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Abstract 

This paper derives the exact mean waiting time for an asymmetric polling system with general service order and mixed service discipline. 
The mixed service discipline means that the service discipline of each stage (a turn in the service order sequence) for the same station can be 
gated or exhaustive. The gene-l-al service order denotes that each station can be polled more than once in a polling cycle. We use the mean age 
and the mean excess of a cumulative time to obtain the mean waiting times for stages and stations, where the cumulative time for a stage is 
defined as the total arrival time period of all customers that are served at one visit of the server to the stage. The accuracy of our analysis is 
verified by comparisons with previously published results and simulation results. We also use a genetic algorithm (GA) to search for an 
optimal pattern of service order and service discipline for the asymmetrical polling system. The results of the paper can be applied to the 
design of computer communication networks with polling schemes. 0 1997 Elsevier Science B.V. 
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1. Introduction 

Polling systems are widely applied in computer and com- 
munication systems. There are many kinds of polling sys- 
tems, which employ different service orders and service 
disciplines. Takagi presented an excellent survey [l], 
where various polling systems were studied, further 
researches were proposed, and many references were listed. 
In previous research, exact solutions for polling systems 
with a unique service discipline of exhaustive or gated or 
limited one were yielded, and they were generally obtained 
by way of imbedded Markov chain analysis [2-51. Pre- 
viously we had derived the exact solution for the finite 
system with mixed service discipline and general service 
order [6] successfully. However, the computer algorithm 
requires many hours of CPU time. 

In this paper, we study a polling system with general 
service order and mixed service discipline by way of 
exact approach, which is computationally efficient. Each 
station in the system may have multiple turns of polls and 
each stage (a turn in the service order sequence) may be 
independently assigned with gated or exhaustive service 
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discipline (even stages corresponding to the same station). 
The general service order and mixed service discipline can 
make the system more flexible and able to meet levels of 
quality of service more easily for asymmetrical computer 
communication systems. It can support flexibility for 
designing an asymmetrical polling system, while the cyclic 
service order and single service discipline can only support 
an unique pattern. 

Unlike the descendant set approach [7], which preformed 
analyses using probability generating function and the 
Laplace-Stieltjes transform, we propose an alternative 
approach that uses the mean age and the mean excess of a 
cumulative time to derive the exact mean waiting time. 
Here, the cumulative time for a stage is defined as the 
total arrival time period of all arrivals to the stage that 
will be completely served during the next visit of the server 
to the stage. (A detailed definition will be given in the next 
section.) Moreover, we use the concept of conditional mean 
to find a correlation between visit times and a correlation 
between walking time and visit time, which are key param- 
eters for obtaining the second moments of the cumulative 
times. The analytical method is straightforward and can be 
easily followed, and the numerical algorithm is treatable. 
Sarkar and Zandwill [8] have used the aspect of mean to 
derive the mean waiting times for a polling system with 
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gated or exhaustive service discipline and cyclic service 
order. However, they only analyzed the cyclic service 
order, where they defined different renewal points for dif- 
ferent service disciplines; it would be difficult to extend 

their approach to mixed service discipline and general 
service order. 

To justify the exactness of our analysis, we use the same 
numerical examples as those of some previous papers [5,9], 
which considered systems with gated or exhaustive service 
discipline. The results show that they match perfectly. How- 
ever, the systems in these previous papers are simply special 
cases of ours, and our method can be applied to more com- 
plex systems. We also provide several numerical examples 
for general systems with mixed service disciplines and com- 
pare our calculated results with simulations. The results 
show that our method is highly accurate. Finally, we use a 
genetic algorithm (GA) to find an optimal pattern of service 
order and service discipline for the asymmetric polling sys- 
tem. The results can be applied to the design of computer 
communication networks with polling schemes. Borst et al. 
[lo] had also studied the optimization of the polling system 
by minimizing the waiting cost. However, the system they 
studied has limited service discipline and cyclic service 
order, and furthermore their analytical approach is 
approximate. 

The paper is organized as follows. In Section 2 we per- 
form the analysis to obtain the mean waiting times. The 
numerical algorithm and some numerical examples are 
presented in Section 3. Concluding remarks are given in 
Section 4. 

