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Abstract—Peak-to-average-power ratio (PAPR) is a key design
concern of an OFDM system as it determines the system’s power
efficiency. Clipping is a simple and efficient way of reducing
PAPR. A suboptimal recursive clipping and filtering (RCF)
method was proposed in [5] to reduce PAPR. This paper presents
an alternate RCF approach which selects an error (clipping)
vector that minimizes the peaks in both I- and Q-channels
while satisfying some time and frequency domain distortion
bounds. We formulate the design problem as a constrained linear
programming (CLP) problem and extend it to include the tone-
reservation option. Like the RCF method, our approach does
not need side information and incurs no data rate loss. Since the
error vector used in RCF has not been optimized, our approach
offers improved PAPR reduction. It also provide tradeoff between
PAPR reduction and bit error rate (BER) degradation.

Index Terms—Peak-to-average-power ratio (PAPR), constella-
tion error, clipping threshold, linear programming (LP).

I. INTRODUCTION

Due to its high bandwidth efficiency, robustness against

multipath fading induced inter-symbol interference (ISI), and

flexibility in allocating multiuser radio resources, orthogonal

frequency division modulation (OFDM) has become a very

popular transmission technique, having been adopted by many

industrial standards. However, a well-known disadvantage of

the OFDM technique is its high peak-to-average-power ratio

(PAPR) time domain waveform and thus low power efficiency.

Many approaches of PAPR reduction have been proposed.

The selective mapping (SLM) [1] and partial transmit sequence

(PTS) [1] methods generate many symbol sequences for the

same OFDM frame with different phase scrambling sequences

and transmits the one with the lowest PAPR. Interleaving

[3] produces various sequences by permuting the original

data sequence. These techniques belong to the class of signal

scrambling schemes which reduce PAPR in a stochastic sense.

As the scrambling sequence or permutation used depends on

the original data, it must be sent along with the transmitted

data. An alternate technique is the coding scheme [2] which

maps the original symbol sequence set to a low PAPR symbol

sequence subset of a larger codeword set. The code rate of

this scheme is usually very low.

The recursive (repeated) clipping and filtering (RCF) ap-

proach [7] is a simple clipping technique. We clip the peaks

of a time domain OFDM waveform and then filter out the

out-of band components of the clipped signal. This time
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domain clipping and frequency domain filtering process is

repeated until a certain criterion is satisfied. Although this

method is simple and easy to implement, it introduces ad-

ditional constellation distortions. To maintain desired BER

performance, we can either enforce bounded distortion (BD)

in frequency domain [5] for the clipped signal or use the

so-called active constellation extension (ACE) [4] instead.

Adopting the RCF scheme with BD or ACE, we can achieve

low PAPR without changing the receiver structure and the need

to transmit side information. The ACE method often requires

much higher average transmit power. On the other hand, the

BD approach forces out-of-bound frequency domain samples

to contract to the prescribed distortion boundaries, effectively

performing nonlinear complex frequency domain clipping. The

contraction satisfies the BD constraint but does not guarantee

that minimum PAPR can be achieved. Tone Reservation (TR)

[6], which inserts dummy finite-magnitude complex numbers

in some pre-selected subcarriers (tones), is another PAPR-

reduction method. Tellado and Cioffi [8] proposed a TR-based

PAPR reduction method for real-valued time-domain signal.

But data rate is decreased by a half to satisfy the real value

constraint.

In this paper, we combine and generalize both RCF and TR

approaches by reserving some tones and allowing nonlinear

clipping in both time and frequency domain with bounded

frequency domain distortion constraints. The nonlinear time

domain clipping in effect introduces a time domain vector error

signal. This error signal is chosen to minimize the peaks of the

time domain sequence while its real and imaginary frequency

(error) magnitudes stay in the bounded and extended regions.

The time domain clipping is done in real and imaginary

parts separately so that we not only have one more degree

of freedom but also are able to employ established linear

programming (LP) techniques. In contrast to the approach of

[8], we consider complex signals by adding complex peak-

mitigating signal to the original OFDM signal that uses all

in-band subcarriers and guarantee zero loss of data rate.

