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We propose an ARJI-Trend model—a combination of the ARJI and component models—to
capture the distinguishing features of US index returns, with the results indicating that our
model has a good fit for the volatility dynamics of spot, floor- traded and E-mini index futures
in US markets. Although certain analogous characteristics are discernible amongst the three
indices (such as the responses by the transitory components to innovations, the high
persistence in the trends, and the relative importance of jump variance), the reaction to news is
found to be heterogeneous amongst the S&P 500 indices. Furthermore, the out-of-sample
forecasting performances of both the ARJI-Trend model and the GARCH model are found to
have general equivalence for the S&P 500 indices. Our analyses further show that the mini-
sized index market is the most efficient with regard to the transmission of information in both
the short and long run. This suggests that, following the introduction of E-mini futures, these
instruments have come to play a dominant role in price discovery. Overall, our empirical
results are very encouraging, insofar as the proposed ARJI-Trend model is found to be a
useful tool for helping practitioners to gain a better understanding of the differential attributes
between spot, general and mini-sized products in US stock markets.

Keywords: ARJI-Trend model; Components; Jumps; S&P 500 index

1. Introduction

Despite a general worldwide trend which has witnessed

the transfer of trading systems from open outcry to

electronic trading, both types of trading systems are

simultaneously operated during normal trading hours in

the index futures markets of the US. Given that

E-mini and floor-traded index futures are the

counterparts of the spot index, significant linkages may

be found to exist between the spot and the corresponding

index futures.�
Furthermore, it is quite reasonable to assume that both

spot and index futures should be driven by, and result in,

similar reactions to the same news arrivals; nevertheless,

several prior studies have demonstrated that there are

certain properties of the index markets that are not

necessarily found to be the same (Chiu et al. 2006, Chung

and Chiang 2006).?
Asset volatility refers to fluctuations in stock returns

irrespective of direction, with volatility having been

recognized for a considerable period of time as playing

an important and predominant role in the field of finance.

Andersen (1996) notes that changes in return volatility are

directly related to the rate of news flows entering into the

market. There are also many examples of other studies

within which various approaches have been applied to the

measurement of volatility and hedging.k Hence, it is

essential for investors, speculators and hedgers to have a

firm understanding of the features of volatility so as to

avoid investment risk and try to defeat the market.
Structural change refers to long-term changes in the

parameters of a structure generating a time series, and,

*Corresponding author. Email: shumei@mail.lhu.edu.tw
�Refer to Chung and Chiang (2006) for a detailed description of the differences between the contract specifications for floor-traded
and E-mini futures indices.
?Chiu et al. (2006) demonstrate that there are divergent responses to news arrivals for the S&P 500 index spot and futures, whilst
Chung and Chiang (2006) also note that there are different degrees of price clustering between the index spot and futures.
kSee Giot and Laurent (2004), Chiu et al. (2005b) and Hung et al. (2006).

Quantitative Finance
ISSN 1469–7688 print/ISSN 1469–7696 online � 2012 Taylor & Francis

http://www.tandfonline.com
http://dx.doi.org/10.1080/14697688.2010.547512

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

5:
08

 2
8 

A
pr

il 
20

14
 



indeed, as stated by Perron (1997), if such structural
changes are not taken into consideration with the
occurrence of certain events, the outcomes may differ
markedly from expectations. Accordingly, in a highly
uncertain and volatile economy, policymakers must have
a firm understanding of any potential transition. Of
particular importance is the need to explore potential
occurrences of structural changes in markets character-
ized by a rapid pace of change, a prime example of which
is the financial markets.

There are certain characteristics of volatility which
have been shown to exist in financial stock returns, such
as time-varying conditional volatility (Jacquier et al.
1994), time-varying conditional jumps (Maheu and
McCurdy 2004, Daal et al. 2007) and permanent and
transitory components (Engle and Lee 1999, Ané 2006).y
Despite this, there is a distinct lack of studies with a focus
on empirically exploring the existence of these three
features. Although the results reported by Chen and Shen
(2004) did provide some evidence on these three features
with regard to the Taiwanese exchange rate, their analysis
was confined to the consideration of constant jumps.
According to Maheu and McCurdy (2004), it is of crucial
importance to allow for both time variations and cluster-
ing in the process governing jumps. Nevertheless, despite
the successful development of E-mini index futures in the
US, very few studies have set out to examine the potential
co-existence of time-varying GARCH and jump compo-
nents, and the related responses to the arrival of news in
the index markets.z

It has already become clear that E-mini futures provide
traders with greater advantages than those provided by
floor-traded index futures, in terms of lower margins,
operational efficiency, quotation transparency and ano-
nymity. Chung and Chiang (2006) also note that the
differences between E-mini and open-outcry futures, with
regard to contract size and tick size, are quite distinct.
Furthermore, the absence of human intervention and the
almost 24-hour trading period for E-mini futures may
well have succeeded in attracting more day traders or
speculators.