2. Analysis 

The polling system is assumed to have R stations and P 
stages (pseudostations). We let r and i denote the indexes of 
a station and a stage, respectively, and let ri stand for the 
underlying station of stage i. The arrival process for station r 
is assumed to be an independent Poisson process with rate 
h,, The service time of a customer at station r, denoted by 
S,, follows an independent general distribution with mean s, 
and the second moment s$.~‘. The walking time for stage i, 
denoted by U,, follows an independent general distribution 

(2) with mean uI, the second moment ui , and the total mean 
walking time of u = If=, ui. Note that the walking time for 
stage i is defined as the time from the server’s departure 
from stage i to the server’s arrival at stage i @ 1, where 
the operation i @j (iej) equals i +j (i - j) with modulo-P 
arithmetic and equals P if the remainder is zero. The traffic 

intensity for station r is denoted by pr; P,. = h,.ss, and the total 
traffic intensity p = IF=, pr. The service discipline of each 
stage is either gated or exhaustive. Service disciplines can 
be different even for stages corresponding to the same 
station. If stage i is assigned the gated (exhaustive) service 
discipline, we refer to it as gated (exhaustive) stage i. We 
call a customer who receives service at stage i an i-customer. 

We define here the cumulative time for stage i, denoted by 
Ci, as the cumulative arrival time period of all customers 
that are simultaneously served during one visit of the server 

to stage i. As shown in Fig. l(a), Ci is given by 

I 

The time interval between GG’ for gated stages 

bi and i, 

The time interval between GE’ for gated stage 

Cj = 

I 
bi and exhaustive stage i, 

The time interval between EG’ for exhaustive 

stage bi and gated stage i, 

The time interval between EE’ for exhaustive 

stages bj and i, 

where bi is the first stage before stage i that corresponds to 
the same station ri and G (G’) and E (E’) are the beginning 
and the ending time, respectively, of the server’s visit to 
stage b, (i). Note that the cumulative time for stage i is 
dependent on the service disciplines assigned at stage bi 

and stage i. Let ci and ci2) be the mean and the second 
moment of C,. We also define a determining time for 
stage i, denoted by Di, as the time interval from the begin- 
ning of the cumulative time for stage i to the server’s arrival 
epoch at stage i. As Fig. l(a) shows, Di is given by 

Di = 

i 

The time interval GG’ for gated stage bj, 

The time interval EG’ for exhaustive stage bi 

Note that Di is only dependent on the service discipline of 
stage bi. Let d, and d/” be the mean and the second moment 
of Di. We call Ci the cumulative time for stage i because all 
arriving i-customers are accumulated during Ci and simul- 
taneously served at the next visit of the server, and we call 
D, the determining time for stage i because D, determines 
the distribution of the visit time for stage i. The visit time for 
stage i is the time from the server’s arrival at stage i to its 
departure. 

Moreover, for gated stage i, we denote the age of Ci and 
the excess of Ci by CEe and C,“, respectively. CEb is the time 
interval from the beginning epoch of C, to an arbitrary 
time epoch and CE is the time interval from an arbitrary 
time epoch to the ending epoch of Ct. 

The waiting time of an arbitrarily selected (labeled) i- 

customer is equal to the time from its arrival to the server’s 
scan-instant at stage i plus the service time of the i-custo- 
mers arriving before the labeled i-customer. As shown in 
Fig. 1 (b), owing to the Poisson Arrivals See Time Averages 

(PASTA) property [l 11, the former time is CE and the i- 
customers arriving before the labeled i-customer are those 
arriving during CA. Consequently, the mean waiting time of 
a gated i-customer, denoted by w:, can be expressed as 

w:=E(C;)+X,E(Cf)s,:(l+pr,)-g (1) 
1 
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0 : the lahckd i-customds arrival epoch 

l : the server’s arrival epoch 

A : the service-beginning epoch of the HOL i-customer 

Fig. 1. Indication of time interval for cumulative time and determining time. 

Note that both the mean age and the mean excess of a ran- 
dom variable X are given by [ 121 E[X2]/2E[X] . 