The rest of the paper is organized as follows: In Section

II, we introduce basic definitions of a typical OFDM system.

Section III presents the proposed approach formulated as an

optimization problem and the following section provides some

simulation results. Some concluding remarks are given in

Section V.

Notation: j denotes
√−1. (·)T and (·)H represent transpose

and Hermitian operations. Re(·) and Im(·) stand for the real

and imaginary part of a complex signal.
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II. PAPR AND AVAILABLE SUBCARRIERS IN OFDM

SYSTEMS

An N -channel OFDM symbol consists of N sub-carriers

with frequency fk, k = 0, 1, 2, ..., N − 1 and frequency

spacing Δf = 1
T , where T is the symbol duration without

the cyclic prefix (CP). Each subcarrier is modulated by an

M -QAM data and a frequency domain OFDM symbol can be

expressed as X = [X(0),X(1), ...,X(N − 1)]T .

An over-sampling factor L ≥ 4 is needed to ensure a

negligible approximation error if the discrete PAPR anal-

ysis is to be used to approximate analog waveforms. De-

note the zero-padded frequency domain symbol by X =
[X(0),X(1), · · · ,X(N − 1), 0, · · · , 0]T , which is an LN × 1
vector. Then the over-sampled time domain signal is given by

x[n] =
1√
NL

NL−1∑
k=0

Xke
j2πkn

NL , 0 ≤ n ≤ NL − 1 (1)

The PAPR of an OFDM symbol is defined as

PAPR(x) =
max

0≤n≤LN−1
|x[n]|2

E[|x[n]|2] (2)

where x = QX and Q is an (NL × NL) inverse discrete

Fourier transform (IDFT) matrix.
Let the set of subcarriers that serves encoded data be

denoted by Ωd, where |Ωd| = Nd and | · | denotes the
cardinality. The subcarrier set in which free pilots are placed is
ΩTR, where |ΩTR| = NTR. The subcarriers fk ∈ Ωd

⋃
ΩTR

and |Ωd

⋃
ΩTR| = Nt are called available subcarriers. The

remaining subcarriers are used as guardband. The time do-
main representation of the transmitted frequency vector X =
[X(k)]T , k ∈ Ωd

⋃
ΩTR, is given by x = Q̃X, where Q̃ =

1√
NL

⎛
⎜⎜⎜⎜⎝

1 1 . . . 1

e
j2πf1

NL e
j2πf2

NL . . . e
j2πfNt

NL

...
...

. . .
...

e
j2πf1(NL−1)

NL e
j2πf2(NL−1)

NL . . . e
j2πfNt

(NL−1)

NL

⎞
⎟⎟⎟⎟⎠
(3)

f1, · · · , fNt ∈ Ωd

⋃
ΩTR.

The real and imaginary parts of the over-sampling IDFT

matrix are denoted by QC = Re(Q̃), an (NL × Nt) matrix,

and QS = Im(Q̃) which is an (NL × Nt) matrix.

III. NONLINEAR CLIPPING AS AN OPTIMIZATION

PROBLEM

The idea of our nonlinear clipping technique is to find an

optimal clipping threshold and error vector such that all real

and imaginary parts of the clipped time-domain signal samples

be smaller than the threshold. It is also required that this

threshold be minimized while both the real and imaginary

parts of the frequency domain error vector be less than the

BD constraint δ.

We add to the original vector x a time-domain error

vector e = [e1, e2, ..., eNL] to minimize the peaks in both

I- and Q-channels. e is to be determined at the trans-

mit site. There will be no need to send any side infor-

mation or modify the receiver structure. The DFT of e,

i.e., the frequency domain error vector is defined as E =

Fig. 1. The time domain clipping rule.

[0, ...., 0︸ ︷︷ ︸
(N−Nt)

2

, E1, E2, .., ENt
, 0, ......, 0︸ ︷︷ ︸
N(L− 1

2 )−Nt
2

] =DFT[e]. e and E are

introduced to reduce PAPR. Moreover, there are free pilots

(reserved tones) whose locations form a set which is disjoint

to data subcarrier set.