An issue of particular importance is the fact that,
according to the Chicago Mercantile Exchange (CME)
trading rules, during those periods when unexpected
events occur but the floor-traded futures markets are
closed, investors in floor-traded futures can write off their
positions through the corresponding E-mini futures.

Therefore, if such investors were capable of recognizing
the information transmission efficiency, risk and volatility
dynamics of each market, they would be in a position to
adopt appropriate hedging and arbitrage policies. Given
the peculiarity of the market trading mechanism in the
US, we are provided with an ideal environment to directly
and empirically compare the volatility dynamics, infor-
mation efficiency and risk amongst spot, regular and
E-mini index futures.

In an attempt to capture the stochastic process of
volatility for S&P 500 index spot and futures, we combine
the Engle and Lee (1999) ‘component’ model with the
Chan and Maheu (2002) ‘autoregressive jump intensity’
(ARJI) model, creating an ARJI-Trend model to under-
take this challenging task.x Furthermore, the structural
change analysis of Bai and Perron (2003) is also applied in
advance to enable us to determine whether the market
reverses; if this is the case, then we must consider the
existence of structural changes for the three indices.
Finally, we go on to compare the responses to news by the
S&P 500 spot, regular and E-mini index futures markets.

Despite the patterns of public information arrival to
financial markets having been documented by Berry and
Howe (1994) as non-constant, distinct, displaying season-
ality and having an insignificant relationship with price
volatility, their study did not consider potential jumps,
time-varying volatility and components. They may,
therefore, have failed to completely capture the actual
characteristics of the volatility. In the present study, we
set out to investigate volatility behavior and to carry out a
risk comparison with the impacts of news arrivals on the
S&P 500 index in an attempt to resolve this issue.

It is anticipated that such contrasts amongst the spot,
open-outcry and E-mini futures indices will be particu-
larly informative, not only because the three financial
products are simultaneously traded during regular trading
hours, but also because their prices are highly correlated;
consequently, investors can readily achieve a complete
understanding of the microstructure in the S&P 500 index
markets. Thus, based upon our results, S&P 500 index
market participants would be in a position to make
appropriate investment and financial allocation decisions.
This could also result in making market supervision much
easier for government regulators.

This study makes several contributions to the literature,
as follows. Firstly, the results show that a new model,
incorporating long- and short-run GARCH dynamics

yAlthough the ‘long memory’ phenomenon is also one of the characteristics of volatility in stock returns, the models generally
applied to test this long-memory phenomenon include ARFIMA, FIGARCH and so forth; however, it seems that, to date, the
empirical models are still unable to deal with a combination of ARJI-Trend plus the long-memory phenomenon.
zThere have been many studies exploring the price efficiency resulting from the changes from regular to electronic trading (Naidu
and Rozeff 1994, Blennerhassett and Bowman 1998), the effects of electronic trading on the spot or futures market (Aitken et al.
2004, Chung and Chiang 2005) and the intraday price discovery process between floor-traded and E-mini index futures (Ates and
Wang 2005); however, seldom has there been any focus on this particular topic.
xThere are several reasons for our examination of the dynamic process in the S&P 500 index spot and futures markets. Firstly, since
both S&P 500 regular and E-mini index futures were the first commodities to be traded in the futures markets, they play a leading
role in these markets. Secondly, the S&P 500 index is a market-value-weighted index of 500 stocks traded on the NYSE, AMEX and
NASDAQ. The weights ensure that the influence of each firm on the performance of the index is proportional to the market value of
the firm; hence, the index is an accurate substitute for a fully diversified equity portfolio. Thirdly, the S&P 500 stock index has long
been the investment industry standard for measuring performance; thus, it is a comparable gauge for studying the reaction, in terms
of volatility, to specific events.
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and autoregressive conditional jump dynamics, provides a
good fit for the S&P 500 index markets. Secondly, we find
that there are certain similarities in some of the charac-
teristics of volatility within the S&P 500 spot and futures;
that is, it would seem that, in the long run, the risks in the
S&P 500 index markets may be controllable. Thirdly,
despite the fact that open-outcry and mini-sized futures
are counterparts of the corresponding spot index, their
reactions to news are found to be heterogeneous.
Fourthly, E-mini index futures are the most efficient
instrument in terms of the transference of information;
hence, they appear to play a dominant role in price
discovery within the index markets.

The remainder of this paper is organized as follows.
Descriptions of the data and the empirical methodology
adopted for this study are provided in section 2, followed
in section 3 by presentation and discussion of the
empirical results. Finally, the conclusions drawn from
this study are summarized in the closing section.

2. Data and methodology

2.1. Data description

Our analysis of volatility dynamics is based upon the daily
closing prices of the S&P 500 spot, futures and E-mini
futures indices; the details are obtained from Tickdata
Inc. Nearby floor-traded and E-mini futures contracts are
selected for our discussion since these are the most
actively traded futures contracts in their classifications.
Given that the E-mini index futures contracts were
introduced on the S&P 500 index of the CME on 9
September 1997, in order to unify the trading period for
the three indices, the sample period used for our analysis
covers the 10 years from 11 September 1997 to 31 August
2006. All of the analyses undertaken in this study are
carried out on returns data.

