IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 1, NO. 1, JANUARY 2004 15

A Neural Fuzzy Network Approach to
Radar Pulse Compression

Fun-Bin Duh, Chia-Feng Juang, Member, IEEE, and Chin-Teng Lin, Senior Member, IEEE

Abstract—To make good range resolution and accuracy com-
patible with a high detection capability while maintaining the low
average transmitted power, pulse compression processing giving
low-range sidelobes is necessary. The traditional algorithms such
as the direct autocorrelation filter (ACF), least squares (LS) in-
verse filter, and linear programming (LP) filter based on three-
element Barker code (B13 code) have been developed. Recently, the
neural network algorithms were issued. However, the traditional
algorithms cannot achieve the requirements of high signal-to-side-
lobe ratio and low integrated sidelobe level (ISL), and the normal
neural networks such as the backpropagation (BP) network usu-
ally produce the extra problems of low convergence speed and are
sensitive to the Doppler frequency shift. To overcome these defects,
a new approach using a neural fuzzy network to deal with pulse
compression in a radar system is presented. Two different Barker
codes are carried out by a six-layer self-constructing neural fuzzy
network (SONFIN). Simulation results show that this neural fuzzy
network pulse compression (NFNPC) algorithm has significant ad-
vantages in noise rejection performance, range resolution ability,
and Doppler tolerance, which are superior to the traditional and
BP algorithms.

Index Terms—Barker code, neural fuzzy network, pulse com-
pression.

I. INTRODUCTION

NE OF THE main purposes of waveform design for

pulse compression in a radar system is to solve the
dilemma between the range resolution and the pulse length.
Pulse compression processing is one of the most important
factors in determining the performances of a high-resolution
and/or high-detection radars. For instance, a synthetic aperture
radar (SAR) always contains a high range resolution pulse
compression, and a downward-looking rain measuring radar
with a range sidelobe level of —55 dB is also required [1], [2].
In a satellite-borne rain radar, very stringent requirements on
range sidelobe level of —60 dB are demanded [3], and the air
traffic control system requires the sidelobe lower than 55 dB
under the mainlobe level [4]. In addition, some researchers
have devoted themselves to developing the pulse compression
algorithms for this century’s advanced weather radar to meet
the higher time and space resolution requirements [5]-[9].
Eventually, the main purpose of the pulse compression is to
raise the signal-to-maximum sidelobe (signal-to-sidelobe) ratio
(SSR) and decrease the integrated sidelobe level (ISL) which
is defined as [7] to improve the detection and range resolution
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abilities of the radar system. Also, for a good pulse compression
algorithm, certain performance must be considered, including
the noise rejection and the Doppler tolerance performance.
Here, the sidelobes are unwanted by products of the pulse
compression process; for the correlation of a code, the sidelobes
are the portions of the output waveform nonmatching with
the code other than the output of matching the code. And the
sidelobe level is the magnitude of the sidelobe.

There are two basic waveform designs suitable for pulse com-
pression: frequency-coded and phase-coded waveforms, which
are also candidate waveforms for weather radar application [7].
The performance comparison between the basic waveforms de-
scribed above is given in [5] and [10]. The Barker-based binary
phase codes have better range resolution than the frequency-
coded waveforms at the price of higher loss and higher sidelobes
[8], [9]. In this letter, we consider only Barker-based binary
phase codes because of the ease in implementation.

Ackroyd and Ghani [11] have developed an optimum mis-
matched filter for the B13 code sidelobe suppression in the
least square (LS) sense, and Steven Zoraster has utilized linear
programming (LP) techniques to determine the optimal filter
weights for minimizing the peak range sidelobes of the Barker
code [12]. Hua et al. [13] tried to combine the advantages of Ri-
haczek’s matched filter [14] and Zoraster’s linear programming
methods to obtain a new Barker code sidelobe suppression
algorithm. Recently, neural networks applied to pulse compres-
sion were proposed with their learning capabilities [15], [16].
Kwan and Lee [15] have employed a backpropagation (BP)
algorithm to realize pulse compression with a phase-coded
waveform, and obtained a good result. But the convergence
speed of the BP algorithm is inherently low [16] and sensitive
to the Doppler frequency shift. To cope with the drawbacks, a
novel solution to the problem of pulse compression has been
proposed in this work. It is a self-constructing neural fuzzy
inference network (SONFIN) that we previously proposed in
[17]. We use SONFIN to perform a B13 code with the sequence
{1,1,1,1,1,-1,-1,1,1,—1,1,—1,1} and a 20-element
combined Barker code (CBC) expanded by combining known
Barker code with the sequence [18]

+ + +
—t— —— ——
T1,-1,1, T1,-1,1 T,1,-1,1,
- +
——
11,1, -1, 1,1, -1,.1.

