the access performance and reduce the encoding cost. We carried out a series of experiments with different cache
sizes under various levels of P2P availability. The results show that our scheme can outperform the traditional
RC system in terms of access performance, allowing access at least 83% of the time, while also achieving a lower
cost.
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1. Introduction

There are many designs for peer-to-peer (P2P) storage

systems, including OceanStore (Kubiatowicz et al.

2000), CFS (Dabek et al. 2001), PAST (Rowstron

and Druschel 2001), and Total Recall (Bhagwan et al.

2004). In P2P storage systems, data availability is the

main concern because of the need to provide quality

service. Replication and erasure coding schemes are

common methods for creating redundant data to

achieve high availability. In addition, there is a new

application of network coding: regenerating code (RC)

(Dimakis et al. 2010). Unlike erasure coding, which

requires that a full file be stored before encoded blocks

are generated, RC can generate a new encoded block

by collecting sufficient existing encoded blocks without

using the entire file. Although RC offers lower storage

costs and bandwidth than erasure coding, it suffers

from poor access performance (Dimakis et al. 2010). In

this article, we propose a method for improving the

access performance of P2P storage systems.
Below, we discuss the work done in this area and

provide a description of how to solve the problem.

Then, in Sections 4 and 5, we present the experiment

and measurement results. Finally, conclusions are
drawn in Section 6.

2. Related work

Many users may associate P2P networks with well-
known P2P applications, such as BitTorrent and
Skype. A P2P network connects all participants and
allows them to share information and utilize band-
width as a group. Lua et al. (2005) classified P2P
networks as unstructured and structured P2P net-
works. In structured P2P networks, the links and the
connected peers form an overlay network according to
predefined rules. Structured P2P networks typically use
distributed hash-table-based (DHT) indexing to locate
peers; for example, they might use the Chord system
(Stoica et al. 2001). Unstructured P2P networks, in
contrast, do not provide any algorithms for use in
organizing or optimizing the network connections.
Hence, queries may not always be answered in an
unstructured P2P network, and they may have to be
flooded through the network to as many peers as
possible. Ahlswede (2000) initiated a wide variety of
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research on the application of network coding. Médard
and Koetter (2003) and Li et al. (2003) demonstrated
that linear network coding can be used to achieve
maximum multicast capacity. The work of Ho et al.
(2006) and Sander et al. (2003) proves that random
linear network coding can be used to achieve maximum
multicast capacity when the Galois field is sufficiently
large. Moreover, the work of Jaggi et al. (2005)
includes deterministic polynomial time algorithms
used to design linear codes in directed acyclic graphs
with edges of unit capacity. An application of network
coding to a single-source P2P file-sharing is presented
in Yang and Yang (2008). The fundamental purpose of
network coding is to allow data mixing at intermediate
network nodes to avoid data collision and the process
of fusing data in the intermediate nodes subverts the
concept of conventional routing processes. Network
coding has been used in many fields, including
throughput, wireless resources, security, complexity,
and resilience to link failures (Fragouli and Soljanin
2007). Emerging applications of network coding
including network monitoring, switch operation, on-
chip communication, and distributed storage were
surveyed by Fragouli and Soljanin (2008). As a
means of achieving high availability, three traditional
redundancy schemes have been proposed: a replication
scheme, an erasure coding scheme, and a hybrid
scheme. The replication scheme replicates r copies of
a file and distributes the r copies to other peers in the
system. The r here is a redundancy factor based on the
system requirements. The second scheme divides a
block into m fragments and then produces n redundant
fragments, where n4m. The n encoded fragments are
then distributed to the peers in the system (Figure 1).
A key property of erasure coding is that for recon-
struction of the block, only m fragments are needed out
of the n total fragments that resulted from the erasure
coding procedure. The redundancy is represented as n
over m. Again, redundancy is determined according to
the system requirements.

The third scheme is intended to overcome the
weakness of erasure coding. In the erasure coding
scheme, when a peer with an encoded block leaves or
crashes, the system will begin the process of regenerat-
ing a new encoded block to maintain file availability.
However, to generate a new encoded block, the system
must use the original file. This means that the system
first needs to collect m encoded fragments to recover
every block of the file whenever reconstructing
encoded blocks. As a result, the cost of repairing
bandwidth in the erasure coding scheme is quite high.
Thus, the hybrid scheme stores one full replica
(Figure 2) in a special node to eliminate the inefficiency
of repairs under the erasure coding scheme.

