
ELSEVIER Fuzzy Sets and Systems 75 (1995) 17 31 

sets and systems 

Implementation of a fuzzy inference system using a normalized 
fuzzy neural network 

Chun-Tang Chao, Ching-Cheng Teng* 
National Chiao-Tung University, Institute of Control Engineering, Hsinchu, Taiwan 

Received May 1994; revised August 1994 

Abstract 

In this paper, we present a normalized fuzzy neural network (NFNN) to implement fuzzy inference systems. The 
proposed NFNN architecture makes an effective rule combination technique possible and thus enables us to significantly 
reduce the number of rules in the NFNN. We also derive a sufficient condition for rule combination and provide an 
algorithm to perform rule combination. Simulation results show that when combined with a rule elimination method the 
proposed rule combination method can greatly reduce the number of rules in the NFNN. 
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1. Introduction 

The main goal of a fuzzy inference system is to model human decision making within the conceptual 
framework of fuzzy logic and approximate reasoning [8]. As is well known, a fuzzy inference system consists 
of four important parts: the fuzzification interface, knowledge base unit, decision making unit, and output 
defuzzification interface. A fuzzy inference system is a model having the format of a fuzzy controller, which is 
the most thoroughly developed area of the application of fuzzy set theory in engineering [10]. 

The benefits of combining fuzzy logic and neural networks have been explored extensively in the literature, 
e.g., the fuzzy neural network in [8, 12], the adaptive-network-based fuzzy inference system in [9], and the 
fuzzy logical system in [16, 17]. The common advantages of the above systems are that (1) they can 
automatically and simultaneously identify fuzzy logical rules and tune the membership functions, and (2) the 
parameters of these systems have clear physical meanings, which they do not have in general neural 
networks. Fuzzy systems utilizing the learning capability of neural networks can successfully construct the 
input-output mapping for many applications. However, no efficient process for reducing the complexity of 
a fuzzy neural network has been presented. 

Lin and Lee's [12] neural network-based fuzzy logic control and decision system provided criteria for rule 
combination to reduce the number of rules in a fuzzy neural network. Grant and Wal [5] also applied this 
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rule combination method to eliminate redundant rules in their fuzzy neural network. However, they could 
not prove the general validity of their criteria for rule combination to the structure of their fuzzy neural 
networks. Moreover, no searching algorithm is presented in their papers for finding rules that can be 
combined. 

To combine the benefits of a fuzzy logic system and a neural network [6,7], in this paper we present 
a normalized fuzzy neural network (NFNN), a special type of fuzzy neural network, for implementing fuzzy 
inference systems. The normalization layer in the proposed NFNN makes rule combination in the fuzzy 
neural networks more practical and logical. Several definitions and concepts concerning multilevel logic 
synthesis and multiple-valued minimization [1, 13] are applied to obtain a sufficient condition for rule 
combination and to formulate a searching algorithm for rule combination. When used with existing fuzzy 
tools, the NFNN simplifies the knowledge acquisition stage and it can be used to create a fuzzy controller as 
in [5] or to identify an unknown system. 

This paper is organized as follows. The NFNN and its operation are introduced in detail in Section 2. 
Section 3 describes the procedure for minimizing the rule set. A rule combination theorem and a practical 
algorithm for rule combination will be proposed in this section. In Section 4, an example is given to 
illustrate the application of the rule combination technique to the NFNN. The final section concludes the 
paper. 

2. Fuzzy inference system and the NFNN 

A typical format for a fuzzy rule base consists of a collection of fuzzy IF -THEN rules in the following form: 

jth rule: IF xl is At . . . . .  and x, is A~, THEN y = flJ, (1) 

where A{ and/JJ are fuzzy sets in Ui c R and V c R, respectively, and x_ = (x t , . . .  ,x,) T ~ U1 × -.- x U, and 
y c V are the input and output of the fuzzy inference system, respectively. The first task to make use of a fuzzy 
inference system is to derive the deterministic fuzzy input-output mapping by defining the fuzzy logical rules 
and, more specifically, the membership functions of the fuzzy input and output sets associated with each rule. 
The class of fuzzy inference systems under consideration is a simplified type which uses a singleton 
to represent the output fuzzy set of each fuzzy logical rule. Thus/3 j is the consequence singleton of the jth 
rule. 