The algorithm combines the Barker code with SONFIN
to constitute the neural fuzzy network pulse compression
(NFNPC). The use of SONFIN in the proposed NFNPC
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scheme is obviously not the only choice. Other types of neural
networks or fuzzy systems are possible. However, our choice
of SONFIN is based on several reasons. First, the SONFIN
is a hybrid system of neural networks and fuzzy logic. With
a fuzzy-inference-typed structured network, the SONFIN can
always achieve higher learning accuracy and convergence
speed than normal neural networks. Also, the IF-THEN-typed
expert knowledge can be put into or extracted from the
SONFIN easily. Second, as compared to the existing fuzzy
neural networks, the SONFIN can perform both the structure
and parameter learning simultaneously such that it can online
construct itself on the fly dynamically. As a result, it can always
find itself a very economic size of network for a given learning
task while comparing the other neural fuzzy network.

The rest of this letter is organized as follows. Section II gives
the problem statements. In Section III, we shall introduce the
structure of the SONFIN and the way the SONFIN used to
process the pulse compression in radar system. In Section 1V,
we present the performances of pulse compression for NFNPC.
Discussion and conclusion are made in Sections V and VI,
respectively.

II. PROBLEM FORMULATION

To apply the simplest type of phase code, the biphase code,
we subdivide the transmitted pulse of duration 7" into N sub-
pulses of duration 7 = T'/N. The direct autocorrelation func-
tion (ACF) can be represented mathematically

N—|k|
yk:%;xixiﬂkh k=-N+1,...,N -1
R
Equation (1) can be separated to two parts as follows:
| NIkl
= ; Titiyn, k=-N+1,...,-1,0 (2)
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1
= 2_; TiggTi k=1,2,...,N-1. (3

When expanding (2) and (3), we can obtain a matrix form
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The vector in the right-hand side of (4) is the replica of the
transmitted code. Alternatively they are the weightings for the
received signal sequence. That is, we can express the above
equation as y = (1/N )XW, where matrix X is formed by the
shifting of the input sequence {x; } and W is a weighting vector.
Observing the matrix X, it defines 2N — 1 patterns, and the
proper code word is in the Nth pattern. However, we must con-
sider an additional null sequence, {0}, meaning no input signal
exists. Subsequently there are 2N different sequences that may
be encountered in the input of a pulse compression network. Ex-
cept the output of proper code word sequence is 1, the others are
expected 0. Thus, the problem in acquiring the output sequence
with high SSR and low ISL of pulse compression can be con-
sidered as a mapping of the received input sequences

yr = f(input sequences). (5)

With the advantages described as in Section I, SONFIN is very
suitable for this nonlinear mapping relationship.

III. PULSE COMPRESSION USING A NEURAL FUzZzZY NETWORK

A. Use of SONFIN to Process the Pulse Compression in a
Radar System

The block diagram of the digital pulse compression system
using NFNPC is shown in Fig. 1. The Barker code generator
generates the B13 code sequences or the 20-element CBC se-
quences, which are sent to RF modulator and transmitter. Re-
ceived IF signals are passed through a bandpass filter matched to
the subpulse width and are demodulated by two detections, I_det
and Q_det, with a local-oscillator (LO) signal at the same IF
frequency, and then the in-phase (I) and quadrature (Q) channel
echo signals are detected, respectively. These echo signals are
converted to digital form by analog-to-digital (A/D) converters
under the system timing control that also clocks the Barker code
to be transmitted. The digital form of the echo signals consists
of the Barker code and interfering noise. The NFNPCs, which
are implemented by the trained SONFIN, carry out the pulse
compression based on the received sequence. Once the echo se-
quence is matched with the transmitted Barker code, the output
of each SONFIN will be +1 with one subpulse duration. When
the SSR of the NFNPC output is very high, the false alarm of
the detector is reduced, and eventually the detection ability of
the radar system is enhanced.
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Fig. 1. Block diagram of the digital pulse compression system using NFNPC.