Although the erasure coding and hybrid schemes
yield better results in terms of mean failure time and
bandwidth, they require a high repair bandwidth.When
one node fails or leaves, these two systems will need to
acquire more nodes to recover the lost information for a
new node. This recovery requires the network in
question to have a significant bandwidth.

With this in mind, Dimakis et al. (2010) introduced
the notion of RCs, in which a new node communicates
functions of the stored data from the surviving nodes
instead of downloading the actual data. The use of
RCs can significantly reduce the repair bandwidth, as
shown in Dimakis et al. (2010). Figure 3 presents a
(4, 2) minimum storage RC. Here, the 4 means that

Block

 m fragments… …

Erasure
Coding 

…

 n encoded 
fragments

File

Block Block……

Figure 1. A depiction of how erasure coding is applied to a
file to produce n total fragments for a given block.

Peer 1

Peer 2

Peer 3

Peer 4

Peer 7

Peer 5

Encoded block

Failure

Generating an encoded block 
to replace the lost block

Storing one replica

Figure 2. The hybrid scheme recovers a lost block. Note that
peer 7 holds a replica of the original file.
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each file in the system is divided into four encoded

blocks and the 2 means that any two of the four

encoded blocks can be used to reconstruct the file. As

we can see in this example, node 4 has failed, and the

RC tries to recover the lost packets. All the packets

(boxes) in this figure are 0.5Mb in size, and each node

stores two packets. For example, node 1 contains

packets a1 þ a2 and b1 þ b2, node 2 contains packets

2a1 þ a2 and b1 þ 2b2, node 3 contains packets

a1 þ b1 þ a2 þ b2 and a1 þ 2b1 þ a2 þ 2b2, and node 4

contains packets 3a1 þ b1 þ 2a2 þ b2 and

a1 þ 3b1 þ 2a2 þ 2b2. Note that any two nodes have

four equations that can be used to recover the original

data: a1, b1, a2, and b2. The parity packets P1, P2, and

P3 are used to create two packets for the newcomer,

and this operation requires a repair bandwidth of

1.5Mb. The multiplying coefficients are selected at

random, and the example is shown in the integers for

the sake of simplicity. The calculations are as follows:

1P1þ 1P2þ 1P3 ¼ 1ða1 þ b1 þ a2 þ b2Þ

þ 1ð2a1 þ 2b1 þ a2 þ 4b2Þ

þ 1ð2a1 þ 3b1 þ 2a2 þ 3b2Þ

¼ 5a1 þ 6b1 þ 4a2 þ 8b2

and

2P1þ 1P2þ 2P3 ¼ 2ða1 þ b1 þ a2 þ b2Þ

þ 1ð2a1 þ 2b1 þ a2 þ 4b2Þ

þ 2ð2a1 þ 3b1 þ 2a2 þ 3b2Þ

¼ 8a1 þ 10b1 þ 7a2 þ 12b2

The key point is that the nodes do not send what

they contain but instead generate smaller parity

packets of their data and forward them to the

newcomer, which further mixes the encoded packets

to generate two new packets. In this case, the required

repair bandwidth of 1.5Mb is smaller than the

bandwidth that would be required to transmit the

original file (2Mb). In contrast, the erasure coding

scheme involves accessing the original file to generate a

new encoded block. However, although the use of RC

solves the repair bandwidth problems, it cannot

support frequent access; in other words, this scheme
cannot provide content services. Therefore, Dimakis

et al. (2010) limited the application of the scheme to

archival storage or backup services.

3. System design

To improve the access performance of RCs, we add an
LRU cache and store information from peers that have

recently requested a file. We assume that all peers in

the P2P storage system have two types of storage

space: permanent ‘database’ and temporary space in

the form of the ‘LRU cache’. The encoded blocks in
the database exist in the system until the peer crashes

or leaves; however, the blocks in the LRU cache are

replaced when the space is full. The replacement rule

follows the algorithm for the LRU cache. In our study,
we used Chord (Stoica et al. 2001) for lookup and

query operations with a unique identifier for each peer

and each file. The target file availability was set to

99.9%, as is expected by end users of today’s web

services (Merzbacher and Patterson 2002). Meanwhile,
we used (n.7) RC as in Dimakis et al. (2010) to encode

the files, where n is chosen according to the required

system redundancy and 7 according to the traces from

real systems (Rodrigues and Liskov 2005, Dimakis
et al. 2010). We also utilized the results for