Let m be the number of fuzzy IF THEN rules, that is, j = 1,2 . . . . .  m in (1). The numerical output of the 
fuzzy inference system with center average defuzzifier, product  inference rule, and s inole tonfuzz i f ier  is of the 
following form: 

y = Z j  m= I flJ(~]7= 1 [AA~(Xi)) (2) 
Em . ~( ' j= 1 ]-li = 1 #a xi) 

where #A~ denotes the membership function of fuzzy set A{. This simplified fuzzy inference system has been 
shown to be a universal approximator [3] which is capable of approximating any real continuous function to 
any desired degree of accuracy, provided sufficiently many fuzzy logical rules are available [10]. 

2.1. The N F N N  structure 

In this subsection, we will construct a four-layer NFNN structure to implement the fuzzy inference system 
stated in (2). We first denote by Aij  the membership function of the j th term node of input variable xi and 
assume that xi has n~ term nodes for fuzzy partition. An NFNN structure with three input variables, two term 
nodes for each input variable, two output nodes, and eight rule nodes is illustrated in Fig. 1. 
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G : Gaussian Function x 1 x 2 x 3 

Fig. 1. The structure of the NFNN. 

Layer  1." linguistic term layer 
This layer uses a Gaussian function as a membership function, so the output of the jth term node 

associated with x~ is 

#A.(X,) = exp (  -- (x'  -- m'J'~2"], 
\ a~i / / 

(3) 

where mij and tr~j denote the mean (center) and variance (width) of A~j, respectively. 

Layer  2." normalizat ion layer 
This layer performs a normalization procedure for the output of layer 1. Notice that no weight is adjusted 

here and that normalization has been done, i.e., 

' X ~lAo(Xi) 
~A,,( i ) -  n, 

~'k : 1 ~lAik(Xi) ' 
(4) 

where ~t~(x~) denotes the normalized output of/~A,(X~). The normalization procedure can also be represented 
in another form, 

uA{(xi) (5) 
~,~(x,) E~'=~ ~,~(x,) 

This normalization procedure is crucial for rule combination, as will be explained in the next section. 
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Layer 3." rule layer 
This layer implements the links relating preconditions (normalized node) to consequences (output node). 

The connection criterion is that each rule node has only one antecedent link from a normalized node of 
a linguistic variable. Hence there are Iqi n~ rule nodes in the initial form of NFNN structure. We mention that 
there is still no weight adjustment in this layer. The output of the jth rule node is 

out 3 = f i  I~'A,~(X,), (6) 
i = l  

where k is determined by the connection criterion, or, in another form, 

out~ = f i  M~(xi). (7) 
i = I  

Layer 4: output layer 
All consequence links are fully connected to the output nodes and interpreted directly as the strength of the 

output action. This layer performs centroid defuzzification to obtain the numerical output: 

j=l i=1 

Thus, the overall net output is treated as a linear combination of the consequences of all rules instead of the 
complex composition of a rule of inference and the defuzzification process. 

In the following, we will start from (8) and show that the output y of the NFNN system is equal to the 
output of the simplified fuzzy inference system stated in (2). To begin with, from the connection criterion 
between layers 2 and 3, we obtain the equation 

i = 1  j = l  j = l  i = 1  

Substituting (5) into (8), we have 

Y = ~-, #~ ~tA~(Xi) _ Z j=l BJ(H~: 1 laA~(Xi)) (I0) 
n~-  - - -  n nl 

i = 1 E k = l  ['lAik(Xi) Hi= 1 2k  = 1 ]~Ait,(Xi) 

Applying (9) to the denominator of the above equation, we can obtain the same result as in (2). This means 
that the proposed NFNN structure is equivalent to the simplified fuzzy inference system. 