B. SONFIN

The structure of SONFIN for B13 code is shown in Fig. 2.
There are no rules initially in the SONFIN. They are created
and adapted as online learning proceeds via simultaneous struc-
ture and parameter learning, so the SONFIN can be used for
normal operation at any time as learning proceeds without any
assignment of fuzzy rules in advance. This six-layered network
realizes a fuzzy model of the following form:

Rule 7 : IF 21 isAi1 and --- and
@ is A, THEN y is mg, + blaj + - -

where A; is the fuzzy set of the sth linguistic term of input
variable x;, mg is the center of a symmetric membership
function on y, and b; is the consequent parameter. The
SONFIN consists of nodes, each of which has some finite
fan-in of connections represented by weight values from other
nodes and fan-out of connections to other nodes. Associated
with the fan-in of a node is an integration function f that
serves to combine information, activation, or evidence from
other nodes. This function providing the net input for the
node is a® = fu{® .., ul ™ W W),
where u(k),u;k)7 . ,u;k) are inputs to this node, and
w§k), wgk%, . ,w;,(,k) are the associated link weights, and a(*)
denotes the activation function. The superscript (k) in the
above equation indicates the layer number. We shall describe
the functions of the nodes in each of the six layers of the
SONFIN as follows.

Each node in Layer-1 corresponds to one input variable and
only transmits input values to the next layer directly. That is
aV = ugl). In Layer-2, each node corresponds to a linguistic
label (small, large, etc.) of one of the input variables in Layer-1.
We choose Gaussian membership function to specify the degree
to which an input value belongs to a fuzzy set. The operation
performed in this layer is a(?) = exp(—(ui2) — mij)?/07;),
where m;; and o;; are, respectively, the center (or mean) and
the width (or variance) of the Gaussian membership function
of the jth partition for the sth input variable u;. Hence, the
link weight in this layer can be interpreted as m;;. To repre-
sent the firing strength of the corresponding fuzzy rule, we use
the nodes of Layer-3 to represent fuzzy logic rules and perform
precondition matching of rules. These nodes are combined by
AND operation and expressed as a(?) = I u,EQ), where ¢
is the number of Layer-2 nodes participating in the IF part of

Layer 6
(output linguistic
nodes)

Layer 5
(output term
nodes)

Layer 4
(normalized nodes)

Layer 3
(rule nodes)

Layer 2
(input term
nodes)

Layer 1
(input linguistic
nodes)

Fig. 2. Structure of the SONFIN for pulse compression by three-element
Barker code.

the rule. Layer-4 is used to normalize the firing strength and
expressed as a(*) = u§4) />3 u§4), where 7 is the number
of rule nodes in Layer-3. The consequent output is calculated
in Layer-5. The input variables plus a constant construct the
linear combination of the node operation. Thus, the whole func-
tion performed by this layer is a(® = (> biaj + mf))u,g5).
Finally, the node of Layer-6 integrates all the actions recom-
mended by Layer-5 and acts as a defuzzifier with the expression
of a(®) = Zle ul(-ﬁ), where ¢ is the number of nodes in Layer-5.
Two types of learning, structure and parameter learning, are
used concurrently for constructing the SONFIN. A detailed de-

scription of the overall learning algorithms can be found in [17].

IV. SIMULATION RESULTS AND PERFORMANCE EVALUATIONS

This section illustrates the performances of the proposed
NFNPC by comparing it with BP, direct autocorrelation filter
(ACF), least squares (LS) inverse filter, and linear programming
(LP) filter based on B13 code, and comparing it with ACF and
BP based on 20-element CBC, respectively. We used the SSR
and ISL to evaluate the performances of these algorithms.

A. Training the SONFIN and Convergence Performance

The SONFIN is repeatedly trained offline with the training
set being composed of the 26 time-shifted sequences of the B13
code [15], The training data are generated by simulating the
received sequence of a true B13 code as well as a {0} sequence
that represents radar has not received any information yet. In
these training sequences, the desired output of the SONFIN, v,
is 1 when the proper Barker code just presenting in the input and
is 0 otherwise.

The 20-element CBC is used for another examination
simulation. Both the SONFIN and BP networks are repeatedly
trained offline with the training set being composed of the 40
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Fig. 3. Convergence curves of NFNPC and BP for the three-element Barker
code and the 20-element combined Barker code.

time-shifted sequences of the CBC, respectively. The training
criteria are as same as training the B13 code sequences, and
the training error is low to 2.97 x 107® for NENPC. The
convergence curves of NFNPC and BP algorithms for the B13
code and the 20-element CBC are shown in Fig. 3.