ð�MSR, �MSR ¼ d�Þ ¼
�
M
k ,

Md
kðd�k�1Þ

�
, as presented by

Dimakis et al. (2010), where � denotes the block size

stored at each node, d is the number of connections to

active nodes, � is the packet size with which a
newcomer communicates to any d surviving nodes,

and � is equal to d�, which is the total repair

bandwidth for the minimum storage regenerating

(MSR) codes. Finally, M and k represent the original

file size and the number of storage nodes that can
recover the original file, respectively. If we set d¼ 13,

each file will be divided into seven blocks and each

block will contain seven packets (Figure 4). Clearly, the

total packet number in a file is 49, and these packets
can be used to generate the coded blocks. Each packet

in the coded blocks also stores its combination

coefficients with respect to the 49 packets in the initial

file (Figure 5). For the linear combination procedure,

we chose a large Galois field to successfully decode the
packets. In addition, we assumed that the packet size

was sufficiently large for us to ignore the coefficient

overhead.

a1

b1

a2

b2

a1 +a2

b1 +b2

2a1 +a2

 node 1

 node 2

b1 +2b2

a1 +b1+a2+b2

 node 3

a1 +2b1+a2+2b2

 node 4
3a1 +b1+2a2+b2

a1 +3b1+2a2+2b2

a1 +b1+a2+b2

2a1 +2b1+a2+4b2

2a1 +3b1+2a2+3b2

 P 1

 P 2

 P 3

1

1

2

1

1

1

5a
1 +6b

1 +4 a
2 +8 b

2

8a
1 +10b

1 +7a
2 +12b

2

1

1

1

2

21

2

3

2

2

2

2

3

2

2

Figure 3. Repair for a (4, 2) minimum storage RC.
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We chose to use the MSR code, a special kind of
RC, to implement the system. As described above, we
derived a block size and repair bandwidth of M

7 ,
13M
49

� �
.

The MSR code requires contact with 13 different peers
to encode a new coding block. If there are insufficient
peers in the system, seven different blocks must be
collected. In such a case, the process is the same as in
the erasure coding scheme.

Our redundancy scheme is based on the work of
Chen et al. (2008) with a RC, an LRU cache, and an
index of the peers included. Overall, each peer has
three roles: a register peer, an index peer, and a
maintenance peer. The peers assume these roles while

the system is running. When a peer joins the system,
the peer will check to verify that it carries the encoded
blocks. If this is the case, the peer will compute the
DHT (block ID) to determine which peer it should
register with. Thus, the peer acts as a register peer.
Each peer may also be chosen as an index peer by a
newly joined peer during the system operation. In this
stage, the selected peer acts as an indexer. Finally, each
peer may store encoded blocks and may periodically
determine the number of registered blocks based on the
index. If the number is less than the redundancy
threshold, the peer will trigger an event that generates
new encoded blocks to increase the availability of the
file. During this stage, the peer acts as a maintenance
peer. As a maintenance peer supported by the Chord
protocol in the bottom layer, each peer controls data
placement, data lookup, and data availability in the
P2P storage system. All index and register peers
periodically register the unique file identifiers for the
coded blocks in their database with some indexers.
Here, the coded blocks that belong to the same file
have the same identifier but different coefficients.
When the indexers receive a report, they will add a new
index entry to their index that includes the IP of the
reporting peer and the file identifiers. They will also set
a timer for the entry and remove the index entry when
the timer expires. In fact, the indexers use the timers to
determine whether the register peers are active. The
first indexer is determined using the hash function for
DHT; the other indexers function as backups and are
adjacent and continuous successors of the first indexer,
as shown in Figure 6, where H(d) is the hash function
for DHT based on the Chord protocol. In that figure,
peer 5 registers block d with index peer 14; peer 15 and
peer 0 are also registered by peer 5 as backup indexers.

Block1

Block2

Block3

Block4

Block5

Block6

Block7

Packet11

Packet12

Packet13

Packet14

Packet15

Packet16

Packet17

Figure 4. The relationship between the blocks and packets
in a file.

Coded packet P1

Coded packet P2

Coded packet P3

Coded packet P4

Coded packet P5

Coded packet P6

Coded packet P7

49 coefficients of P 1

49 coefficients of P 2

49 coefficients of P 3

49 coefficients of P 4

49 coefficients of P 5

49 coefficients of P 6

49 coefficients of P 7

Figure 5. The composition of a coded block.