For exhaustive stage i, the waiting time of a labeled 
i-customer is equal to the time from its arrival to the service- 
beginning of the head-of-line (HOL) i-customer plus the ser- 
vice time of the i-customers in the waiting queue arriving 
before the labeled i-customer. Note that the HOL i-customer 
is the one seen by the labeled i-customer. Because of the 
property of PASTA, the former time is the residual service 
time of an i-customer S, if the server is on service at stage i 
when the labeled i-customer arrives at stage i [see Fig. 1 (c)] or 
the excess of Di for exhaustive stage i, denoted by 07, 

if the server is not on service at stage i when the 
labeled i-customer arrives at stage i [see Fig. l(d)]. The 
mean residual service time of S, is equal to (.$))/(2s,); 
the mean excess of Dj is equal to (dj2’)l(2di); and the prob- 
ability that an i-customer finds the server on service at stage 
i when the i-customer arrives at the system is pr, . Therefore, 

the mean waiting time of an exhaustive i-customer, denoted 
by ~7 ,is given by 

or 

E PC s;2’ d!2’ 
WI. x-.-L+ I 

1 -Pi-, 2sr, 2di 

Because Ci is equal to D; + Vi for exhaustive stage i, where 

Vi denotes the visit time at stage i, with mean v,, we can 
rewrite 5°F as follows [9,13]: 

c!2) 
w”=u -p,,+ 

I 

Considering w: in Eq. (1) and wf in Eq. (2), we can generally 
express the mean waning time for stage i, denoted by w,, as 

where 1; is 1 for gated stage i and - 1 for exhaustive stage i. 

Note that c- and ci*) in Eq. (3) are different for gated 1 
and exhaustive stage i. Consequently, the mean waiting time 
for station r of the system, denoted by W, can be obtained by 

where c = I:= ,c, is the mean whole cumulative time and 
is equal to u/(1 - p) because of c = cp + u. 

To obtain the mean waiting time tiii,, we now need to find 
cy), the second moment of the cumulative time for stage i 
corresponding to station r. Because the cumulative time Ci 
is dependent on the service disciplines of stage bj and stage 
i, we first find d,‘*’ of the determining time D,, which is 
dependent only on the service discipline of stage 6,. 
Intuitively, D, can be expressed as 

for gated stage b;, 

(5) 

for exhaustive stage bi, 

where n is defined as 

ifmsn 

ifmrn+l 

Then d/2’ can be obtained by 

i01 

n cRjj + l”j2)) + 2 j = b, 

i01 i01 i02 I01 

+ n n VjUk + n 

j=h,k=j 
n (fij, +ujuk) 

j=b,k=j@l 1 
d!*’ = 

/ 

if bi is a gated stage 
I 

i01 101 i02 iO I 
(6) 

n d2)+ n R-+2 
j=b, J j=b,@l JJ 

u n Rjk 
j=b,@i k=j@l 

i01 i01 i02 i01 

+ j=pB, kp,vjUk + jcb k_!&, @jk+‘juk) 
J 1 

[ if bi is an exhaustive stage 
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where 

ifm=n@l 

otherwise 

and Rjj, Rj, and ~jk are correlations defined as Rjj G E[V,?], 
R..=E[V,V,lj-+k, 3 

j#k]=E[V,qb-+k, j#k], and 
Rjk E E[U,Vkb+ k]. The j - k in the above definition 
means that stage j is served before stage k. If j < k, j - k 

denotes that stage j is served in the same cycle (from stage 1 
to stage P) as stage k; if j 2 k, j - k indicates that stage j is 
served in the last cycle of stage k. Note that stages j and k 

are located between stages bi and i, and RJk f Rkj and * ,. 
Rjk Z Rkj. 

We use the conditional mean to find the unknown 
correlations in Eq. (6). The second moment of the visit time, 
Rjj, cm be found by following Ref. [13], see Appendix A: 

h &) + P2.d!” 
5 J ‘I rJ J ’ 

for gated stage j 

Rjj = $2’ 

[ 1 
2 

(1 -a,s 
.X,,dj + pr, .d!2’ 

1-A-y ” 

(7) 

\ for exhaustive stage j 

Additionally, Rjt E E[yVk, b- k, j # k] = E[E(VjVkl 

j- k, j # k, Vj, Dk)] can be obtained by 

p,E[V,Dklj - k, j f 4, 
for gated stage k 

AE[VjD,b+ k, j Z k], 
(8) 