2.2. Supervised learning 

The adjustment of the parameters in the proposed NFNN can be divided into two tasks, corresponding to 
the IF (premise) part and THEN (consequence) part of the fuzzy logical rules. In the premise part, we need to 
initialize the center and width for Gaussian functions. To determine these initial terms, a self-organization- 
map (SOM) [11] and fuzzy-c-means (FCM) [-15] are commonly used. Another simple and intuitive method 
of doing this is to use normal fuzzy sets to fully cover the input space. Since the final performance will depend 
mainly on supervised learning, we choose normal fuzzy sets in this paper. In the consequence part, the 
parameters are output singletons. These singletons are initialized with small random values, as in a pure 
neural network. 
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A gradient-descent-based BP algorithm [14] is employed to adjust NFNN's parameters. The goal is to 
minimize the error function 

E = ½ ( d - y )  2, (11) 

where y is the output of the NFNN and d is the desired output for the ith input pattern. If w~j is the adjusted 
parameter, then the learning rule is 

and 

c3E 
Wij(t ÷ 1)  = Wij(t ) -- ~ ~ ÷ o~Awij(t) 

uw~j 

Awij(t) = wij(t) - wij(t - 1), (12) 

where q is the learning rate and ct, 0 < ct < 1, is the momentum parameter. 
Substituting (3)-(8) into (12), we obtain the back-propagated error signals 6 and the update rules for the 

NFNN: 

j4 = d -  y, (13) 

63 = 64fl j, (14) 

3 3 , 
6~(t) - 6~ o u t~ ,  (15) 

p k = l  q 

flJ(t + 1) = flJ(t) + rl6%ut 3 + ctAflJ(t), (16) 

2(xi - mij) 
mij(t + 1) = mij(t) + q6 2 tr-~ij + ~Amij(t) ,  (17) 

- r e , j )  2 
O'i)(t ÷ 1) = tri~(t) + rlJ 2 2(xi a 3 + otAtrij(t), (18) 

where the subscripts p and q in (15) denote, respectively, all the rule nodes connected to thejth term node and 
the kth term node of xl. 

3. Rule combination 

In general, a fuzzy neural system with more rules will take more parameters and will provide better 
performance. In fact, however, some of these rules are unnecessary or redundant. A rule elimination method 
is a method that eliminates unnecessary rules by simply abandoning rules with relatively small consequence 
weights. The purpose of a rule combination method, on the other hand, is (a) to eliminate redundant 
preconditions of fuzzy rules, and (b) to combine certain pairs of fuzzy logical rules into a single, logically 
equivalent rule. The reason rules can be combined is very clear. For example, ifa continuous function is of the 
form f (x l ,x2)  ~ -  X 2 / ( ( X  1 - -  4) 2 ÷ X2), then if xl = 4, we have f =  1 for all x2. Thus f i s  not affected by x2 in 
this case, and x2 is a redundant input when xl = 4. 

In this section, we first introduce some basic definitions and concepts which will be helpful in deriving the 
sufficient condition for rule combination. We also provide a rule combination algorithm and give an example 
to clarify the main idea behind the proposed rule combination method. 
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3.1. Definitions 

Many definitions of logic expressions were introduced in [1] to provide a means for multilevel logic 
synthesis. In order to treat a mathematical equation as a logic expression, we also have to state some 
definitions, as follows. We refer interested readers to [1,4] for details. 

A variable can be thought of as a literal (e.g., a or b), and a cube represents the conjunction of its literals 
(e.g., a, abc, and bcd). 

An expression is a set of cubes. For example, y = abc + de + f g  is an expression consisting of three cubes 
abc, de, and fg.  We say an expression is cube-free if no cube divides the expression evenly (e.g., ab + d is 
cube-free but ab + ad is not, since ab + ad can be divided evenly by a cube a). 

The primary divisors of an expression f are the set of expressions 

D( f )  = { f / C [ C  is a cube}. 