015

9

14

13

12

11

10

8 7
6

5

4

3

2

1

H(d) = 14

block d

register of block d

indexer of block d

Figure 6. A peer registers block d with three indexers.
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The next section of this article explains the operations
involved in requesting a file and generating a new
coded block. In both operations, each peer first checks
either its database or its LRU cache to locate the
available blocks before requesting information from
other peers.

After the peer makes a request of other peers, those
peers will reply with information from the relevant file,
having located that information in their databases or
LRU caches. Two operations are performed when a
peer requests a file from the targeted peer. First, the
targeted peer compares all of its block identifiers with
the requested file identifier to produce a list of block
information that contains the 49 coefficients of each
block and returns the list to the requesting peer. Then,
the requesting peer uses the list to obtain the blocks
from the targeted peer. When requesting a file, the peer
will choose the first indexer to reach the last access peer
and the peer list that includes the coded blocks for the
file. Because the last access peer may have collected
sufficient blocks from the file, the requesting peer may
directly obtain the blocks from the last access peer
without further inquiry based on the peer list.
However, if the requesting peer cannot obtain the
necessary information from the last access peer, it will
use the peer list to collect seven independent blocks. If
the information is still insufficient, the peer will try to
look up the other backup indexers. If these indexers
cannot provide useful information, the peer will try

again later until the available time has expired
according to the timer. When it has successfully
collected the seven independent blocks, the request
peer will decode the blocks and store them in its LRU
cache to facilitate future access by other peers. Finally,
the indexer updates the request peer, the last access
peer in its index. For a clear visual representation of
the steps involved in this process, refer to the flow
chart in Figure 7. The creation of new coded blocks is
triggered by the index peers. As mentioned previously,
the indexer keeps an index that records block identi-
fiers associated with the information from the register
peer (e.g., IP addresses and P2P identifiers) and the
information from the peer that has most recently
inquired about the block. Moreover, the indexer sets a
timer for each register peer that is periodically reset by
the register. If the timer expires, the register peer will be
removed from the index.

Thus, the indexer can determine if the number of
registered blocks is below the redundancy threshold. If
the number is less than the threshold, the indexer will
start creating a new block; it will determine the last
access peer in its index. If the last access peer is not a
register peer for the new block, the peer will be selected
to store the new block. If the last access peer is a
register peer for the new block, the indexer will
randomly choose a non-register peer to save the new
block. The selected peer next examines its cache to see
if it has sufficient blocks; if so, the new block will be

Start

Decode the blocks

End

>= 7 

No

End

Inquire about the last access
peer from Indexers 

Last access peer
 has 7 blocks 

YesInquire about the peer list
from Indexers 

No

Number of blocks
 in the peer list Decode the blocks

Time out ?

End

Yes

< 7 

Figure 7. The flow chart for requesting a file.
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created by itself; if not, the peer in question will inquire
about the last access peer of its indexer. If the last
access peer has seven blocks, then the new block will be
created from the file reconstructed from the seven
blocks. If the last access peer cannot create the file, the
selected peer will refer back to the peer list. At that
point, if the number of blocks collected from the peer
list is less than 7, the selected peer will inquire again
later, whereas if the number of collected blocks is less
than 13 but greater than or equal to 7, then the new
block will be created by reconstructing the file.
Alternatively, if the number is greater than or equal
to 13, then the new block will be created using the RC.
Figure 8 shows the flow chart for creating a new block.

4. Experimental setup

We implemented our scheme in P2PSim (Gil et al.
2006), which is a discrete event packet-level simulator
that can simulate structured overlay networks. The
simulated network is comprised of 1024 peers that may
alternately leave or join the network. The interval
between successive events for each peer is exponentially
distributed with a given mean time frame. In the