[ for exhaustive stage k 

E[VjD,li- k, j # k] in Eq. (8) is dependent on the service 
discipline of stage bk. For a gated stage bk, it is given by 

E[VjDkIj+ k, j # k] 

k01 
f-l (Rjm + Vjurn), 

m = b, 
for b, E (j, k) 

= 
jO1 k01 

U (Rmj + ii,,) + n (Rj, + vjl*,)> 
m=bi m=j 

for bk G G, k) 

(9) 

and for an exhaustive stage bk, it is given by 

E[ VjDk Ij + k, j # k] 

(10) 

where Cj, k) = b @ 1, j@ 2, . . . . ke2, k91) and bk E (j,k) 

means stage bk is served after stage j and before stage k. 

Similarly, Rjk can be obtained by way of a similar approach 

[ 131 (see Appendix A). 

3. Numerical examples 

There are 2P2 unknown correlations in Eq. (6). As seen 
from Eqs. (7)-( lo), an iterative algorithm is required to find 
the solutions of these correlations. The termination criterion 
for the iterative algorithm is here de fined as the absolute 
difference between two successive test values of less than 
lo-‘. We summarize the numerical algorithm for finding the 
mean waiting times as follows: 

Numerical algorithm 

Step 0: [Set system conditions] 

(i) Set R, P, service order sequence, and service disci- 
pline of each stage. 
(ii) Sittar, s, and si2’ for all r, and obtain pr = h,_ss, and 

P = ,y= I Pr. 

(iii) Set Ui and uj2) for all i, and obtain u = xp= , u, and 
c=u/(l -p). 

(iv) Set the termination criterion. 

Step 1: [Obtain mean visit times and mean cumulative 
times] 

(i) Initially, set ci = c/P and then vi = p,,c; for all i. 
(ii) Find di from Eq. (5) for all i. 
(iii) Obtain a newer 

4 for gated stage i 
c; = for all i. 

di + Vi for exhaustive stage i 

(iv) Obtain a newer vi = pr,ci for all i. 

(v) IF vi does not satisfy the termination criterion for 
any i 

GO TO (ii) in this step 

END IF 

Step 2: [Obtain correlations and the second moment of 
the cumulative times] 

(i) Initially, Rjk = v,vk and kJk = UjVk for all 
j and k. 

(ii) Find d!” from Eq. (6) for all i. 

(iii) Obtain a newer set of Rjk and ~jk = UjVk for all 
j and k, and all newer dj2’ from Eq. (6). 
(iv) IF d/” do es not satisfy the termination criterion for 
any i 

GO TO (iii) in this Step 

END IF 
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(v) Obtain 

I 
d(2) 

I 3 

for gated stage i 
$) - 
, - 1 

2.d,‘2’ 
S$2’ 

(1 -P,,) (1 -P,)’ 
&,di, 

(for exhaustive stage i 

Step 3: [Obtain the mean waiting times] 

(i) wi = (1 f p,Z;) (c!~‘)/(~c~) for all i. 

(ii)~,=(1)/(2C)C,il~,=r, (1 +&,k, (2) for all r. 

(iii) END 

We may also construct sets of simultaneous equations to 
find the mean cumulative times and the correlations. 
Instead, we use the iterative schemes in the numerical algo- 
rithm, because it is easier to write iterative schemes than to 
construct the simultaneous equations and to solve them in 
the numerical program. The number of arithmetic opera- 
tions to find all the P mean waiting times for general service 
order is O(P*) per iteration, which is the same as that in 
Konheim et al.‘s paper [7]. Furthermore, the space used to 
save the correlations in our algorithm is O(P*), which is 
larger than that in their paper. However, the number of 
iterations by our algorithm is smaller than that in Ref. [7] 
which is similar to Choudhury’s paper [5]. The numbers of 
iterations for Cases A and B in Table 1 of Choudhury’s 
paper are 32 and 164 by Choudhury’s method, while they 
are only 27 and 120 by our algorithm. 