For example, we may define an expression x as 

x = abe + bce + a c f +  bcf  

= e(ab + bc) + c( fa  + fb )  

= be(a + c) + cf(a + b). (19) 

Then ab + bc and fa + fb  are the primary divisors of x and they are obtained by x/e and x/c, respectively. 
Also, a + c and a + b are the primary divisors of x. 

The kernels of an expression f are the set of expressions 

K ( f )  = {gig ~ D( f )  and g is cube-free}. 

In other words, the kernels of an expression f are the cube-free primary divisors of f. The cube C used to 
obtain the kernel k = f / C  is called the co-kernel of k. In (19), for example, a + c and a + b are kernels 
corresponding to co-kernels be and c f, respectively, since they are cube-free primary divisors of x. On the 
other hand, the primary divisors ab + bc and fa + fb  are not kernels of x, because they are not cube-free. The 
kernels a + c and a + b are also called level-O kernels, which have no kernels except themselves. We will use 
the notation K ° ( f )  to represent the set of level-0 kernels of f. 

Moreover, we define the literal o} as the output of the normalized node corresponding to thej th term node 
of the ith variable xi and define the expression O i as follows: 

n ,  
0 i 5" i i i 

= ~.~ Oj = O' 1 -~- 0 2 3t- "'" "~ On.  (20) 
j = l  

Notice that, for brevity, we use ~ and [l to represent logical sum and logical product, respectively. 
Without loss of generality, we consider multi-input-single-output fuzzy inference systems, since a multi- 

output system can always be decomposed into a group of single-output systems. Let y* denote the partial 
summation of the final output y in (8) with the same consequence weight fl*. Then we have 

y* = fl* o , 
j 1 

where k is determined by the connection criterion between normalization nodes and rule nodes and m' is the 
number of rules with the same consequence weight fl*. When y* is divided by fl*, we define another 



C-T. Chao, C-C Teng / Fuzzy Sets and Systems 75 (1995) 1~31 23 

expression 

y_same = y* / fl* = ~ flOCk, 
j=li=l 

where y_same is expressed in two-level sum-of-product form. 

(21) 

3.2. The rule combination theorem and algorithm 

Now we are ready to establish the theorem to determine whether rules can be combined in the N F N N  
system. 

Rule Combination Theorem. In the N F N N  system, let 0 i and y_same be defined as in (20) and (21), 
respectively, and let K°(y_same)  be the set o f  level-O kernels o f  y_same. I f  there exists an Oi ~ K°(y_same),  
1 <~ i ~ n, then some rules can be combined into a single equivalent rule. 

Proof. If there exists an O i e K°(y_same),  1 <<. i <<. n, then the expression y_same can be represented in the 
form y_same = (co)*O i + s_o_p, where co is the co-kernel corresponding to O i and the term s_o_p is the 
algebraic quotient of y_same/co in sum-of-product form. Since numerically O i is equal to unity, i.e., 

0 i--~- ~ ~,Io(Xi)~--- ~ ~Aij(Xi) - 1  
i=1 ' 

where we have applied (4), y_same can be simplified as y_same = co + s_o_p. This means that some rules can 
be combined into a single equivalent rule. []  

With slight modification, the theorem stated above can also be extended to an MIMO system. The 
theorem tells us that instead of finding all the kernel sets we just need to check whether the expression y_same 
has level-0 kernel O( In practical application, we can repeatedly apply this theorem until no rules can be 
combined. An algorithm for rule combination is stated below. 

