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Abstract—In this paper, space-time coding schemes with full
transmit diversity are investigated for unequal error protection
(UEP). Effective performance indicies are proposed to measure
the intrinsic UEP capability of space-time codes, based on
which we demonstrate that space-time trellis codes and super-
orthogonal space-time trellis codes can be used for UEP as long
as the corresponding encoders are properly designed. In addition,
UEP convolutional codes are concatenated with space-time block
codes to construct another full-diversity UEP scheme which can
provide more choices of UEP levels. Finally, good UEP codes are
given by a computer search.

I. INTRODUCTION

In many applications, e.g., broadcast systems and vi-
sual/speech communication systems, the source data are of
unequal error sensitivities or face different levels of noise
corruption. To make the best use of the channel bandwidth
in those systems, it is desirable to design an error-correcting
code with the capability of unequal error protection (UEP)
which can provide different levels of protection against errors.
However, literatures about UEP were focused on channel
codes without transmitter diversity [1]-[6]. Although good
UEP codes have been provided, they inevitably demand the
undesired bandwidth expansion. Space-time coding not only
inherits the high data rate transmission of multiple-input and
multiple-output (MIMO) systems but also provides excellent
performance against multipath fading [7]-[8]. Nevertheless,
only a few of studies are about space-time coding for UEP.
Among those, the UEP capability of space-time codes was
observed in terms of the different diversity orders embedded
for distinct messages [9]; the authors also presented a construc-
tion of two-level UEP codes of short block length. Another
diversity-based UEP scheme based on the layered space-time
architecture was proposed for multimedia transmission in [10].
In [11][12], space-time trellis codes are incorporated with
puncturing to construct a powerful UEP scheme with flexible
choices of rates and UEP levels.

In this paper, the intrinsic UEP capability of space-time
codes is investigated. Firstly, two types of performance indi-
cies: the effective rank & determinant for the low-diversity
case and the effective distance for the high-diversity case
are proposed for space-time codes. Based on the proposed
UEP measurements, we observe that different input streams
of the space-time trellis codes (STTC) may experience dif-
ferent levels of protection; STTC encoders with the special
architecture in [7] can thus be used for UEP as long as
the associated generator sequences are properly designed. We
also demonstrate that super-orthogonal space-time trellis codes

(SOSTTC) [13] originally designed for full-diversity and high-
rate transmission can provide the desired UEP capability.
In addition, conventional UEP convolutional codes (CC) are
concatenated with space-time block codes (STBC) to construct
another full-diversity UEP scheme; compared with the UEP-
STTC and UEP-SOSTTC, this scheme can provide larger per-
formance gaps between UEP levels. Furthermore, good UEP
codes based on the above space-time coding schemes with
different UEP levels, bandwidth efficiencies, and memories
are provided by a computer search. Finally, an example of
multimedia transmission is given to visualize the benefits of
the proposed UEP schemes.

The rest of this paper is organized as follows. In Section
II, the UEP capability of space-time codes is investigated
together with the effective measurements. The UEP schemes
based on STTC, SOSTTC, and UEPCC-STBC are described
in Section III. In Section IV, simulation results are provided
for performance verification. Finally, a summary is drawn in
Section V to conclude this work.

II. UEP CAPABILITY OF SPACE-TIME CODES AND THE
EFFECTIVE MEASUREMENTS

Consider a space-time code with NT transmit antennas and
NR receive antennas. Let G be the corresponding encoder
which maps K streams of input information into coded se-
quences for transmission. Denote by ui,t and xj,t the message
fed to the ith input of encoder and the modulated symbol
transmitted by the jth antenna at time t, respectively, ∀
1 ≤ i ≤ K and 1 ≤ j ≤ NT . For a data frame of length-
L, let Ui = (ui,1, ui,2, · · · , ui,L) be the information sequence
fed to the ith input of G and U = (UT

1 , UT
2 , · · · , UT

K)T be
the information matrix for encoding, where T denotes the
operation of taking transpose. The codeword matrix X for
transmission is defined by











x1,1 x1,2 · · · x1,L

x2,1 x2,2 · · · x2,L
...