experiment, each peer has a database, an LRU cache,

and an index table. When a peer crashes or leaves, all

stored data and indexes will be cleared. Conversely, if a

peer rejoins, it will receive a different IP and use a

different DHT identifier. There are 1000 different files

of the same size in the system, and all files have the

same access probability. At the beginning, we divided

each file into seven blocks. Thus, there are 7000 raw

blocks in total. Then, we used the RC to encode the 7

raw blocks into 14, 21, and 42 encoded blocks that

were distributed to randomly selected peers for differ-

ent levels of system redundancy. Then, we carried out

the experiment using different cache sizes (8, 16, 32, 64,

and 128 file blocks) and different levels of peer

availability (90%, 65%, and 40%). Table 1 presents

the probability that at least d peers of n peers will be

active for different levels of peer availability. For

example, the first row in Table 1 presents that, when

peer availability equals 0.9 and at least 13 nodes out of

14 nodes which are the normal redundancy we want to

maintain, then the probability to recover from a failed

node is 0.5846 which is obtained from C14
13 � 0:9ð Þ13�

0:1ð Þ1þC14
14 � 0:9ð Þ14� 0:1ð Þ0. As indicated in Table 1,

the feasible probability for the RC is row 1 and the last

Start

Selected peer has 
sufficient blocks

Create an encoded block
by Itself 

Last access peer
 has 7 blocks  

Request the registered
peers 

Create by the whole file

End

Number of blocks
 in the peer list 

Create by Regenerating
Code 

End

Create by
reconstructing the file 

Request the Indexers
and try again later 

End

< 7 >= 13

>= 7 and < 13

Yes

YesNo

No

End

Figure 8. The flow chart for creating a new block.

740 Y.-L. Chen and S.-M. Yuan

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

5:
06

 2
8 

A
pr

il 
20

14
 



two rows. Thus, we will choose the corresponding
values to perform our experiments.

The results for two variables, peer availability, and
cache size, are presented in Tables 2 and 3. The file
availability is 99.9%. Without affecting the results, we
first chose the level of peer availability and selected
different cache sizes. The experiment took 6 h when the
peer availability was 90%. To obtain data for 40%
peer availability, we extended the experiment time to
6� 9/4 h. Without decreasing the accuracy of our
results, we were able to start collecting data during the
second half of the experiment.

5. Experimental results

5.1. Experimental results – access

When accessing a file, the requesting peer will first
check its LRU cache. If it does not have seven blocks,
it will request the last access peer. If the last access peer
has seven blocks in its LRU cache, the requesting peer
will only require one connection to obtain the seven
blocks. Tables 4–6 present the access performance
levels for the different levels of peer availability
assuming various cache sizes when the indexed peers
carry different numbers of coded blocks. Although the
cache size of 128 can obtain a better performance than
the case size of 64, it consumes twice as much memory
as the cache size of 64. By comparing the performance
of various cache sizes for different levels of peer
availability, we find that the cache size of 64 can almost

Table 4. The percentage of successful requests when peer
availability¼ 0.9.

Block number

Cache
size

The indexed
peers have

seven
blocks (%)

The indexed
peers have
partial

blocks (%)

The indexed
peers have
no blocks

(%)

Other
cases
(%)

8 45.76 28.44 25.70 0.10
16 69.21 16.29 14.30 0.20
32 86.35 7.41 5.85 0.39
64 91.51 4.62 3.09 0.77
128 91.30 4.55 2.67 1.48

Table 5. The percentage of successful requests when peer
availability¼ 0.65.

Block number

Cache
size

The indexed
peers have

seven
blocks (%)

The indexed
peers have
partial

blocks (%)

The indexed
peers have
no blocks

(%)

Other
cases
(%)

8 38.72 30.34 30.83 0.10
16 60.69 19.89 19.21 0.21
32 80.87 10.18 8.58 0.37
64 89.06 5.98 4.20 0.76
128 89.74 5.34 3.41 1.51

Table 6. The percentage of successful requests when peer
availability¼ 0.4.

Block number

Cache
size

The indexed
peers have

seven
blocks (%)

The indexed
peers have
partial

blocks (%)

The indexed
peers have
no blocks

(%)

Other
cases
(%)

8 28.00 37.96 33.92 0.13
16 48.54 26.47 24.78 0.21
32 68.97 16.64 14.01 0.38
64 83.51 9.18 6.51 0.81
128 85.25 8.10 5.07 1.58

Table 1. Probability associated with different levels of
system redundancy and peer availability.

Peer availability Value of n Value of d Probability

0.9 14 13 0.5846
0.65 21 20 0.0014
0.4 42 41 Close to 0
0.65 21 13 0.7059
0.4 42 13 0.9140

Table 2. Individual parameters for each peer availability
level.