Rule Combination Algorithm 
Let the expression y_same be in sum-of-product form. 
c h e c k = Y E S  /*YES--- -  1 N O = = 0 * /  
tempi -- O for i = l t o n  
WHILE(check )  

{ 
FOR i = 1 TO n 

IF literal o~ appears in at least one cube of y_same for j -- 1 to ni 
W H I L E ( f i n d ( i ) )  

{ 
C = Z"k'= * (cubek) 

i has the same quotient q for j = 1 to n; IF cubej divided by literal o i 
{ 
y_same = y_same -- C + q 
tempi = 1 

} 
} 
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IF t e m p i = = O f o r i =  1 t o n  
check = N O  

ELSE 

check = YES 
tempi = 0 for i = 1 to n 

} 

find(i) 
{ 
IF we can find a "new" set of ni cubes, denoted by cubej ( j  = 1 to ni), from 

y_same such that the cubej has literal o~ for j = 1 to ni 
return YES 

ELSE return NO 
} 

The inner while loop of the algorithm checks whether O i is the kernel of y_same; if it is, then y_same can be 
simplified. Since a kernel may have at least one corresponding co-kernel, we need the inner while loop. 
Moreover, the function find ( ) finds a new candidate C, which is several cubes in sum-of-product form, from 
y_same. Suppose C can be factored as a product of O i and a cube q; then we replace C by q in the expression 
y_same. To ensure that O i is not a kernel of y_same, we have the outer while loop in the algorithm. 

Fig. 2 presents an example to illustrate the proposed algorithm. The rules of the original N F N N  system 
with the same consequence weight are shown in Fig. 2(a). Then we have 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 (22) 
y _ s a m e  ~ 0 1 0 1 0 1  -~ 0 1 0 1 0 2  -+- 0 1 0 2 0 1  + 0 2 0 1 0 2  --[- 0 3 0 1 0 1  + 0 3 0 1 0 2  + 0 3 0 2 0 1  . 

We apply the rule combination algorithm first to check whether 01 = o~ + oI + oI is the kernel of y_same. 
The answer is "yes", and y_same becomes 

= O102(O 1 -+- 0 1 0 1 0  l q- 0 1 0 2 0 1  q- 0 3 0 1 0 1  + 0 3 0 2 0 1  
y_same 2 3 1 0 1  d - 0 1 )  + 1 2 3 1 2 3 1 2 3 1 2 3 

2 3 1 2 3 1 2 3 1 2 3 1 2 3 (23) 
= O102 ~- O10101 q- 0 1 0 2 0 1  -[- 0 3 0 1 0 1  -~- 0 3 0 2 0 1  . 

Fig. 2(b) shows the result. Because 01 is no longer a kernel of the new y_same, we try 02 = o 2 + 02 and 
repeat the above procedure. Then we obtain 

2 3 1 3 2 02)  -t- 0 3 0 1 0 1  ~- 0 3 0 2 0 1  y_same = 0102 + 0101(01 + 1 2 3 1 2 3 

2 3 1 3 1 2 3 1 2 3 (24) 
-~- O102 -~- O101 • 0 3 0 1 0 1  • 0 3 0 2 0 1 .  

The resulting connection links in N F N N  are shown in Fig. 2(c). We can still extract the kernel 0 2 from the 
above expression, thus 

01o2 + 0101 + 0301(01 + o~) y_same = 2 3 1 3 1 3 2 

2 3 1 3 1 3 (25) 
= O102 + O101 -~ O301 , 

The result is illustrated in Fig. 2(d). Since the expression y_same never has the kernels O 2, 0 3, and O 1, we stop 
the procedure and can guarantee that no further rules can be combined. 

In fact, the basic idea behind the theorem and algorithm stated above is similar to the three criteria for rule 
combination presented in 1-12]: (1) the rules to be combined into a single rule node must have exactly the 
same consequences, (2) some preconditions are common to all these rules, and (3) the union of other 
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y Y 

normalization node ~ ~ ~ normalization 

x 1 x 2 x 3 Xl x 2 x3 

(a) (b) 

y 

rule node 

normalization 
node ~ 

Xl x 2 x 3 

(c) 

y 

rule node 

normalization 

Xl x 2 x 3 

(d) 

Fig. 2. Example illustrating rule combination. 
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preconditions of these rule nodes constitutes the entire term set of some input linguistic variables. The 
difference between their rule combination method and ours is as follows. First, they apply rule combination 
before supervised learning, while we do it after supervised learning. Second, in their method the "same 
consequences" referred to in criterion (1) are still fuzzy terms while in our method they are singleton weights. 
Third, the rules they are combined in their method are just a subset of the rules with the same consequences. 
They do not provide an efficient method for finding the rules to be combined, while we do. Fourth, the 
specially designed N F N N  provides a proof that all rules that can be combined have been found, whereas 
their method offers no such proof. 