We first run all of the examples in Table 1 of 
Choudhury’s paper [5] and Tables I-VII of Everitt’s 
paper [9] to verify the correctness of our analysis. We 
also find that the results match perfectly. We next discuss 

an example of an asymmetrical polling system with general 
service order and mixed service discipline. This example is 
assumed to have six stations; the service time for every 
station is exponentially distributed with mean 1; the walking 
time for every stage is constant and equal to 0.1; and the 
arrival processes are Poisson processes with rate 0.2~ for 
stations l-4 and 0. lp for stations 5 and 6. The service order 
sequence is { 1, 2, 3, 4, 5, 6, 3, 4) ; odd stages adopt the 
exhaustive service discipline and even stages adopt the 
gated service discipline. Note that the asymmetrical polling 
system cannot be analyzed by Choudhury’s and Everitt’s 
algorithms. The analytical results are shown in Fig. 2. We 
find that they agree with the simulation results very well. 

We also find that the single poll stations possess the same 
characteristics as in the cyclic case. For stations with the 
exhaustive service discipline, the mean waiting time of the 
heavy-load station (station 1) is less than that of the light- 
load station (station 5), and for stations with the gated ser- 
vice discipline, the mean waiting time of the heavy-load 
station (station 2) is greater than that of the light-load station 
(station 6). The first of these characteristics has been dis- 
cussed previously [2,14,15], and it was concluded [ 141 that 
this is a result of the hogging property of the heavy-load 
station with the exhaustive service discipline. The hogging 
property of a station with the exhaustive service discipline 
means that the station will occupy the server longer, thereby 
reducing the mean waiting time for that station. The exhaus- 
tive service discipline serves a station until the station is 
empty, so the heavy-load station has a stronger hogging 
property. On the other hand, multiple poll stations (stations 
3 and 4) have smaller mean waiting times than the others. 
From this example, we can infer that there exists an appro- 
priate pattern of service order and service discipline if a 
performance criterion (or say, fitness function) is defined. 

We use a genetic algorithm (GA) to search for an optimal 

16- 

14- 

12 - 

a- 

6- 

Service Order Sequence: (1 2 3 4 5 6 3 4) 
Service Discipline: exhaustive for odd stages; gated for even stages 
Service Time: exponential with mean 1.0 
Walking Time: deterministic and eq& to 0.1 
Arrival Rates=2:2:2:2: 1: 1 for stations 1-6 

0: Simulation 

18 

0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Traffic intensity 

Fig. 2. Mean waiting times of customers for an asymmetric system with general service order sequence and mixed service discipline. 



L.-C. Hwang, C.-J. Chan$&rymter Communications 20 (1997) 1292-1300 1297 

pattern of service order and service discipline for the sys- 

tem. Generally, there are three main types of search 
methods: calculus-based, enumerative, and random. Calcu- 
lus-based methods are suitable for continuous and unimodal 
problems; enumerative methods are suitable for problems 
with a small search space; and random methods are suitable 
for discontinuous and multimodal problems. Goldbeg [16] 
has compared these methods. GAS, which combine the sur- 
vival of the fittest with the innovative flair of a human 
search, are a form of random method. They are powerful, 
especially when the search space is not numerical. 

As in biological evolution, GAS evolve generation by 
generation. In generation n, there is a population of m can- 
didates denoted by (~7, xi, . . ., xi ). The candidates of the 
nth generation generate the candidates of the (n + 1)st gen- 

?I+/ eration {x, ?I+1 , x2 , . . ., x, ” ’ ) via crossover and mutation. 
An objective function is defined to find the fitness of candi- 
dates. The fitness of the candidates in the nth generation will 
influence the production of candidates for the (n + 1)st 
generation. The evolution in the GA will be terminated 
when an acceptable approximation is found, the number 
of searched candidates has reached a predetermined num- 
ber, or some other reasonable criterion is satisfied. During 
the evolution, we find the optimal candidate x,~, which is 
defined to have the maximum value of fitness f(x,,). A 
detailed GA procedure was described by Hwang and 
Chang [6]. 

In this paper, we heuristically define a fitness function for 
a given candidate xr in the nth generation, denoted byf(x:), 
as 

ftxY)= [.j q*i- .p, +-s)] -’ 
As the equation implies, the fitness functionf(xy) is used to 
find the optimal pattern so as to obtain a fair allocation of the 
mean waiting time for any individual station. The explicit 
parameters of the fitness functionf(xr) are the mean waiting 
times, which are the performance measures for the candi- 
date xr, representing a pattern of service order and service 
discipline (the implicit parameters). Note that the service 
order sequence and the service discipline of each stage are 
coded into a binary string of genes. Here, we utilize the 
GAUCSD 1.4 developed at the University of California, 
San Diego [ 171, and adopt a predetermined number of 
searched candidates as our termination criterion. 