Parameter Value

Peer availability(%) 90 65 40
Time (hours) 6 (90/65)*6 (9/4)*6
Data redundancy (files) 2 3 6
Data redundancy (blocks) 14 21 42

Table 3. Common parameters for all peer availability levels.

Parameter Value

Cache size (file blocks) 8, 16, 32, 64, 128
Average requested blocks per peer 280
Target availability (%) 99.9
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reach the performance of cache size of 128 by using
only half of the memory. Thus, we choose it as the
optimal cache size. The other cases in the three tables
are those in which the requesting peer has seven blocks
in its own LRU cache. For example, the first row in
Table 4 presents that, when we conducted the exper-
iment on the cache with eight blocks, 45.76% of
queries would hit the indexed peers with seven blocks,
whereas 28.44% of queries would hit the indexed peers
between 1 and 6 blocks, and 25.7% would hit the
indexed peers with no blocks. Other results were
obtained in 0.1% of cases; that is to say, in those
cases, the requesting peer had seven blocks in its own
LRU cache. As expected, the possibility is very low
that a requesting peer will have the seven required
blocks in its own cache, regardless of the size of that
cache. Figure 9 shows the percentage of successful
requests for various peer availability levels and cache
sizes for an indexed peer with seven blocks. As
indicated in the figure, the optimal cache size is 64,
as caches of this size produce an 83% success rate for
queries. This means that, in our system, a requesting
peer can obtain the required file by collecting the seven
blocks in at least 83% of the time. Thus, our system
outperforms the pure RC scheme.

In these experiments, we used an LRU cache to
improve the access performance. As shown in the
above tables, the best cache size is 64, which guarantees
the access performance in 83% of the cases. Next, we
compared the number of connections in our scheme
with the numbers for the pure RC scheme. We only
considered connections that yielded at least one block.
In contrast, we ignored the connections required to
search for information about peers and blocks. In the
pure RC scheme, if a peer has one coded block of the
file in its database, it will require six more connections

to collect seven blocks. If it does not have at least one
coded block of the file in its database, the peer will
require seven connections. In our scheme, in contrast,
contacting an indexed peer can help reduce the number
of connections because the indexed peer may have
more than one block. In the ideal case, the indexed
peer has seven blocks, and only one connection will be
required to obtain those seven blocks. Table 7 presents
a comparison between pure RC and RC using caches
for different system settings. As indicated in the table,
the number of required connections decreases to less
than 2 once the cache size is larger than 64, which is
very close to the ideal value 1.

5.2. Experimental results for generating
redundant data

As Figure 8 indicates, there are four methods that can
be used to generate a new block, and we examined the
distribution of these methods. Tables 8–10 present the
percentage of new blocks created using various
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Figure 9. The percentage of successful requests for various
peer availability levels and cache sizes for an indexed peer
with seven blocks. Table 8. The percentage of new blocks created using various

methods when peer availability¼ 0.9.

Generating type

Cache
size

By the last
access peer
(method 1)

(%)

By
regenerating

code
(method 2)

(%)

By
reconstructing

the file
(method 3)

(%)

By itself
(method 4)

(%)

8 44.95 52.21 0.38 2.47
16 68.92 28.12 0.20 2.77
32 86.08 10.96 0.07 2.89
64 91.59 5.15 0.04 3.22
128 91.58 4.41 0.03 3.98

Table 7. Number of connections based on peer availability.

Peer availability

0.9 0.65 0.4

Cache
size

Pure
RC

RC/
Cache

Pure
RC

RC/
Cache

Pure
RC

RC/
Cache

8 6.99 4.22 6.97 4.61 6.92 5.14
16 6.98 2.70 6.97 3.18 6.90 3.85
32 6.99 1.69 6.97 1.97 6.89 2.60
64 6.98 1.44 6.97 1.57 6.88 1.89
128 6.98 1.39 6.97 1.45 6.88 1.70
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methods at different levels of peer availability and with
different cache sizes. Among other things, these tables
indicate that the percentage is proportional to the
cache size for method 1. These results confirm our
expectations and justify the addition of a cache and
index table to our system. Furthermore, the results
show that the optimal cache is 64 for method 1.
Figure 10 shows comparative data for method 1 for
different levels of peer availability and cache sizes.
Next, we compared the cost of creating a new block
using the pure RC method versus the cost required
using our scheme. (We measured cost in terms of repair
bandwidth.) In the second paragraph of Section 3, we
derived the value 13M/49, which is the repair band-
width for pure RC, whereas in our scheme, there are
four methods of creating a new block, and the costs for
methods 1, 2, 3, and 4 are M

7 ,
13M
49 , M, and 0,

respectively. Thus, we were able to compute the cost
as P1� M

7

� �
þ P2� 13M

49

� �
þ P3�Mþ P4� 0, where

P1, P2, P3, and P4 are the percentages in
Tables 8–10. Table 11 presents the maintenance cost

associated with the pure RC system and that associated
with the RC system including caches. As indicated in
the table, RC with cache has lower maintenance cost
compared to pure RC.