3.3. Minimizat ion prob lem in rule combinat ion 

Although the rule combination algorithm presented in the last subsection provides an intuitive and simple 
method for rule combination, it leaves an unsolved minimization problem. For  example, the example in (22) 
has the final reduced form shown in (25) if we extract the kernels in the order O 1, 0 z, and 03. But if we extract 
the kernel 03 first, we will have 

1 2 1 2 3  1 2 3  12  1 2 3  y _ s a m e  = o101 + 010201 + 020102 + 03Ol + 030201, (26) 

which can be reduced no further, This means that the proposed rule combination algorithm could be 
extended to solve the minimization problem by extracting the kernels in every possible order. 

The expression of y _ s a m e  in (21) is in fact a mult iple-valued func t ion  (mvi-function), whose input and output 
variables can take two or more values, y _ s a m e  is an mvi-function that has n multiple-valued inputs and one 
binary-valued output. Moreover, each input has n~-valued logic representations. Thus, we refer the interested 
reader to [-13] for a discussion of multiple-valued minimization; Ref. [13] presents an extension of the 
original complementation algorithm of the program ESPRESSO [2] for binary-valued functions. 

3.4. Consequence  weights  with the same  value 

In the N F N N  system, consequence weights with the same value will be iteratively found for rule 
combination. We have found in practical simulation results that rules seldom have exactly the same 
consequence weights without any approximation. In this subsection we propose a method for coping with 
this problem. 

Consider all the existing consequence weights to be sorted in increasing order so that they form a sequence 
betai,~,, where iter is the number of iterations. Thus, we obtain 

betal,e, = ( b l ,  b2 . . . . .  bo~i,er)~, (27) 

where 9(iter) is a function of iter. It is clear that g(1) = m for the initial m consequence weights. Furthermore, 
we denote by B,er,~ the set of successive r(iter) elements in beta,~, ,  where i = 1, 2 . . . . .  9(iter) - r(iter) + 1 and 
r(iter) is a function of iter that is set by the user at each iteration. That is, 

B,~,.,  = {bl, b, +1, b, + z, . . . ,  b, +,,,e,)_, }, (28) 

we emphasize that b~ <<, b~+ 1 <~ "'" <~ bi+r~te,~- ~ is still satisfied. We define a difference measure  ( D M )  for set 
B to represent the degree of difference between these elements in B: 

O M i , e ,  i = D M ( B i , e r  i) = Ibi+r(iter) 1 - bil (29) 
• . Imedian(Bi,e~.i) I ' 

where median is a function that finds the median number of a set (if there are two medians in a set, take the 
average of the both medians as the output median). This means that the smaller the value of DMi,e,.~ is, the 
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larger the degree of nearness for the r(iter) values in Bi, er, i. For example, the set { 1, 3, 5} will have a larger D M  
value then the set {2,3,4}, but the D M  value of the set {0.1,0.2,0.3} is equal to that of the set {1,2,3}. 
Furthermore, the median function can be replaced by the average function, although the latter is more 
complicated. The user also has to set a parameter eb. If all the values of DMite,.i are greater than eb, there 
will be no elements in betaiter that are approximately equal. Thus at this iteration the NFNN system 
stops. 

