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ABSTRACT 
 
Pattern search algorithms, such as diamond search, 
hexagonal search and their variations, have been widely 
adopted by the block matching motion estimations in the 
modern video encoding systems. Recently we propose a 
weighting function (WF) to model the number of search 
points of a pattern search. Yet, WF fails to properly describe 
the behavior of the genetic pattern search algorithms due to 
some over-simplifications in their models. Therefore, we 
propose a refined weighting function (RWF) to more 
accurately describe both genetic and non-genetic pattern 
searches. In addition, we propose a new search algorithm, 
namely, the momentum directed genetic rhombus pattern 
search (MD-GRPS). It can accelerate the previous genetic 
rhombus pattern search by 8% on the average and this 
concept can be applied to the other genetic pattern searches. 
 

Index Terms—Refined weighting function, Genetic 
pattern search, Block motion estimation, Video coding. 
 

1. INTRODUCTION 
The modern video coding systems [1][2] adopt block 
motion estimation (BME) to remove inter-frame redundancy 
of image sequences. Despite the success of BME in 
compression, it requires a huge amount of computing power 
particularly for sophisticated coding algorithms that include 
multiple reference frames and variable size motion 
estimations. Therefore, researchers have been developing 
fast algorithms to reduce computation without sacrificing 
the coding efficiency. Among all BME algorithms, the 
pattern search algorithms, such as diamond search [3], 
hexagonal search [4] and their enhanced versions [5][6], are 
the most popular due to their simplicity and effectiveness. 
Moreover, because real image sequences may have different 
amount of motion activities in different parts of a long 
sequence the so-called adaptive schemes [7][8][9] that 
switch between two or more search patterns were also 
proposed.  

In [8], we use the notion of weighting function (WF) to 
predict the efficiency of a pattern search algorithm. The WF 
is defined as the minimum number of search steps that a 
specific pattern search algorithm can achieve when the 

matching error surface is monotonic. Therefore, its values 
depend on the search pattern used. Given the probability 
distribution of the motion vectors (MVs) of a video 
sequence, we can predict the performance (search points) of 
a BME algorithm by using its WF when it is applied to this 
particular video sequence.   

In [8] and [10], we combine the genetic optimization 
method with pattern search to further reduce computation. 
The so-called genetic pattern search algorithm is thus 
devised.  It matches the ideal minimum WF and indeed it 
shows substantial performance improvement. However, the 
afore-mentioned WF is not adequate in characterizing the 
behavior of the genetic pattern searches because WF does 
not represent the average performance (search points). This 
difference is due to the fact that, even when the matching 
error surface is monotonic, the genetic pattern search picks 
up the search direction randomly but the classical pattern 
searches move along the steepest descent path on the 
matching error surface towards the best matching point. The 
purpose of this paper is to construct a more accurate model 
(essentially, a better WF) for the genetic pattern search. In 
this process, we also devise a new type of genetic pattern 
search that further reduces the computation. 

The remaining parts of this paper are organized as 
follows. Section 2 analyzes and models the behavior of a 
genetic pattern search. Based on this analysis, a new search 
algorithm is proposed in Section 3. Section 4 shows the 
experimental results of the proposed algorithm in 
comparison with some classical and genetic pattern searches. 
Finally, a brief summary is given in Section 5. 

 
2. ANALYSIS ON GENETIC PATTERN SEARCH 

Because WF does not well convey the randomness nature of 
the genetic pattern search, here we propose a refined 
weighting function (RWF). We assume the matching error 
(distortion) surface is unimodal and monotonic. In other 
words, let the optimal point be the origin, and u=(x1, y1) and 
v=(x2, y2) be two points in the domain. The distortion at u, 
D(u), is smaller than D(v), if |x1|<|x2| and |y1| |y2| or  if 
|x1| |x2| and |y1|<|y2|. The RWF, RWF(x,y) is defined to be 
the average number of search points (SPs) needed by a 
search algorithm, when the best matching point is located at 
(0,0)  and the starting point is (x,y). As an example, we will 
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construct the RWF for the genetic rhombus pattern search 
(GRPS) in [10]. The flow chart of GRPS is in Fig. 1 and its 
search patterns are shown in Fig. 2. In the search process, 
only one (black dot, for example) out of the four (grey and 
black) points in Fig. 2(a) is randomly chosen as the next 
check point. And the search ends when all four (black) 
points in Fig. 2(b) have been checked and all of them have 
larger matching errors than that of the center (white) point. 

S1: Initial
Check the starting point and set it as the 

parent.

S2: Mutation
Randomly select one mutation from the un-

checked points in the rhombus pattern 
centered at the parent.

S4: End
Set the current survivor as the best motion vector.

Parent Survive?

S3: Competition
Compare the parent and the mutation to 

select one survivor according to a predefined 
block matching cost criterion. 

S3A: 
Set the surviving 

mutation as the next 
parent.

S3B: 
Check if there is any 

other possible 
mutations?