2.2. Methodology

The primary aim of the present study is to determine
whether the permanent and transitory components, in
conjunction with the dynamic jump process, can explain
volatility behavior in the S&P 500 spot and futures
indices. In order to gain a complete understanding of
whether these three singular features coexist in the three
indices, we combine the Engle and Lee (1999) component
model with the Chan and Maheu (2002) ARJI model to
decompose the GARCH conditional variance into per-
manent and transitory components. We hypothesize that
jump intensity will follow an ARMA process, and also
incorporate the GARCH effect of the return series.

2.2.1. ARJI model

The ARJI model of returns can be expressed asy:

Rt ¼ �þ
Xp
i¼1

�iRt�i þ
ffiffiffiffi
ht

p
Zt þ

Xnt
k¼1

�t,k, ð1Þ

ht ¼ !þ
Xq
i¼1

�i"
2
t�i þ

Xp
i¼1

�iht�i, ð2Þ

�t ¼ �0 þ
Xr
i¼1

�i�t�i þ
Xs
i¼1

	i
t�i, ð3Þ

Zt � NIDð0, 1Þ, �t,k � Nð�, �2Þ,

where Rt is the return series of the S&P 500 spot and

futures. The conditional jump size, �t,k, is assumed to be

independent and normally distributed with mean � and

variance �2; ht denotes the conditional volatility dynamics

for the return, following a GARCH(p, q) process with

"t ¼ Rt � ��
Pp

i¼1 �iRt�i; nt is the discrete counting

process governing the number of jumps arriving between

t� 1 and t, which is distributed as a Poisson random

variable with a time-varying conditional intensity param-

eter, �t.
Let �t�E[nt|�t�1] be the conditional expectation of the

counting process, which is assumed to follow an

ARMA(r, s) process, where �t is related to r past lags of

the conditional jump intensity plus lags of 
t. Thus, 
t�1 is
the innovation to �t�1 which is measured, ex post, by the

econometrician. The jump intensity residual is then

computed as


t�i � E nt�ij�t�i½ � � �t�i ¼
X1
i¼0

jPðnt�i ¼ j j�t�iÞ � �t�i,

ð4Þ

and the conditional density of nt, following a Poisson

distribution, is

Pðnt ¼ j j�t�1Þ ¼
e��t�jt
j!

, j ¼ 0, 1, 2, . . . : ð5Þ

Maheu and McCurdy (2004) propose a further ex-post

distribution for the number of jumps, nt, within which the

filter is contracted as

Pðn ¼ j j�tÞ ¼
f ðRtjnt ¼ j,�t�1ÞPðnt ¼ j j�t�1Þ

PðRtj�t�1Þ
,

j ¼ 0, 1, 2 . . . : ð6Þ

After integrating out all of the jumps during a one-unit

interval, the conditional probability density function of

the returns can be expressed as

PðRtj�t�1Þ ¼
X1
j¼1

f ðRtjnt ¼ j,�t�1ÞPðnt ¼ j j�t�1Þ: ð7Þ

On the condition that the j jumps which occur during

the conditional density of returns are normal, the likeli-

hood function can be constructed as

f Rtjnt ¼ j,�t�1ð Þ ¼ 2�ðht þ j�2Þ
� ��1=2

exp

� �
Rt � ��

Pp
i¼1 �iRt�i � �j

� �2
2ðht þ j�2Þ

 !
:

ð8Þ

yRefer to Chiu et al. (2005a) for a detailed description.
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The log-likelihood function can then be written as

Lð�Þ ¼
XT
t¼1

log f Rtj�t�1; �ð Þ, ð9Þ

where �¼ (�,�i,!,�i,�i, �, �, �0, �i, 	 i) are the parameters
to be estimated.

Given that the log-likelihood function in equation (9)
involves an infinite summation, in order to ensure that
our estimations are feasible, as the truncation point for
the distribution determining the number of jumps, we
select a large value of five as the maximum number. The
reason for this is that, in practice, we find that within our
model estimates, the conditional Poisson distribution of
equation (5) has a zero probability in the tail for all values
of nt45; thus, in the present study, we set the maximum
number of jumps (nt) as five.

2.2.2. Component model. The component model, which
was devised by Engle and Lee (1999) to describe both
long- and short-run volatility, is stated as

ht ¼ qt þ � "
2
t�1 � qt�1

� �
þ �ðht�1 � qt�1Þ, ð10Þ

qt ¼ !þ �qt�1 þ � "
2
t�1 � ht�1

� �
, ð11Þ

where qt is the permanent (or trend) component within the
GARCH conditional variance which captures the time-
varying long-term volatility, with the mean reversion
speed being determined by �.