B. Noise Robustness

The input signals used to evaluate the noise robustness are
generated by a B13 code and a 20-element CBC, and both of
them are perturbed by additive white Gaussian noise with five
different noise strengths, o, = 0.0,0.1,0.3,0.5,0.7, respec-
tively. The noise performance comparison results of the ACF,
LS, LP, BP, and NFNPC algorithms on SSR and ISL with dif-
ferent noise environments are shown in Table I for B13 code,
and the results of the ACF, BP, and NFNPC algorithms for 20-
element CBC are shown in Table II.

C. Range Resolution Ability

The range resolution ability is the examination of the ability
to distinguish between two targets solely by measurement of
their ranges in a radar system. To resolve two targets in range,
the basic criterion is that the targets must be separated by at least
the range equivalent of the width of the processed echo pulse.

To compare the range resolution ability, two targets that are
separated from two subpulses delay-apart to five subpulses
delay-apart are simulated, and the SSR and ISL from the out-
puts of these algorithms are examined, respectively. Table III
shows the range resolution ability comparison of the ACF,
LS, LP, BP, and NFNPC algorithms using B13 Code by two
targets with different subpulse delay-apart on SSR and ISL
without additive noise. Table IV shows the range resolution
ability comparison of the ACF, BP, and NFNPC algorithms
using 20-element CBC by two targets with different subpulse
delay-apart on SSR and ISL without noise.

D. Doppler Tolerance

The Doppler sensitivity is caused by the shifting in phase of
individual elements of the phase code by the target Doppler,
so that, in the extreme, if the last element is shifted by 180°,

TABLE 1
NOISE PERFORMANCE COMPARISON OF THE ACF, LS, LP, BP, AND NFNPC
ALGORITHMS USING 13-ELEMENT BARKER CODE ON SSR AND ISL WITH
DIFFERENT NOISE ENVIRONMENTS (IN MEAN VALUE OVER 100 RUNS)

Algorithms ( Signal-to-sidelobe ratio), [ISL]. in dB

o,=00 c,=01 0,=03 c,=05 c,=07
ACF (22.28), [-11.49]  (22.12), [-11.51]  (19.51),[-7.95]  (16.35),[-4.55]  (13.82), [-1.91]
LS (24.00), [-15.68]  (23.73), [-15.68] (19.99), [-8.85] (16.52), [-4.78]  (13.95), [-1.95]
LP (25.69), [-13.64] (16.25), [-9.51] (16.12), [-6.98]  (15.43),[-3.94]  (14.29), [-1.41]

BP (42.74), [-3507]  (40.58), [-33.36] (28.12), [-21.51] (19.02), [-12.32] (15.31), [-7.38]

NENPC (61.24), [-55.57] (58.02), [-51.59] (44.26), [-40.77] (37.01), [-33.68] (32.45), [-28.51]

TABLE 1II
NOISE PERFORMANCE COMPARISON OF THE ACF, BP, AND NFNPC
ALGORITHMS USING 20-ELEMENT COMBINED BARKER CODE ON SSR AND ISL
WITH DIFFERENT NOISE ENVIRONMENTS (IN MEAN VALUE OVER 100 RUNS)

Algorithms ( Signal-to-sidelobe ratio), [ISL]. in dB
o,=00 o, =0.1 0,=03 c,=05 o,=07
ACF (12.04), [-3.47]  (12.06), [-3.53]  (11.86), [-2.96] (11.74), [-1.86] (11.51),[-0.46}

BP  (42.80), [-35.82] (40.86), [-34.44] (29.48), [-24.24] (20.24), [-14.80] (16.14), [-9.51]

NENPC (59.45), [-56.95]  (59.19), [-56.77] (56.62), [-52.26] (52.41), [-48.15] (50.58), [-44.88]

the code word is no longer matched with the replica. To ex-
amine the Doppler tolerance of the pulse compression algo-
rithms in this letter, we assume that a B13 code with the pulse
width of 26 ps and each subpulse width of 2 s is transmitted.
If the target echo is with Doppler shift of 20 kHz (approxi-
mately Mach 0.9 to an X-band radar), the period of Doppler
cycle is 50 ps. Since the phase shift across the 13-element code
is 180°, the last subpulse in received Barker code is effectively
inverted [19]. That is, the input sequence of pulse compres-
sionis changed from{1,1,1,1,1,-1,-1,1,1,-1,1,-1,1} to
{-1,1,1,1,1,-1,-1,1,1,-1,1,—1,1}. All of these results
of comparisons between ACF, LP, LS, BP and NFNPC algo-
rithms are shown in Fig. 4(a). For the 20-element CBC, if the
target echo is with Doppler shift of 12.82 kHz, the last sub-
pulse in received CBC is effectively inverted. All of these results
of comparisons between ACF, BP, and NFNPC algorithms are
shown in Fig. 4(b).