A. Clipping as Multiple Constraints

Conventional clipping techniques [5], [7] clip only those
peaks which exceed the clipping threshold while keeping the
corresponding phase intact. In contrast, the proposed algorithm
clips the real and imaginary parts of the samples separately
and thus brings in one more degree of freedom. This extra
dimension also manifests in the polar coordinate in which,

unlike the conventional approach, the phases tan−1
[

Im(xi)
Re(xi)

]
of the clipped samples are allowed and likely to be different
after clipping. Fig. 1 shows that our clipping rule confines all
complex samples to stay inside the square with side length 2η,
i.e., the magnitudes of their real and imaginary parts cannot be
greater than η. Given an error vector e and the original time-
domain vector x, the clipped samples becomes x̃ = x + e
which should satisfy the constraints:

x̃ =

{
||Re(x) + Re(e)||∞ ≤ η
||Im(x) + Im(e)||∞ ≤ η

(4)

where || · ||∞ stands for infinite norm. The above discussion
implies that our approach can be formulated as the following
constrained linear programming (CLP) problem

min η

subject to : Re(x + e) � η1

Im(x + e) � η1

−Re(x + e) � η1

−Im(x + e) � η1 (5)
in variables : e ∈ CNL

where 1 stands for an LN × 1 vector and � denotes

componentwise inequality in Rm: u � v means ui ≤ vi for

i = 1, ...,m.

1668



3

Fig. 2. Constellation error constraints for 16-QAM. Those colored area of
internal points are bounded region and those for external points are extended
region.

When the signal is clipped in time domain, distortions (side-

lobe re-growth) are also generated in frequency domain. The

resulting distortion is proportional to the magnitude of error

vector e. Although time domain clipping can achieve good

PAPR performance, the frequency domain distortion might be

very high, leading to BER degradation. To maintain acceptable

BER performance, we need also to enforce constraints on the

frequency domain error vector.

The difference between error vector magnitude (EVM) and

constellation error is that EVM is based on 2-norm metric

and there might be large errors in some coordinates without

violating the error magnitude constraint but the constellation

error measure ensures all coordinates of the error vector be

within the constraint.

We use the constellation error to place constraints on the

frequency-domain error vector E to further reduce the feasible

set of optimal clipping threshold η. Here, we limit the real

and imaginary parts of Ei, the ith component of E, to stay

in the bounded region and extended region (see Fig. 2). The

constellation error constraint is further elaborated and a new

CLP formulation in the next subsection.

B. Bounded Constellation Errors
Recall that Xd = [X1,X2, ...,XNd

]T ∈ CNd is the original
M -QAM data vector and the distorted frequency domain data
symbol is given by X̃d = Xd + Ed, where Ed = [Ei]T ∈
CNd , i ∈ Ωd. Since the decision regions for QAM are squares
or half-squares, we allow square bounded (distortion) regions
as well. We further divide a QAM constellation into internal
points and external points. The external points can not only
go inward in the bounded region but extend outward in the
extended region. We require that the frequency domain error
vector Ed satisfy the following constraints:

1) if Re(Xi) > γ : −δ ≤ Re(Ei) ≤ αδ , i ∈ Ωd

2) if Re(Xi) < −γ : −αδ ≤ Re(Ei) ≤ δ , i ∈ Ωd

3) if Im(Xi) > γ : −δ ≤ Im(Ei) ≤ αδ , i ∈ Ωd

4) if Im(Xi) < −γ : −αδ ≤ Im(Ei) ≤ δ , i ∈ Ωd

5) if − γ ≤ Re(Xi) ≤ γ : −δ ≤ Re(Ei) ≤ δ , i ∈ Ωd

6) if − γ ≤ Im(Xi) ≤ γ : −δ ≤ Im(Ei) ≤ δ , i ∈ Ωd

(6)