It should be noted that equation (2.4) in the
GARCH(1,1) model of Engle and Lee (1999) can also
be represented as

ht ¼ ð1� �� �Þ

2 þ �"2t�1 þ �ht�1 ¼ 


2

þ � "2t�1 � 

2

� �
þ �ðht�1 � 


2Þ:

It is therefore quite easy to recognize that equation (10)
in the present study is simply a reinterpretation of
equation (2.4) in the Engle and Lee (1999) study, albeit
with the constant long-run volatility, 
2, being replaced
by the time-varying trend, qt, and its past value. The
difference between ht and qt is simply the transitory
component of the conditional variance which dies out
with time.

The forecasting error term, "2t�1 � ht�1, which is zero-
mean and serially uncorrelated, drives the evolution of the

permanent component, whilst �þ � refers to the

persistence of the short-run component. The term � is

an autoregressive root, for which a typical value is

between 0.9 and 1; therefore, qt will approach the

unconditional variance very slowly. The stability terms

of � are �51 and �þ �51. When �4�þ�, the transitory
component will converge more rapidly than the perma-

nent component.

2.2.3. ARJI-Trend model. In addition to replacing
equation (3) 
t�1 with equation (4), we also combine the

ARJI model with the component model and rewrite

equation (2) as equations (10) and (11). The resultant

equations can be written as followsy:

ht ¼ qt þ �ð"
2
t�1 � qt�1Þ þ �ðht�1 � qt�1Þ, ð12Þ

qt ¼ !þ �qt�1 þ � "
2
t�1 � ht�1

� �
, ð13Þ

�t ¼ �0 þ ð�1 � 	1Þ�t�1 þ 	1E nt�1j�t�1½ �: ð14Þ

The log-likelihood function of equation (9) is used to

estimate the parameters in the present study.z

Furthermore, in the present study, we carry out the Bai

and Perron (2003) procedures in advance, so as to ensure

that we can effectively identify the potential structural

change within the conditional mean of the returns for the

spot and futures markets; this enables us to determine the

possible break points in the three series.x
If such structural changes are found to exist, then the

dummy variables are added into the mean equation to

indicate the existence of a structural transition; that is,

equation (1) is subsequently rewritten as

Rt ¼ �0 þ
Xn
i¼1

�iDi þ
Xp
i¼1

�i0 þ
Xn
j¼1

�ijDj

 !
Rt�i

þ
ffiffiffiffi
ht

p
Zt þ

Xn
i¼1

�i
ffiffiffiffiffiffiffiffi
ht�i

p
Zt�i þ

Xnt
k¼1

�t�k, ð15Þ

Zt � NIDð0, 1Þ, �t,k � Nð�, �2Þ, nt � Poissonð�tdtÞ,

where Di represents the structural change dummy

variables captured by the Bai and Perron (2003)

procedure.

yIf |�|51, and when 	¼ s, equation (3) can be rewritten as equation (14).
zThe distribution of the error terms for standardized GARCH-type models is usually non-normal. In order to resolve the potential
problem of the residuals not having a conditional normal distribution, we apply the quasi-maximum likelihood estimation (QMLE)
approach for our empirical examination. According to Tsai and Chan (2005), the QMLE is asymptotically normal; therefore, our
results are robust, producing consistent estimates of the parameters.
xBai and Perron (2003) note that a total of five breaks should prove to be efficient for empirical applications. In any event, the
critical values for choices greater than five are very small. Accordingly, in the present study, the maximum permitted number of
breaks allowed is set at five. In addition, to match the maximum number of breaks, we use a trimming of "¼ 0.15; thus, the minimal
distances between each break are 338 for the spot index, 340 for floor-traded futures and 341 for E-mini index futures. Adhering to
the Bai and Perron (2003) approach for determining the potential break points in the spot, floor-traded and E-mini futures, we
execute the following steps. Firstly, we construct the supF, UDmax and WDmax tests for the three indices, and then also construct
the supF(lþ 1 | l) tests. Secondly, we refer to the procedure for selecting the number of breaks using information criteria as the BIC,
LWZ and sequential procedures. Finally, we obtain the optimal number of breaks for spot, floor-traded and E-mini futures.

1424 S.-M. Chiang et al.
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3. Estimation results

In order to illustrate the dynamic properties of S&P 500
spot and futures, we estimate the ARJI-Trend model in
conjunction with a structural change test. A description
of the data adopted for this study and subsequent analysis
of the estimation results based upon the ARJI-Trend
model are provided in the following subsections.

3.1. Basic analysis of the data

The summary descriptive statistics for the daily logarith-
mic returns of the S&P 500 spot, regular and E-mini
futures indices over the 10-year sample period are
presented in table 1, from which we can see that the
mean daily return is found to be the highest (lowest) for
the spot (futures) index.

Amongst the three indices, the standard deviation of
the returns is found to be the highest for regular futures,
with all of the indices exhibiting large kurtosis, and the
Jarque–Bera tests for normality revealing that the stock
returns have a non-normal distribution.y Therefore,
according to the preliminary results of the skewness,
kurtosis and Jarque–Bera tests, the return distribution is
more fat-tailed and high-peaked than a normal distribu-
tion, which is consistent with the ARCH effect.