E. Response to the Dispersed Pulse Echo

To compare the compression response of the NFNPC, BP, and
ACF algorithms to the dispersed pulse echo from meteorolog-
ical radar, a simulation procedure for step signal is adopted from
[9]. Given that the time spacing between samples T is equal to
the subpulse duration 7, each subpulse in the transmit pulse de-
fines a range bin. At sample-time index ¢, the sample can be
represented as z;[m,n], m = 1,...,Npins, and n = 1,...,np,
where ny,iys is the number of range bins, and n,, is the number of
subpulses. As the construction procedure explained in [9], the
output range cell can be mathematically described as

>

vV m4n—1=j
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TABLE 1II
RANGE RESOLUTION ABILITY COMPARISON OF THE ACF, LS, LP, BP AND NFNPC ALGORITHMS OF TWO TARGETS USING
13-ELEMENT BARKER CODE WITH DIFFERENT SUBPULSE DELAY-APART (SPDA) ON SSR AND ISL

Algorithms Signal-to-sidelobe ratio), [ISL], 1" target/2" target, in dB
2-SPDA 3-SPDA 4-SPDA 5-SPDA
ACF  (16.9/16.9), [-6.7/-6.7] (22.3/22.3),[-8.5/-8.5]  (16.9/16.9), [-6.9/-6.9]  (22.3/22.3), |-8.7/-8.7]

LS (19.6/19.6), [-10.5/-10.5] (19.5/19.1), [-13.0/-12.6] (21.1/21.1), [-11.3/-11.3] (21.7/20.9), [-13.4/-12.6]

LP (19.2/19.2),[-9.9/-9.9]

(19.9/19.6), [-10.8/-10.5] (20.2/20.2), [-10.6/-10.6] (20.2/19.3), [-11.3/-10.5]

BP (37.3/37.1), [-32.7/-32.4] (39.6/39.4),[-33.9/-33.7] (39.6/39.5), [-33.4/-33.3] (38.8/38.7), [-33.8/-33.7]

NENPC (47.5/46.3), [-46.4/-45.1] (60.9/60.7), [-59.0/-58.8] (47.6/46.7), [-47.4/-46.5] (53.0/51.0), [-50.6/-48.5]

TABLE 1V
RANGE RESOLUTION ABILITY COMPARISON OF THE ACF, BP, AND NFNPC ALGORITHMS OF TWO TARGETS USING
20-ELEMENT COMBINED BARKER CODE WITH DIFFERENT SUBPULSE DELAY-APART (SPDA) ON SSR AND ISL

Algorithms ( Signal-to-sidelobe ratio). [ISL] ™ m_rgel/Z"d target, in dB
2-SPDA 3-SPDA 4-SPDA 5-SPDA
ACF  (6.0/6.0),-0.9/-0.9] (14.0/14.0), [-2.2/-2.2] (14.0/14.0), [-3.1/-3.1] (7.4/7.4),10.3/0.3]

BP (36.2/36.2), [-31.1/-31.0]  (40.1/39.7), [-36.0/-35.6]

(25.9/24.4), [-23.0/-21.5]  (40.6/40.3), [-33.8/-33.5]

NENPC (40.1/35.0), [-39.2/-34.1]  (43.4/42.9), [-43.0/-42.5]

(45.0/43.3),[-42.1/-40.6]  (50.1/49.1), [-48.7/-47.7]
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Fig. 4. Compressed waveforms of a target echo for (a) using BC13 code with
Doppler shift 20 kHz for the NFNPC, BP, ACF, LS, and LP algorithms, and for
(b) using 20-element combined Barker code with doppler shift 12.82 kHz for
the NFNPC, BP, and ACF algorithms.

For
Mbins

the B13 code, the number of range bins
is 26, and the sequence of the output cell is

{5.5,5,5,5,5,5,5,5,5,5,5,5,5,4,3,2,1,0,1,2,1,0,1,0,1}.