and

γ = (
√

M − 2) × dmin

2

where M = 22l, l ∈ N, dmin is the minimum distance of

the constellation, δ defines the allowable constellation error

and αδ decides the extended region. Note that γ is used to

distinguish between internal and external points. Constraints

1)–4) are for external points while constraints 5)–6) are for

internal points. We choose appropriate δ’s to satisfy different

PAPR and BER requirements. Given δ = ε, our algorithm is

designed to provide a modified OFDM constellation with the

minimum achievable η.
In order to avoid increasing too much average transmit

power, we set constraints on the TR pilots ETR = [Ei]T ∈
CNT R , where i ∈ ΩTR. We allow TR pilots to have exactly
the same maximum power as that allowed in data subcarriers
which carry signal points lie within the original constellation
plus extended region. The TR constraints are thus given by

−(σ + αδ) ≤ Re(Ei) ≤ σ + αδ , i ∈ ΩTR

−(σ + αδ) ≤ Im(Ei) ≤ σ + αδ , i ∈ ΩTR (7)

where M = 22l, l ∈ N, and σ = (
√

M − 1)dmin/2 stands

for the coordinate of external points.

Incorporating the above constraints, the proposed clipping

scheme (inserted error vector) must satisfy the combined time

and frequency domain constraints:

x̃ =
{ ||Re(x) + Re(AÊ)||∞ ≤ η

||Im(x) + Im(AÊ)||∞ ≤ η
(8)

where

A =
(

QC −jQS

jQS QC

)
, Ê =

(
Re(E)
Im(E)

)
are (2NL × 2Nt) and 2Nt × 1 matrices, respectively.

By introducing the 2Nt × 1 stacked vector x̂

x̂ =
(

Re(x)
Im(x)

)
we restate the optimal clipper design problem as: Given X,

find the frequency domain error vector E that satisfies the BD
and TR constraints such that the resulting peaks η in both I-
and Q-channels are minimized.

min η

subject to :
(

A −1
−A −1

)(
Ê
η

)
�

(−x̂
x̂

)
(9)

and
(a) −δ ≤ Re(Ei) ≤ αδ , i ∈ Ωd, if Re(Xi) > γ
(b) −αδ ≤ Re(Ei) ≤ δ , i ∈ Ωd, if Re(Xi) < −γ
(c) −δ ≤ Im(Ei) ≤ αδ , i ∈ Ωd, if Im(Xi) > γ
(d) −αδ ≤ Im(Ei) ≤ δ , i ∈ Ωd, if Im(Xi) < −γ
(e) −δ ≤ Re(Ei) ≤ δ , i ∈ Ωd, if − γ ≤ Re(Xi) ≤ γ
(f) −δ ≤ Im(Ei) ≤ δ , i ∈ Ωd, if − γ ≤ Im(Xi) ≤ γ
(g) −(σ + αδ) ≤ Re(Ei) ≤ σ + αδ , i ∈ ΩTR

(h) −(σ + αδ) ≤ Im(Ei) ≤ σ + αδ , i ∈ ΩTR

in variables: Ê ∈ R2Nt , x̂ ∈ R2NL

where 1 denotes a 2NL×1 vectors, and η is real-valued. Note

that (a) ∼ (f) are the BD constraints while (g) ∼ (h) are the

TR constraints.
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Fig. 3. Original time-domain signal with PAPR=9.6448 dB.
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Fig. 4. Clipped time-domain signal with PAPR=5.9015 dB.

IV. SIMULATION RESULTS

In this section we provide some numerical performance of

our algorithm and an example of time- and frequency-domain

signal of original and optimized signal. We consider an OFDM

system with 256 subcarriers using 16-QAM modulation for

the data carried on each available subcarrier. Only 128 tones

are used to carry data, and there are six reserved tones at

subcarriers 193, 194, 195, 196, 197, 198, respectively. 0

denotes dc tone and guard-bands are distributed in subcarriers

0 to 64 and 199 to 256. The reserved tones’ locations do not

affect the PAPR value too much but the number of the reserved

tones does. The more tones are reserved, the higher the PAPR

reduction gain becomes. For fair comparison, the number of

reserved tones is the same for all schemes whose performance

is presented in this section.