3.2. Empirical results for the S&P 500 index markets

3.2.1. Structural break points. The daily stock price
trends of the S&P 500 spot index, regular and E-mini
futures markets from 11 September 1997 to 31 August
2006 are illustrated in figures 1(a)–(c). We apply the Bai
and Perron (2003) procedure to extract the structural
break point so as to explore the possible structural break
in these indices during the sample period.

The extracted results indicate that the break date in the
S&P 500 is 13 August 2002 for the spot index and 30
September 2002 for the open-outcry and E-mini futures
indices. At first glance, such a difference in the timing of
the structural changes in the two markets implies that, on
the one hand, there are divergent responses to news in the
spot and futures markets; that is, the S&P 500 spot and
futures markets may well have different microstructures.
On the other hand, however, the identical date for the
structural change in the open-outcry and E-mini index
futures markets seems to confirm high homogeneity
between the two markets, despite the differences in their
trading hours and trading systems.

In order to confirm that the inclusion of such breaks is
essential, we first perform likelihood ratio tests to
examine the validity of the ARJI-Trend model with
structural breaks. The results are presented in tables 2–4,
from which we can see that the ARJI-Trend model with
structural breaks is an appropriate model for the S&P 500
spot index, floor-traded and E-mini futures markets.

In the following subsections, we go on to further
examine the null hypotheses on whether the coefficients
with break dummies are significantly different from zero
(that is, H0: �1¼ 0 and H0: �11¼ 0). The F-test results,
presented in table 5, reveal that a structural break must be
considered when undertaking empirical research using the
ARJI-Trend model. An evaluation of the existence of
structural change is therefore seen as important when
setting out to determine the presence of time-varying,
continuous-state GARCH and discrete jump
components.

3.2.2. Comparison between ARJI-Trend and GARCH-

type models. The ARJI-Trend model proposed in the
present study nests the widely adopted classical GARCH
structures: GARCH(1,1), component-GARCH and
GARCH- Jump with constant jump intensity and size.
In order to determine whether it is the ARJI-Trend model
which actually provides the best goodness-of-fit, we apply
the likelihood ratio (LR) tests to examine the validity of
each of the models. The LR results on the S&P 500 spot
index, floor-traded and E-mini index futures (tables 2–4)
indicate that, for these three markets, the GARCH,
component-GARCH and GARCH-Jump models are
rejected at the 1% level of significance.

3.3. Empirical results for the ARJI-Trend model

3.3.1. GARCH components. Table 5 also presents the
related results for the ARJI-Trend model, from which we
can see that, for the three indices, all of the related
parameters characterizing the dynamics in the models are
significant. Furthermore, almost all of the parameters
pass the Ljung–Box Q(26) and Q2(26) tests, thereby
indicating the superior performance of the ARJI-Trend
model in describing the behavior of S&P 500 spot and
futures indices.

Table 5 further reveals that the permanent component
of the GARCH conditional variance exhibits a high
degree of persistence, with the autoregressive parameters

Table 1. Summary descriptive statistics of daily returns for the
S&P 500 spot index, floor- traded and E-mini index futures

markets.

Variable
Spot
index

Floor-traded
futures

E-mini
futures

Mean 0.0143 0.0137 0.0137
Std. dev. 1.1720 1.2021 1.2004
Max. 5.3080 5.8141 5.9128
Min. �7.1127 �7.7058 �7.8793
Skewness �0.0620 �0.0958* �0.0820
Kurtosis 2.9755*** 3.5493*** 3.5098***
Jarque–Bera 832.9338*** 1192.8664*** 1170.2833***
No. of observations 2254 2266 2275

*Significant at the 10% level. **Significant at the 5% level.

***Significant at the 1% level.

yThe kurtosis examined here is excess kurtosis, which deviates from the respective means.
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Figure 1. Daily stock price trend on the S&P500 (a) spot index, (b) futures index, and (c) E-mini futures index, September 1997 to
August 2006.
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(�) in the trend equation being very close to 1 (0.9932 for

spot, 0.9937 for regular futures, and 0.9924 for E-mini

futures). In order to determine whether the permanent

component of volatility is integrated, we carry out the

statistical test by letting �¼ 1. In the subsequent proce-

dure, we follow Chen and Shen (2004) to re-estimate the

model and calculate the restricted log likelihood function.
As shown in tables 2 to 4, the log-likelihood ratio tests

are �6.9710 for spot, 11.5194 for floor-traded futures,

and 36.1116 for E-mini index futures, results which reveal

no rejection of the restricted ARJI-Trend model for the

S&P 500 spot; that is, the permanent component of

the spot volatility is a random walk, whereas those of the

regular and E-mini futures are not. Furthermore, the

convergence speed to long-run innovation appears to be

most rapid in the E-mini futures market, with the slowest

convergence speed being found for floor-traded futures.
Accordingly, this also implies that, in the spot market,

almost 87.24% of the news shock on the permanent

components still persists after 20 trading days, whilst

88.13% (85.85%) of the news shock persists in the open-

outcry (E-mini) futures market over the same horizon.y

Conversely, the respective sums of �þ �, which represent

the continuance level of the transitory component, are

0.9457 for spot, 0.9472 for open-outcry, and 0.9453 for

E-mini futures. These figures correspond to their

respective half-lives of 18.5, 19 and 18 trading days.