Y N

N

Y

 
Fig. 1 GRPS flow chart 
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Fig. 2 GRPS search pattern 

Under the unimodal and monotonic matching error 
surface assumption, the number of mutations with matching 
error smaller than that of the current point is decided by the 
relative position of the current point to the best matched 
point as shown in Fig. 3. Specifically, there are two types of 
starting search point cases (S1 and S2) and two types of 
intermediate search point cases (M1 and M2) for GRPS, as 
shown in Fig. 4. Herein, points A, B, C and D are the search 
candidates (mutations), and point E denotes the best 
matching point.  In Fig. 4(a), only one out of the 4 points 
centered at S1 may have a smaller matching error than S1 
when point E has the same X or Y coordinate as S1. 
Otherwise, it is the Fig. 4(b) case, in which 2 out of the 4 
points centered at S2 may have smaller errors. Similarly, in 
Fig. 4(c), only one out of the 3 points centered at M1 may 
have smaller matching error when point E has the same X or 
Y coordinate as M1. Otherwise, in the case of Fig. 4(d), 2 
out of the 3 points centered at M2 may have smaller errors. 

Fig. 5 shows all possible search sequences starting from 
S2. Eqn.(1) gives the average number of SPs (WS2) moving 
from S2 one step towards the final destination, which is 5/3. 
We assume that the probability of selecting any candidate 
point is equal. Similarly, the average SPs moving from S1, 
M1 and M2 (WS1, WM1 and WM2) are 5/2, 2 and 4/3, 
respectively.  
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Fig. 3 The contour plot of the number of small-error mutations 
in the search area (GRPS), wherein the origin denotes the best 
matched point. 
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Fig. 4 Four typical cases of starting search points and 
intermediate search points. 

 
Fig. 5 All possible search order for S2 

Let the coordinate of the starting point be (x,y) and the 
best matching point be (0,0). The average SPs moving from 
(x,y) to (0,0) is RWFGRPS(x,y). Fig. 6 shows the algorithm of 
calculating RWF for GRPS according to the previous 
analysis. The contour plot of RWFGRPS(x,y) is shown in Fig. 
7(a). In comparison, Fig. 7(b) shows the real average search 
points when it is applied to the sequence ‘2X MD96’ in 
Table I. The outer ring of Fig. 7(b) is empty because these 
points never become the best matching points. Because we 
have a good starting point predictor, a typical best matching 
point is fairly close to the starting point. Likewise, the RWF 
for the other genetic pattern searches can be constructed.  

 
3. THE PROPOSED SEARCH ALGORITHM  

We assume that a doable search method moves at most 
one unit distance horizontally or vertically per step, as 
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shown in Fig. 2(a). Then, the minimal number of search 
points for reaching point (x,y) is 'abs(x)+abs(y)+1'. At the 
ending stage, to decide the best motion vector generally 
requires examining at least the center point and its 4 
neighboring points as shown in Fig. 2(b). Consequently, the 
smallest number of search points for motion vector (x,y) can 
be expressed by (2) and its contour plot is shown by Fig. 
8(a). 
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Fig. 6  Construction of RWF 
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(a)                                                  (b) 

Fig. 7  Comparison between RWF of GRPS and its real 
average search points on the sequence ‘2X MD96’. 

Comparing Fig. 7(a) to Fig. 8(a), it is obvious that the 
RWF of GRPS does not match the ideal RWF. How can we 
devise a search method that matches the ideal RWF? 

Observing the ideal RWF carefully, we find a clue: the 
algorithm should proceed straightly towards the best 
matching point. Statistically, the successful direction of the 
previous search likely reappears at the current point. 
Therefore, instead of randomly select one mutation from the 
candidate child set, we select the mutation according to its 
likelihood to be a successful mutation. That is, it tends to 
move along the same direction of the prior successful 
searches. On the other hand, it can still change the search 
directions when the assumption of monotonic matching 
error surface is not totally valid. The flow chart of the 
proposed algorithm, namely, the momentum-directed GRPS 
(MD-GRPS), is almost the same as Fig. 2, except that in step 
2, the mutations are generated according to the search order 
shown in Fig. 9. In comparison, when MD-GPRS is applied 
on the sequence ‘2X MD96’ in Table I, its contour plot of 
real average search points is shown in  Fig. 8(b). 

7
10

15

20

25

25

50

50
50

50

A doable smallest RWF(x,y)

X-axis

Y
-a

xi
s

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

7

7

10

10

10

1010

15

15

15

Average Search Points of MD-GRPS on Sequence 2X MD96

X-axis

Y
-a

xi
s

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

 
(a)                                      (b) 

Fig. 8  Comparison between a doable smallest RWF and the 
real average search points when applying MD-GRPS on the 

sequence ‘2X MD96’. 

C P

PP

 
Fig. 9  The search order of mutations in MD-GRPS specified 
by the positions  of the previous successful mutation (P) and 
the differential successful mutation before that (PP). And C 
denotes the current parent. 