The example system that we are going to design is 
assumed to have nine stations, where station 1 has much 
heavier traffic load than the other stations. It is a typical 
client/server network that has many ordinary user stations 
and a file server station. We assume the arrival rate of sta- 
tion 1 is eight times greater than the arrival rates of the other 
stations. The service time distribution S, is exponentially 
distributed and the mean service time s, is equal to 1, 1 5 
r 5 R; the walking time lJj is deterministic and u, is equal 
to 0.1, 1 5 i 5 P. Since the example system has one 

heavy-load station and eight light-load stations, here we 
consider only eight types of service order sequences that 
poll the heavy-load station from one to eight times. The 
eight sequences are as follows. Sequence A with P = 9, 
(1, 2, 3, 4, 5, 6, 7, 8, 9); sequence B with P = 10, (1, 2, 
3,4,5,1,6,7,8,9];sequenceCwithP=ll:(l,2,3,4,1, 
5, 6, 7, 1, 8, 9}, and so on until sequence H with P = 16, 
(1, 2, 1, 3, 1,4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9). As the value of P 
increases from sequence A to sequence H, the service order 
sequence is arranged so that the number of stages between 
two consecutive polls of station 1 remains almost the same. 
We use the capital letter G (E) to denote the gated (exhaus- 
tive) service discipline of a stage and refer to the aggrega- 
tion of G and E for stages in the service order as the pattern 
of the service discipline. For example, the pattern EGEEG 
means E, G, E, E, and G for stages 1, 2, 3, 4 and 5, 
respectively. 

There are a total of 130 560 ( = xis=,2”) cases in an 
enumerative search. GAUCSD suggests only 230 cases to be 
searched; the efficiency is about 99.82%. The optimal pat- 
terns and the costs are shown in Table 1, where the cost 
function, denoted by f-’ , is the inverse function of the fit- 
ness function. The optimal pattern for fitness function f is 
“sequence A and GGGGGGGGG” for traffic intensifies 
below 0.5 and is “sequence B and GEEEEGEEEE” for 
traffic intensifies above 0.6. The optimal pattern uses the 
gated service discipline for all stages for traffic intensifies 
below 0.5; this is because the gated service discipline inher- 
ently distributes the mean waiting times more fairly than the 
exhaustive service discipline [ 151. When the traffic intensity 
is higher, however, the mean waiting times for the heavy- 
load station increase at a faster rate. To decrease the mean 
waiting time for the heavy-load station, the system assigns 
the heavy-load station more polls. Because a small increase 
in the number of polls greatly decreases the mean waiting 
times, two polls are enough. On the other hand, the mean 
waiting times for light-load stations should be also 
decreased in order to make them only a little larger than 
the mean waiting time for the two-poll station and to make 
the system fairer, with a lower cost. For this reason, the 

Table I 
Optimal pattern of service order and service discipline for the fitness func- 

tion f 

Traffic intensity Optimal pattern of service 

order and service disicipline 

cost (f-1) 

0.1 Sequence A, GGGGGGGGG 0.0013 
0.2 Sequence A, GGGGGGGGG 0.0069 

0.3 Sequence A, GGGGGGGGG 0.0 199 
0.4 Sequence A, GGGGGGGGG 0.0455 
0.5 Sequence A, GGGGGGGGG 0.093 I 
0.6 Sequence B, GEEEEGEEEE 0.1149 
0.7 Sequence B. GEEEEGEEEE 0.2878 
0.8 Sequence B, GEEEEGEEEE 0.5300 
0.9 Sequence B, GEEEEGEEEE I .2964 
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I Sequence A (I 2 3 4 5 6 7 8 9) and GEGEGEGEG 

1. 2 SequenceA(123456789)andGGGGJYi%GGG 

g .L 

2 
z 
2 1.5 

Sequence B { 12 3 4 5 16 7 8 9) and GEEEEGEEEE 

” 

$ 
;; 1 
s 

Traftk intensity 

Fig. 3. Cost comparison for patterns of service order and service discipline, using the cost functionf’. 

system uses the exhaustive service discipline for the light- 
load stations. 