These results reveal that the trend has a high level of

persistence, whereas the arrival of new information has

only minor impacts on the markets. The outcome also

reveals that the deviations in GARCH conditional

variance from the general trend are temporary, thereby

providing support for the findings of the prior studies.z
The shock effects on the permanent and transitory

components are respectively given by � and �, with a

comparison of the parameter estimates showing that, for

the three markets, the arrival of news has a much greater

influence on the transitory component than on the

permanent component. However, combined with the

previous results, despite the shock effect on the transitory

component being stronger, as in Engle and Lee (1999) and

Chen and Shen (2004), the effect is found to be short-

lived. Furthermore, as the relationships between the

parameters are (�þ �)5�51, the permanent component

will tend to dominate the forecasting of GARCH.
To briefly summarize, when certain information arrives

into the market, the more rapid convergence speed of the

permanent and transitory components of the E-mini

futures indicates that the E-mini market is better at

transmitting the information. Conversely, floor-traded

futures appear to be the least efficient in dealing with the

news. This suggests that the introduction of E-mini

futures may well have led to them playing a governing

role in price discovery. Indeed, since the open-outcry

Table 5. Estimation results of the ARJI-Trend model for the S&P 500 indices.

Variablea

Spot indexb Floor-traded futuresb E-mini futuresb

Coeff. S.E. Coeff. S.E. Coeff. S.E.

�0 0.3504*** 0.0193 0.2383*** 0.0166 0.3331*** 0.0000
�1 �0.1394*** 0.0240 �0.0766*** 0.0206 �0.1024*** 0.0247
�10 �0.0022 0.0226 0.0109 0.0224 �0.1270*** 0.0000
�11 �0.0900** 0.0418 �0.0427 0.0399 �0.0763* 0.0390
v1 0.0233*** 0.0000 �0.0518** 0.0222 0.1030*** 0.0223
v2 �0.0576*** 0.0198
! 0.0000 0.0558 0.0000 0.0528 0.0000*** 0.0000
� 0.0849*** 0.0062 0.0735*** 0.0066 0.0745*** 0.0071
� 0.8608*** 0.0121 0.8737*** 0.0117 0.8708*** 0.0142
� 0.9932*** 0.0013 0.9937*** 0.0011 0.9924*** 0.0014
� 0.0086** 0.0021 0.0081*** 0.0019 0.0142*** 0.0036
� �0.8056*** 0.0456 �0.6927*** 0.0620 �0.7103*** 0.0470
� 0.1915** 0.0739 0.5710*** 0.0508 0.4752*** 0.0492
�0 0.0130*** 0.0015 0.0246*** 0.0031 0.1305*** 0.0118
�1 0.9628*** 0.0044 0.9259*** 0.0099 0.6107*** 0.0358
	1 0.0852*** 0.0289 0.1939*** 0.0576 0.2233** 0.0911

Q(26) 25.6189 28.2439 29.7274
Q2(26) 22.6970 38.2480* 32.7562
Log L �3262.1331 �3303.7758 �3302.0651
H0: �1¼ 0 and H0: �11¼ 0 31.0737*** 14.7318*** 21.1511***

aThe Q(26) and Q2(26), distributed as �226, are the Ljung–Box Q-statistics with a lag of 26 for standardized residuals and standardized squared

residuals for the purpose of examining whether linear and nonlinear dependence have been removed.
bSignificant at the 10% level. **Significant at the 5% level. ***Significant at the 1% level.

yGiven that the daily impact of news shocks on the permanent components for each market are 0.9932 for the spot market, 0.9937
for the open-outcry market, and 0.9924 for the E-mini market, their effects after 20 trading days are, respectively, computed as
0.993220, 0.993720 and 0.992420. The resultant percentages are 87.24%, 88.13% and 85.85%.
zSee Engle and Lee (1999), Speight et al. (2000) and Ané (2006).
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Figure 2. Conditional time-varying jump intensity on the S&P500 (a) spot index, (b) index futures, and (c) E-mini futures,
September 1997 to August 2006.
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trading mechanism involves greater human participation
within the overall trading process (Christie et al. 1994),
this is likely to result in a reduction in information
efficiency within the market.

3.3.2. Jump intensity. The jump-size mean � is found to
be significant at the 1% level for all three indices, ranging
from �0.8056 to �0.6927, with such significance implying
that there is abnormal information resulting in a discon-
tinuous jump in the index spot and futures market which,
in the long run, will be significantly different from zero.
The jump parameters �0 are also found to be significant
at the 1% level, thereby implying the existence of
jump behavior for the S&P 500 index spot and futures
whenever there is abnormal information flowing into the
markets.