The results of comparisons between NFNPC, BP, and ACF
algorithms are shown in Fig. 5.

V. DISCUSSION

Tables I and II show that NFNPC has higher SSRs and lower
ISLs than any other compared algorithms either in noise-free
or in high-density noisy environments for using B13 code
and 20-element CBC. These results provide evidence that the
NFNPC can reduce the range sidelobe level low to —61 dB.
Meanwhile, NFNPC has a better noise rejection ability. This is
because the NFNPC is achieved first by efficiently partitioning
the input and output spaces into clusters through learning
proper fuzzy terms for each input/output variable, and then
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Fig. 5. Simulation results of NFNPC, BP, and ACF algorithms for the

step-dispersed echo.

by optimally constructing fuzzy rules through finding proper
mapping between input and output clusters.

It is clear in Tables I and II that the SSRs and ISLs are better
while using the longer CBC than using the shorter B13 code for
NFNPC, but only a little improvement is noted for traditional
BP algorithm. The main reason is that the NFNPC can obtain
a lower training error while using 20-element CBC than using
B13 code, but the BP algorithm cannot. This can be seen from
Fig. 3. However, this justifies that a phase code with longer code
word has better SSR and ISL for NFNPC and BP algorithms,
whether there is noise in the received code sequence or not.
Moreover, the SSrs and ISLs are worse while using 20-element
CBC than using B13 code for the traditional ACF algorithm.
This is because the 20-element CBC achieves higher sidelobe
levels than B13 code.

As examining range resolution of two targets, Table III shows
that the NFNPC has higher SSRs and lower ISLs than any other
compared algorithms for two targets separated from two sub-
pulses delay-apart to five subpulses delay-apart. Table IV shows
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the same results for 20-element CBC. These indicate that the
proposed NFNPC has superior distinguishing capacity between
two targets.

We may indicate by Table IV that the ACF is not suitable to
identify two separated targets in a received sequence while using
20-element CBC because the SSRs are too low.

Fig. 4(a) and (b) shows NFNPC has the significant advantage
of robustness in Doppler shift interference for both B13 code
and 20-element CBC, respectively. While investigating the
results shown in Fig. 4(a), the BP, ACF, LP, and LS algorithms
are sensitive to the Doppler shift produced by a moving
target. Among them, the normalized output of BP algorithm
is obviously higher than any other algorithms at the 19th time
delay (the 19th subpulse). That is, when BP algorithm is used
as the pulse compression processor, a moving target echo with
Doppler shift more than 20 kHz will generate a false target
just next to the true one. The similar results for using CBC are
shown in Fig. 4(b).

Form the simulation results shown in Fig. 5, we obtain that
the intelligent algorithms, NFNPC and BP, can detect the dis-
persed echo to be point-like target. This is a very distinguishing
feature. When the dispersed duration excluded, it is obvious that
the NFNPC algorithm has superior SSR and ISL for dispersed
echo.

When the computational complexity is considered for B13
code, the ACF algorithm needs 12 additions, 4 multipliers, and
one floating-point memory unit, the LS algorithm needs 11 ad-
ditions, 4 multipliers, and 4 floating-point memory units, the
LP algorithm needs 12 additions, 12 multipliers, and 8 floating-
point memory units, the BP algorithm needs 42 additions, 46
multipliers, 4 sigmoid functions, and 46 floating-point memory
units, and the SONFIN algorithm needs 79 additions, 82 multi-
pliers, 2 exponential functions, and 80 floating-point memory
units. It is obvious that the SONFIN has more computation
complexity than any other compared algorithms, and this is its
disadvantage.

VI. CONCLUSION

A neural fuzzy network, SONFIN, for radar pulse compres-
sion is proposed in this letter. This algorithm is called neural
fuzzy network pulse compression, NFNPC. The success is due
to the combinations of the self-constructing neural fuzzy in-
ference network and both the short, simple, ease-implementing
B13 code and 20-element CBC, respectively. Simulations have
demonstrated that the sidelobe at the output of NFNPC can be
significantly decreased. Moreover, while compared with tradi-
tional algorithms such as ACF, LS, LP, and BP, NFNPC has

achieved better noise rejection ability, higher range resolution
and superior Doppler tolerance. Another important advantage
of NFNPC is that it has higher convergence speed than BP algo-
rithm. These examining results lead NFNPC to be very suitable
for the high-resolution radar systems. But NFNPC also has the
disadvantage of computational complexity.
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