...
. . .

...
xNT ,1 xNT ,2 · · · xNT ,L











where the (j, t)th entry indicates the data transmitted by the
jth antenna at time t.

In conventional, space-time codes are used for equal error
protection; in such applications, the diversity order defined
as the minimum rank of the codeword distance matrix is
unarguably an effective parameter for performance evaluation
[7]. However, space-time codes with the encoders of multiple
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inputs may possess the UEP capability. For example, consider
a space-time trellis code with generator sequences:

g1 = [(0, 1), (1, 0)], g2 = [(2, 2), (0, 2)] (1)

which is equipped with the quaternary phase-shift keying
(QPSK) modulation of symbol energy Es for transmission
over a Rayleigh fading channel with the additive white Gaus-
sian noise of two-sided power spectral density N0/2. For
binary inputs (u1,t, u2,t), the corresponding encoder outputs
(v1,t, v2,t) are obtained by

(v1,t,v2,t)=u1,t·(0,1)⊕4u1,t−1·(1,0)⊕4u2,t·(2,0)⊕4u2,t−1·(2,2)

where ⊕4 stands for the modulo 4 addition; v1,t and v2,t

are then mapped to the following modulated symbols for
transmission:

xi,t =
√

Es exp(
√
−1 · vi,t · π/2) for i = 1 and 2.

Suppose the receiver is equipped with 4 antennas. Observed
from the performance plots in Fig. 1, u1,t’s and u2,t’s both
experience the same diversity order (since the corresponding
BER curves have the same slope asymptotically) but u2,t’s
receive a better protection than u1,t’s with a coding gain about
2 dB at BER 10−5. This code can hence be used for two-
level UEP as long as the data of distinct BER requirements
are properly fed into the encoder. In addition, the embedded
diversity order originally addressed in [9] to characterize the
UEP capability seems unable to reflect the UEP behavior in
this case. Besides the diversity order, new measurements to
provide a more precise evaluation of the UEP capability of
space-time codes are described below.

To evaluate the BER of the lth input-stream of G for some
l ∈ {1, 2, · · · , K}, consider two codeword matrices X and X̂
with Ul 6= Ûl. Define the codeword distance matrix A(X, X̂)
between X and X̂ by

A(X, X̂) = (X − X̂) · (X − X̂)H

where H stands for the operation of taking Hermitian. Denote
by r(X, X̂) and {λi(X, X̂), ∀ 1 ≤ i ≤ NT } the rank and
eigenvalues of A(X, X̂), respectively. Assume λi(X, X̂) ≥
λi+1(X, X̂), ∀ i, without loss of generality. For Rayleigh fad-
ing channels, the pairwise error probability that the maximum
likelihood decoder decides in favor of X̂ than X to make an
error decision on the lth input-stream can be upper bounded
by





r(X,X̂)
∏

i=1

λi(X, X̂)
Es





−NR
(

Es

4N0

)−r(X,X̂)NR

(2)

at high signal-to-noise ratios (SNR), based on the analysis of
codeword error probability for ordinary space-time codes in
[7]. For the case of r(X, X̂)NR ≥ 4, the upper bound of the
pairwise error probability can be further expressed as

1
4

exp

(

−NR

4
· Es

N0
·

NT
∑

i=1

λi(X, X̂)

)

(3)

with a better approximation than (2) by generalizing the
derivation in [8]. Let rmin,l(G) denote the minimum effective

rank associated with the lth input of G which is defined as

min
{∀X 6=X̂∈C|Ul 6=Ûl}

r(X, X̂).

According to the value of rmin,l(G)NR, i.e., the effective
diversity gain for the lth input sequence, two types of UEP
measurement are given as follows.

A. The Low-Diversity Case: rmin,l(G)NR < 4
Define the minimum effective determinant associated with

the lth input of G by

detmin,l(G) = min
{∀X 6=X̂∈C|Ul 6=Ûl}

rmin,l(G)
∏

i=1

λi(X, X̂)
Es

.