Furthermore, the parameters �1 and 	1 are also found
to be significant at the 1% level, thereby indicating that
the probability of jumps incited by abnormal information
would change over time, leading to clustering, as noted by
Maheu and McCurdy (2004). The unconditional jump
intensity is 0.3495 for spot, 0.3320 for regular futures, and
0.3352 for E-mini index futures, which suggests that
jumps to returns will occur, on average, once every 1.537,
1.497 and 1.504 business days for the corresponding
markets.y Thus, the abnormal innovations occurring in
the S&P 500 index markets are frequent; however, since
the jumps will almost completely decay in about 4–5
trading days in all three markets, their impacts will
rapidly disappear.

The conditional jump intensities for the S&P 500 spot,
open-outcry and E-mini index futures markets are illus-
trated in figures 2(a)–(c), which clearly reveal that jump
intensity is time-varying. Thus, although some studies
(such as Chen and Shen (2004)) hypothesize that jump
intensity is constant, it will vary when different events
occur over various time spans.

3.3.3. Comparison of the three features of total conditional

variance (risk). Total conditional variance comprises the
permanent and transitory components, along with jump
variance; however, an interesting point from the results
shown in table 6 is that volatility arises mainly from the
transitory component (48.50% for the spot market,
47.40% for floor-traded futures, and 53.50% for

E-mini futures). Although GARCH variance provides
the main contribution to total variance (about 83%),
jump-induced variance similarly explains about 17% of
the volatility for the three index markets.

The results indicate that jump behavior is important,
and must therefore be taken into account when consid-
ering investing in the S&P 500 index. However, responses
to events seem to be less dramatic in the US, as compared
to the Taiwan index market (Chiu et al. 2008).
Furthermore, since the total variance is greatest in the
spot index (1.468), followed by the floor-traded index
futures (1.462), and the E-mini index futures being the
smallest (1.224), this suggests that trading is riskier in the
spot and regular index futures markets than in the E-mini
futures market.

The permanent and transitory components and the
jump variance for the three markets are illustrated in
figures 3(a)–(c), which show that the permanent compo-
nent moves in a rather even manner, whilst the transitory
component is driven up and down by news arrivals.
Furthermore, despite the permanent component lasting
for a longer period, it is not found to be particularly large.
Overall, the transitory component is found to be far
greater than either the permanent component or the
jump-induced variance.

For investors, although the effects of transitory and
jump components are significant, they are merely tempo-
rary. Conversely, despite the more prolonged impacts of
permanent components, in the long run, these are
relatively smooth. From a perspective of long-term
investment, the investment risks appear to be under
control, essentially because the market will ultimately
return to its long-run state; however, what such investors
do need to be aware of is fundamental risk (economics,
politics, and so on). Conversely, speculators in the market
can make use of the sizable temporary and jump
component to engage in arbitrage activities.

3.4. Out-of-sample analysis

For our evaluation of the out-of-sample one-period-
ahead variance forecasting ability of the GARCH(1,1)
and ARJI-Trend models, we select the first nine years as
our in-sample period, and set the final year as our out-of-
sample period. The loss functions, mean absolute error
(MAE) and root mean square error (RMSE) are consid-
ered as the criteria for assessing the forecasting

Table 6. Basic statistics for the total conditional variance combination.

Variance combination Value % Value % Value %

GARCH conditional variance
Transitory component 0.712 48.50 0.693 47.40 0.655 53.50
Permanent component 0.411 28.00 0.444 30.37 0.489 39.95
Jump conditional variance 0.344 23.43 0.326 22.30 0.081 6.62
Total conditional variance 1.468 100.00 1.463 100.00 1.224 100.00

yWhen the ARJI specification is stationary (|�|51), then the unconditional jump intensity will be equal to E [�t]¼ �0/(1� �1).
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Figure 3. Jump variance and permanent and transitory components for the S&P 500 (a) spot index, (b) index futures, and (c) E-mini
index futures, September 1997 to August 2006.
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performance of the ARJI-Trend model relative to that of

the GARCH(1,1) model.y The formulae for computing

the MAE and RMSE are as follows:

MAE ¼

PT
t¼1 jYt � Ŷtj

T
, RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 Yt � Ŷt

� �2
T

vuut
,

where Yt is the observed value, and Ŷt is the estimator of

the estimated parameter Y. The forecasting performance

will be better with a smaller value of MAE or RMSE.
The model parameters are initially set at the values

shown in table 5; we then use a fixed-sized rolling window

of 250 observations, and also adopt the Diebold and

Mariano (1995) ‘DM-test’ (the forecast comparison test)

to compute the MAE and RMSE, comparing the

forecasting efficiency between the ARJI-Trend and

GARCH (1,1) models during the out-of-sample period.
Although the outcomes of the DM test appear to reveal

that the ARJI-Trend model performs better than the

GARCH model in the S&P 500 spot index, there are only

very small differences in the values of MAE (1.3847 vs.