If DMiter,! = minvi OMiter, i ( o f  course, DMiterd < e~ is satisfied), the consequence weights treated as the 
same in the NFNN system will be determined formally. Let V be the set of all these consequence weights of 
the form 

Viter = {I) [ 1) C-- betai,er and Iv - median(Biter,  t)[ ~< [median(Biter, l)[* T B% }, (30) 

(b) 

S 
(c) 

Fig. 3. The performance surfaces of f:  (a) desired; (b) after rule combination; and (c) after rule elimination. 
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where T B% is the tolerance bound set by the user. Since at least mini = x ...... ni consequence weights must be 
the same for possible rule combination, the number of elements in V, er must be greater than mini= ~ ...... ni. 

Once the set Vite, is obtained, we can construct the expression y_same and proceed to do rule combination. 
When several rules are combined into an equivalent one, the combined consequence weights will be deleted 
from beta,e,. A new equivalent consequence weight, the average of these combined consequence weights, will 
be added in betai,er to replace the respective combined consequence weights. Therefore, we construct a new 
betaiter for the next iteration. On the contrary, if no rules are combined that betaite,, DM,~,,I, and Viter will be 
unchanged in the next iteration. In such cases, the DMiterd in the next iteration is redefined as the least 
DM,er,i that is not yet chosen in the former iterations. In fact, the simulation results in the next section 
indicate that this method if highly efficient. 

4. Numerical example 

The following example of a continuous function is presented to illustrate the proposed procedure for rule 
combination: 

sin(nx2) 
f ( X l , X 2 )  -- for - 1 ~< Xa ~< 1 and 0 ~< x 2 ~ 1. 

2 + sin(rtxl) 

The initial structure of the N F N N  uses seven term nodes for x~ and five for x2, i.e., in this case we have 7 x 5 
initial rules. Since the optimal choice of the number of term nodes is still a difficult problem, we tried several 
cases and found that the case of 7 × 5 initial rules is acceptable. Suppose one epoch of learning takes 247 time 
points, The supervised learning is continued for 300 epochs of training and the sum of squared error is 
computed for each epoch of learning as 

24-7 

ssE = ~ (y lk )  - ~ / k ) )  2 
k = l  

The desired input-output  relation of f i s  shown in Fig. 3(a). The fuzzy sets for these linguistic term nodes are 
normally and uniformly initialized. We choose q = 0.01 and a = 0.9 for supervised learning. The parameters 

Table 1 

Initial and final parameters of the membership functions 

Term sets Initial parameters Final parameters 

Mean Variance Mean Variance 

A l 1 -- 1.000 0.127 -- 0.695 0.584 

A12 - 0.667 0.127 -- 0.493 0.310 

Ai3 -- 0.333 0.127 0.013 0.804 
A14 -- 0.000 0.127 0.064 0.004 

A15 0.333 0.127 0.378 0.003 
A16 0.667 0.127 1.018 0.098 
A17 1.000 0.127 1.133 0.017 

A 21 0.000 0.095 0.021 0.199 
A22 0.250 0.095 0.193 0.174 
A23 0.500 0.095 0.566 0.219 

A24 0.750 0.095 0.819 0.159 
A25 1.000 0.095 1.014 0.162 
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Table 2 
The final rules after supervised learning 

Table 3 
The final rules after rule combination 

Preconditions Consequence Preconditions Consequence 

1 Atl, Azt -0.119 
2 AI2, A21 -0.534 
3 AI3, A21 -0.090 
4 At4 , A21 0.710 
5 Als, A21 0.481 
6 Al6, A21 -- 0.151 
7 AIr, A21 0.812 
8 A11, A22 0.379 
9 AI2, A22 1.806 

l0 hi3 , A22 0.356 
11 A14, A22 0.704 
12 Ats, A22 0.609 
13 AI6, A22 0.506 
14 ArT, A22 0.868 
15 All, A23 0.385 
16 At2, A23 1.924 
17 A13, A23 0.396 
18 A14 , A23 0.755 
19 Als, A23 0.548 
20 A16, A23 0.531 
21 A17, A23 0.893 
22 AI l, A24 0.236 
23 AI2, A24 1.139 
24 At3 , A24 0.221 
25 At,,, -4.24 0.881 
26 Al5, A2,, 0.584 
27 A16, A2,, 0.317 
28 A17, A24 0.928 
29 Air, A25 -0.077 
30 At2, A25 - 0.350 
31 AI3, A25 - 0.064 
32 AI,*, A25 0.890 
33 Als, A25 0.610 
34 A16, A2s - 0.090 
35 A17, A2s 0.927 