 
4. EXPERIMENTAL RESULTS 

To test the proposed algorithm, four sequences with 
different MV variances (denoted as ‘1X’) are tested under 
the setting given in Table I. Moreover, to test the extreme 
cases, we generate four new test sequences consisting of the 
odd frames of these sequences (denoted as ‘2X’). They 
equal to the two times fast forward playback of the originals. 
These 8 test sequences are coded by an MPEG-4 SP@L3 
encoder. All the sequences are in the CIF (352X288) format. 
Only the first frame is coded as I frame, and all the 
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remaining frames are coded as P frame. The search range is 
16, and the block size is 16x16. 
 

Table I. Test Sequences and Their Settings 

Abbreviation Sequence 
Bitrate  
(K bps) 

Frame rate 
(fps) 

Number 
of frames

MD96 mother and daughter 96 10 300
FM512 foreman 512 30 300
FB1024 football 1024 30 90
ST1024 steven 1024 30 300

Table II. ASP (Average Number of Search Points) 

Type ASP MD-GRPS GRPS[8] PHS[6] DS[3] FS 
MD96 5.94 5.98 10.02 14.85 1024
FM512 6.80 7.13 10.57 16.17 1024
FB1024 10.35 11.89 14.18 22.36 10241X 

ST1024 7.24 7.65 11.40 16.96 1024
MD96 6.29 6.40 10.38 15.44 1024
FM512 8.25 9.07 12.02 18.72 1024
FB1024 13.27 15.75 17.15 27.39 10242X 

ST1024 8.61 9.28 13.00 19.49 1024
 Average 8.34 9.14 12.34 18.92 1024 

Table III. PSNR (Peak Signal to Noise Ratio) 

Type PSNR MD-GRPS GRPS PHS DS FS 
MD96 40.05 40.08 39.85 39.99 39.80 
FM512 34.04 34.05 33.92 34.06 34.06 
FB1024 34.92 34.87 34.87 34.93 35.28 1X 

ST1024 29.16 29.39 29.33 29.44 29.48 
MD96 38.66 38.66 38.44 38.60 38.41 
FM512 32.36 32.34 32.23 32.38 32.42 
FB1024 33.26 33.22 33.22 33.28 33.44 2X 

ST1024 27.86 27.99 27.88 27.97 28.10 
 Average 33.79 33.83 33.72 33.83 33.87 

Table IV. Performance Comparison 

 Gain MD-GRPS 
over GRPS 

MD-GRPS 
over PHS 

MD-GRPS 
over DS 

MD-GRPS 
over FS 

Type Sequence CG QG CG QG CG QG CG QG
MD96 0.7% -0.02 68.7% 0.20 1.50 0.06 171.39 0.25 
FM512 4.9% -0.01 55.4% 0.12 1.38 -0.02 149.59 -0.01 
FB1024 14.9% 0.05 37.0% 0.05 1.16 -0.01 97.94 -0.36 1X 

ST1024 5.7% -0.23 57.5% -0.17 1.34 -0.29 140.44 -0.32 
MD96 1.7% 0.00 65.0% 0.22 1.45 0.06 161.80 0.25 
FM512 9.9% 0.02 45.7% 0.13 1.27 -0.02 123.12 -0.06 
FB1024 18.7% 0.03 29.2% 0.03 1.06 -0.02 76.17 -0.18 2X 

ST1024 7.8% -0.13 51.0% -0.02 1.26 -0.11 117.93 -0.24 
 Average 8.0% -0.04 51.2% 0.07 1.30 -0.04 129.80 -0.08 
 
The average number of search points (ASP) and the peak 

signal to noise ratio (PSNR) for various sequences and 
search algorithms are listed in Table II and Table III, 
respectively. FS denotes the full search. The optimal point is 
the one with the smallest block matching error in the search 
area. Because we do not use the rate-distortion optimization, 
the PSNR value of some fast algorithms may outperform 
that of FS. The initial MV predictor defined by the MPEG-4 
standard is the only starting point in all cases. Table IV 

shows pair-wise performance comparisons. In Table IV, the 
computing gain (CG) is defined as the ratio of ASP minus 
one, and the quality gain (QG) is the PSNR difference. For 
complicated sequences, MD-GRPS can be up to 19% faster 
than GRPS and its PSNR quality is about the same. On the 
average, the ASP of MD-GRPS is 8% faster than that of 
GRPS, 51% faster than PHS, 1.3 times faster than DS and 
130 times faster than FS. And the PSNR of MD-GRPS is 
about the same as that of all the other search algorithms 
(+0.07dB~-0.08dB).  

 
5. CONCLUSIONS 

In this paper, we propose a refined weighting function 
(RWF) that models the SPs of a pattern search algorithm. 
With the help of RWF, we suggest a momentum-directed 
genetic rhombus pattern search (MD-GRPS). Taking the 
advantage of the correlation of successful search directions 
between two succeeding searches, the proposed design 
further improves the performance of the genetic rhombus 
pattern search (GRPS). This concept, momentum-directed 
genetic search, can be applied to all the other genetic pattern 
searches.  
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