1.3826) and RMSE (3.3517 vs. 3.3516). Therefore, the

DM-test results reported in table 7 indicate that, for the

two models, the out-of-sample forecasting performance is

virtually the same for the S&P 500 spot, floor-traded and

E-mini indices.

3.5. News effects

As shown in figures 2(a)–(c) and 3(a)–(c), during the event

periods in our sampling span, there are increases in the

permanent and temporary components, jump intensity

and jump variance for all three indices. To explain this in

a concise way, we simply display the jump intensity and

transitory components for the related events in table 8.

Both jump intensity and the transitory components are

generally larger than their means during these periods;

however, the degree of priority is not consistent amongst

the three indices. We surmise that the different responses

to news arrivals during such spans stem mainly from the

divergent trading systems and clientele characteristics.

These results provide some support for the dissimilarities

in structural fundamentals in the index markets, as noted
by both Chiu et al. (2006) and Chung and Chiang (2006).

To summarize, the results indicate the coexistence of
time-varying jumps, as well as both permanent and
transitory components in the volatility behavior of the
S&P 500 spot and index futures markets. Furthermore,
the diverse responses to news arrivals amongst the S&P
500 indices may be attributable to certain characteristics
relating to market structure. Indeed, this also suggests
that, under the new form of economic generation—within
which greater uncertainty is the norm—aside from
traditional GARCH volatility, jumps leading to infre-
quent large moves in returns must be taken into account
when considering investing in the financial markets.
Although the ARJI-Trend model does provide us with a
heightened perception of the reaction to events and
volatility behavior within the S&P 500 markets, when
faced with shocks and innovations within these markets,
we suggest that investors should treat them as a normal
condition, since, in the long run, the impacts will
ultimately disappear.

4. Conclusions

We propose a model structure, comprising a combination
of time-varying continuous-state GARCH and discrete
jump components, which we suggest is appropriate for
describing the volatility features of the S&P 500 index
markets. Our results reveal the coexistence of trend and
transitory components, together with time-varying jumps,
and although we find that the trend has a high level of
persistency, the arrival of new information appears to
have only minor impacts on the markets.

The variance in the transitory and jump components is
capable of explaining about 83% of the total conditional
variance in the US markets; nevertheless, such variance
will decay in the long run, which suggests that following
the occurrence of trading noise and events, there may be
some inherent force stabilizing the market. Rational
investors must therefore treat such news arrivals and
noise trading as normal occurrences, since the market will
eventually return to its long-run state; that is, in addition
to the fundamental risk and trading noise, investors in the

Table 7. Out-of-sample forecasting performance of conditional volatility for S&P 500 spot, floor-traded and E-mini index futures.

GARCH(1,1) ARJI-trend DM statisticsa,b

Index market MAE RMSE MAE RMSE MAE RMSE

Spot 1.3847 3.3517 1.3826 3.3516 �6.8586*** �2.7203***
Futures 1.4559 3.6901 1.5131 4.0618 1.6234 1.2487
E-mini 1.4516 3.6692 1.4803 3.7406 1.9153 1.4194

aDM refers to the Diebold and Mariano (1995) t-statistics. The null hypothesis of the DM-test is of equal predictive ability for the two models,

whereas a significantly negative t-statistic would indicate that the GARCH(1,1) model was dominated by the ARJI-Trend model.
bSignificant at the 1% level.

yThe MAE and RMSE are frequently used measures for determining the differences between values predicted by a model and the
values actually observed from the issue being modeled or estimated.
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S&P 500 markets must also take into account the
potential occurrence of such events when considering
engaging in short-run investment activities. In the long
run, however, what investors need to do is to allocate
assets within their portfolios to earn better returns.

The out-of-sample forecast performance evaluated by
the DM-test reveals that the ARJI-Trend model has
superior performance in the S&P 500 spot market, a result
which is consistent with the finding of Chan and Maheu
(2002), that the ARJI-Trend model adequately captures
the time variation in the conditional jump intensity and
improves both the in-sample fit and out-of-sample fore-
casting in the S&P 500 spot market.

Of the three indices, the mini-sized index futures market
exhibits more rapid convergence to normality, as well as
less trading noise, implying that this market deals with
information more efficiently. This result concurs with the
findings of Hasbrouck (2003) and Kurov and Lasser
(2004), that the introduction of E-mini futures has led to
these instruments playing a dominant role in price
discovery within the index markets. Furthermore, as
noted by Chiu et al. (2006) and Chung and Chiang (2006),
the different responses to news arrivals in the S&P 500
indices may stem from market-specific characteristics
associated with the market microstructure.

In conclusion, with the coexistence of trend, transitory
and jump components in the volatility behavior of the
S&P 500 index markets, we suggest that governments
should strive to gain a firm understanding of the overall
effects of changes in trading systems and policies. This
would undoubtedly lead to improvements in information
efficiency, thereby enabling such governments to better
manage both the financial markets, and market risk.
Failure to take these issues into consideration may well
result in mistakes or the likelihood of erroneous decision
making.
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