1 All, A21 -0.119 
2 AI2, A21 -0.534 
3 A I3, A21 - 0.090 
4 At* 0.788 
5 A15 0.566 
6 Aio, A21 -0.151 
7 Al7 0.886 
8 A11. A22 0.379 
9 A12, A22 1.806 

10 A13, A22 0.356 
11 A16, A22 0.506 
12 Air, A23 0.385 
13 At2, A23 1.924 
14 At3, A23 0.396 
15 Al6, A23 0.531 
16 AI i, A24 0.236 
17 AI2, A24 1.139 
18 A13 , A24 0.221 
19 A16 , A24 0.317 
20 At 1, A25 - 0.077 
21 AI2, A2s -- 0.350 
22 AI3, A2s - 0.064 
23 A16, A25 - 0.090 

of the initial and final membership functions are illustrated in Table 1. The rules obtained after 300 epochs of 
learning are listed in Table 2 with performance represented by SSE = 0.069155 (mean square error is 
0.000280). 

To find the rules with the same consequence weights, we set r(-) = 5, eb = 0.3 and TB% = 20% for each 
iteration. Then we have rules 7, 14, 21, 28, and 35 in Table 2 to be combined in the first iteration. The 
resulting equivalent rule is rule 7 in Table 3. Rules 5, 12, 19, 26, and 33 in Table 2 are another set of rules that 
are combined in the fourth iteration. Finally, rules 4, l l ,  18, 25, 32 in Table 2 are combined in the fifth 
iteration. The final rules after rule combination are listed in Table 3. The number of rules has been reduced 
from 35 to 23. Fig. 3(b) shows the performance surface of the function fafter rule combination. The SSE after 
rule combination is still equal to 0.069155, thus attesting to the feasibility of the proposed system. We also list 
the number of rules after rule combination under different tolerance bounds in Table 4. 
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Table 4 
The number of rules after rule combination under differ- 
ent tolerance bounds (r(-) = 5 and e b = 0.3) 

Tolerance bound 5% 10% 
Number of rules 35 31 

Sum of squared 
errors 0.069155 

15% 20% 30% 
27 23 23 

Table 5 
The final rules after rule elimination 

Preconditions Consequence 

1 AII, A21 -0 .119 
2 At2, A21 -0 .534 
3 At,* 0.788 
4 A 15 0.566 
5 AI6, A21 -0.151 
6 A17 0.886 
7 All, A22 0.379 
8 AI2, A22 1.806 
9 A13, A22 0.356 

10 Al6, A22 0.506 
11 Atl, A23 0.385 
12 A12, A23 1.924 
13 Al3, A23 0.396 
14 A16, A23 0.531 
15 All, A24 0.236 
16 AI2, A24 1.139 
17 A13, A2,* 0.221 
18 A16, A24 0.317 
19 AI2, A25 -0 .350 

We can also use the rule elimination method to eliminate these rules which are less important, i.e., to 
eliminate rules with small consequence weights compared with other rules. Hence rules 3, 20, 22, and 23 in 
Table 3 can be eliminated. Table 5 lists the final 19 rules, and the corresponding performance surface with 
SSE --- 0.238726 (mean square error is 0.000967) is shown in Fig. 3(c). 

5. Conclusion 

In this paper we have explored a procedure for rule combination in an N F N N  system. The structure of the 
proposed N F N N  makes the rule combination method efficient and effective. A sufficient condition for rule 
combination in the N F N N  system is derived and an algorithm for performing rule combination is provided. 
The sufficient condition and the algorithm can be extended to MIMO systems with a slight modification. 
Simulation results show that when combined with a rule elimination method the rule combination method 
can greatly reduce the number of rules. 
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