First, we would like to show the clipping effects in time

and frequency domains. Fig. 3 shows the original time-domain

signal of an OFDM symbol with a PAPR of 9.6448 dB. After

applying the proposed nonlinear clipping algorithm (9), the

resulting time-domain signal is plotted in Fig. 4 where the

PAPR is reduced to 5.9015 dB. However, we achieve such
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Fig. 5. Constellation of distorted frequency-domain signal achieving 3.7433
dB PAPR reduction.
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Fig. 6. Phase difference and amplitude trajectories of a typical time-domain
sequence before and after nonlinear clipping.

PAPR reduction at the cost of a smaller minimum distance in

the 16-QAM constellation. The constellation setup for our case

is 16-QAM having {− 3dmin

2 ,−dmin

2 , dmin

2 , 3dmin

2 } as signal

points on real and imaginary axes (I- and Q-channel compo-

nents) with a maximum constellation error δ = 0.05dmin.

Red stars in Fig. 5 are clipped frequency domain samples

which has deviated from the original constellation points and

the resulting minimum distance for this case is reduced to

0.9dmin. A shorter minimum distance means worse BER

performance, but larger distortion bound and extended region

give better PAPR reduction capability. There is an obvious

tradeoff between the PAPR reduction and BER performance

degradation.

Fig. 6 shows the phase difference (original phase - opti-

mized phase) and amplitude trajectories of a typical time-

domain sequence before and after performing the proposed

nonlinear clipping. Obviously, our clipping method does result

in (or allow) phase rotations of the time domain samples.

Separate constraints on I- and Q-channel magnitudes result

in envelop clipping and phase rotation (in this example as
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Fig. 7. Effective PAPR gain for 16-QAM 256-carrier OFDM symbol with
L=4 over-sampling for δ = 0.05dmin, δ = 0.1dmin, ACE, RCFBD, and
separated coordinate PAPR.
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Fig. 8. BER of a 16-QAM and 256-carrier OFDM system.

much as 0.2180 radian). As mentioned before, phase rotation

gives us an extra degree of freedom for PAPR reduction. The

optimal rotated phase is obtained by solving the corresponding

CLP problem (9).

Simulated BER performance of the conventional OFDM and

error vector optimized OFDM schemes in AWGN channels is

given in Fig. 8. As expected, the larger the allowed constel-

lation error is, the greater the PAPR reduction becomes. As

mentioned before, since the constellation (frequency domain)

error reduces the minimum-distance of the signal set, it also

degrades the BER performance. In this figure we find that a

constellation error bound of δ = 0.05dmin gives BER perfor-

mance better than that with a bounded error of δ = 0.1dmin.

It is clear that the amount of PAPR reduction is an increasing

function of the allowed frequency domain distortion bound.

Figs. 7 and 8 indicate that our clipping scheme yields a

better PAPR performance than that achieved by RCF-BD while

maintaining the same BER performance. This PAPR reducing

gain is due to the fact that the error vector used in RCF-BD

has not been optimized.

Although both ours and the ACE schemes use an optimiza-

tion procedure to reduce PAPR, and our algorithm outperforms

the ACE scheme by imposing BD’s. A BD region allows

optimal modifications for distorted data points, it enlarges the

feasible set of linear programming problem whence leads to

a greater likelihood to find a solution with lower PAPR.

V. CONCLUSION

This paper presents a novel nonlinear clipping technique

that extends the RCF-BD and TR concepts to reduce the PAPR

of OFDM signals. We formulates the proposed algorithm as

one for solving a CLP problem. The solution can be easily

found by following the established procedure. The proposed

approach does not have to modify the receiver structure and

needs not to send side information. Moreover, our algorithm

guarantees that the optimal error vector is obtained and the re-

sulting PAPR value is minimized under certain BD constraints.

The complexity of our algorithm can be greatly reduced by if

a fast algorithm to solve the corresponding CLP problem can

be found.
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