We also plot the costs for the two optimal patterns and a 
randomly selected pattern “sequence A and GEGEGEGEG” 
vs. the traffic intensity in Fig. 3. The difference between 
these two optimal patterns is small below traffic intensity 
0.6 and is more significant above 0.7. The cost increases 
about 40% if we use the pattern “sequence A and 
GGGGGGGGG” (cost = 0.7442) rather than the pattern 
“sequence B and GEEEEGEEEE” (cost = 0.5300) at 
traffic intensity 0.8. Moreover, the cost increases about 
127% if we use the arbitrarily selected pattern “sequence 
A and GEGEGEGEG” (cost = 1.2039) rather than the 
optimal pattern “sequence B and GEEEEGEEEE” at traffic 
intensity 0.8. It is recommended that the optimal pattern 
‘ ‘sequence B and GEEEEGEEEE’ ’ be adopted for all traffic 
intensifies. 

4. Conclusions 

We develop an analytical approach to derive the exact 
mean waiting time of a polling system with general service 
order and mixed (gated or exhaustive) service discipline. 
We first derive the mean age and the mean excess of a 
defined cumulative time to obtain formulae for the mean 
waiting times. Then we utilize the conditional mean to 
yield the correlations between visit times and between walk- 
ing time and visit time to obtain the second moments of the 
cumulative times, which are key parameters in the formulae 
for the mean waiting times. Finally, an iterative algorithm is 
introduced to determine these necessary means and correla- 
tions. We use numerical examples to confirm the exactness 
of our approach and examine some characteristics of the 
polling system with general service order sequence and 

mixed service discipline. Furthermore, we heuristically 
define a fitness function and use a GA to find optimal pat- 
terns of service order and service discipline. The approach 
can be applied to complex polling systems. 
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Appendix A 

The Rjj in Eq. (7) for exhaustive stage j can be found by 
the following equation: 

E(VF) = E[E(V,2lN,)] = E[Ni@’ + N;(N, - l)$] 

= $??Z[N.] + S2 E[N.(N. - l)] 5 1 r, I I (Al) 

where Ni is the number of customers in station ri when the 
server arrives at stage i and 8, and SF:) are the mean and the 
second moment of the busy period of an M/G/l queue on 
which station ri is modeled. Define D;(s) as the LST of the 
CDF of D,, and define hi(z) as the pgf of the number of 
customers arriving during Di. Because of the Poisson arrival 
process, we have 

Bj(z) = D;(Xr, - X,z) 

Differentiating Eq. (A2) twice, we obtain 

E[N,(N, - l)] = h;,di(*) 

(W 
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Since E[N;] = X,di, and 

hc2) 

(1 -“p,J3. [I& pm (WI, 

after substituting Eq. (A3) into Eq. (Al), we obtain 

Rij = 

[ 1 

2 

A,di+ -%- .d!2’ 
1-q ’ 

Similarly, using the approach above, we can find Rjj for 
gated stage j by 

Rjj = E[Nj~~~’ + Nj(Nj - L)s~] = h,dj,!j’ + P~cfj2’ 

Using a similar method of above and in Eqs. (8)-(lo), ri,, 
can be obtained by 

{ 

kjk =p,E[UjD,Ij* k], for gated stage k, 

~jk = ~E[UjDk~- k], 
1 -Pr, 

for exhaustive stage k 

For a gated stage bk, E[UjDk b - k] is given by 

/ 

E[ViDkij- k] = < 

k-l 

x Ckjm + L1jum), 
m = bk 

for bk E G, k) 

j-l 

I( V* + Uj + U,Uj) + VjUj + Uy’ 

m=b, 

k- I 

and for an exhaustive stage bk, E[UjDk~- k] is given by 

I 
k-l k-l 

x UjUm + z Rj,, 

m= b,, m=b,,+I 

I for bk E G, k) 

j-l 

‘[ViDk~~k,I ~ U,Uj+ ~ VmUj+Uj?’ 

m = b, m=bl+I I k-l 

+  1 (kjm+ujUm)t 

m=j+ 1 

for bk @ 0’7 k) 
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