6. Conclusions

Pure RC requires less repair bandwidth than three
traditional redundancy schemes (replication, erasure
coding, and hybrid schemes). Nevertheless, this system
exhibits poor access performance. Hence, pure RC can
only be used for archival storage or backup services.

To improve the access performance and reduce the
maintenance cost, we added a cache to the system. We
also added an index table that records the last access
peer and the register peers. This system allows access at
least 83% of the time, which means that regeneration
coding need not be limited to archival storage or
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Figure 10. Percentages indicating how often a new block is
created using the last access peer for various cache sizes and
peer availability levels.

Table 9. The percentage of new blocks created using various
methods when peer availability¼ 0.65.

Generating type

Cache
size

By the
last access

peer
(method 1)

(%)

By
regenerating

code
(method 2)

(%)

By
reconstructing

the file
(method 3)

(%)

By itself
(method 4)

(%)

8 35.99 57.88 0.01 6.12
16 58.03 35.30 0.01 6.66
32 78.57 14.81 0.00 6.61
64 86.67 6.52 0.00 6.81
128 87.58 5.08 0.00 7.34

Table 10. The percentage of new blocks created using
various methods when peer availability¼ 0.4.

Generating type

Cache
size

By the last
access peer
(method 1)

(%)

By
regenerating

code
(method 2)

(%)

By
reconstructing

the file
(method 3)

(%)

By itself
(method 4)

(%)

8 27.57 67.38 0.01 5.04
16 50.50 45.49 0.00 4.01
32 72.18 24.74 0.00 3.08
64 87.85 9.65 0.00 2.50
128 90.16 6.90 0.00 2.93

Table 11. Comparison of maintenance costs associated with
pure RC and RC/cache methods.

Peer availability

0.9 0.65 0.4

Cache
size

Pure
RC

RC/
Cache

Pure
RC

RC/
Cache

Pure
RC

RC/
Cache

8 0.265 0.207 0.265 0.205 0.265 0.218
16 0.265 0.175 0.265 0.177 0.265 0.193
32 0.265 0.153 0.265 0.152 0.265 0.169
64 0.265 0.145 0.265 0.141 0.265 0.151
128 0.265 0.143 0.265 0.139 0.265 0.147
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backup services. Instead, it can be used for content
services. This discovery is the main contribution of our
research.

Although our scheme exhibits a significantly
improved maintenance cost, it also helps to enhance
the access performance. The experimental results show
that an index table and an appropriately sized cache
help to improve the request service, allowing the
system to reach a performance level of no less than
83% when the cache size is 64.

7. Future work

In the future, we will attempt to explore other ways of
reducing maintenance costs and for applying our work
to multimedia content discovery and delivery network
(mCDN) services, implementing a P2P storage system
in that context.
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Nomenclature

�MSR the block size stored at each node by
using minimum storage RC

� the packet size with which a new-
comer communicates to any d surviv-
ing nodes

�MSR the total repair bandwidth for MSR
code

BitTorrent a software application that uses P2P
communications protocol for file
sharing

Chord a P2P protocol and algorithm for
distributed hash tables

D the number of connections to active
nodes

DHT a type of distributed system that
provides hash table-like functionality

H(d) the hash function for DHT based on
the Chord protocol

IP internet protocol
K the number of storage nodes that can

recover the original file
LRU least recently used

M the original file size
Mb Megabit¼ 1,000,000 bits

mCDN multimedia content discovery and
delivery network

OceanStore a distributed storage utility on
PlanetLab

P2PSim a multi-threaded, discrete event simu-
lator to evaluate, investigate, and
explore P2P protocols

PAST a large-scale P2P persistent storage
utility

Skype a software application that allows
users to make voice calls and chats
over the internet

Total Recall a P2P storage system
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