By (2), the BER of the lth input-stream of G, denoted by
Pl(G), can be dominated by the following term:

detmin,l(G)−NR ·
(

Es

4N0

)−rmin,l(G)NR

at high SNRs. Large values of rmin,l(G) and detmin,l(G) can
thus imply a small Pl(G).

B. The High-Diversity Case: rmin,l(G)NR ≥ 4

Let d2(X, X̂) be the effective distance between X and X̂
defined by

L
∑

t=1

NT
∑

j=1

|xj,t − x̂j,t|2

and denote by d2
min,l(G) the minimum effective distance

corresponding to the lth input of G, i.e.,

d2
min,l(G) = min

{∀X 6=X̂∈C|Ul 6=Ûl}
d2(X, X̂).

Based on the observation that
NT
∑

i=1

λi(X, X̂) =
L
∑

t=1

NT
∑

j=1

|xj,t − x̂j,t|2

a large value of d2
min,l(G) then implies a better BER for the

lth input-stream of G, since Pl(G) is now dominated by

exp
(

−NR

4
· Es

N0
· d2

min,l(G)
)

at high SNRs by (3).
Define the effective rank vector R(G), the effective deter-

minant vector ∆(G), and the effective distance vector Ω(G)
of G by

R(G) = (rmin,1(G), rmin,2(G), · · · , rmin,K(G))
∆(G) = (detmin,1(G), detmin,2(G), · · · , detmin,K(G))
Ω(G) =

(

d2
min,1(G), d2

min,2(G), · · · , d2
min,K(G)

)

.
(4)

The UEP capability of G can then be characterized by
(R(G), ∆(G)) for the low-diversity case and Ω(G) for
the high-diversity case, respectively. In general, the larger
(R(G), ∆(G)) or Ω(G) is, the better the UEP capability is;
the number of distinct components in R(G), ∆(G), Ω(G)
also corresponds to the available levels for UEP. Recall the
space-time encoder of generator sequences in (1); in this
case, K = 2, NT = 2, and NR = 4. By (4), we have
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R(G) = (2, 2), ∆(G) = (4, 4), and Ω(G) = (4, 12). Since
rmin,l(G)NR ≥ 4 for l=1,2, the unequal effective distances
in Ω(G) thus successfully reflect the two-level UEP for u1,t’s
and u2,t’s revealed in Fig. 1.

III. FULL-DIVERSITY UEP SCHEMES BASED ON STTC,
SOSTTC, AND UEPCC-STBC

In conventional approaches [9][10], different diversity or-
ders were designed for distinct messages to achieve UEP. The
consequent UEP schemes thus can not obtain full transmit
diversity and suffer from a poor performance of average
BER. However, we observe that some space-time architectures
with full diversity are inherently with the UEP capability
in terms of the proposed effective measurements, although
such a desirable capability is totally ignored by the previous
researches. Designs based on those architectures can then
accomplish UEP without any loss of transmit diversity. In the
following, we first demonstrate the feasibility of STTC and
SOSTTC for UEP. A concatenation of UEPCC and STBC
which can assure full diversity and provide more choices of
UEP levels is presented as well.

A. STTC for UEP

STTC with the special encoder architecture in [7], for which
total memory elements are uniformly distributed in the shift-
registers for all input streams, have been shown to achieve
full-diversity transmission and provide excellent performance
against multipath fading [7][8]. Conventional designs of STTC
are focused on maximizing the average diversity and coding
gains of the space-time coded system. Therefore, most of the
optimal codes constructed previously, no matter for the low-
diversity or high-diversity cases, can provide only a single
level of protection. For example, consider an optimal code Ĉ
obtained for the high-diversity case with the encoder Ĝ of
generator sequences [8]

ĝ1 = [(0, 2), (2, 0)] and ĝ2 = [(0, 1), (1, 0)] (5)

which is equipped with the QPSK modulation; in this case,
K = 2 and NT = 2. By the definitions in Section II, we
have R(Ĝ) = (rmin,1(Ĝ), rmin,2(Ĝ)) = (2,2) and Ω(Ĝ) =
(d2

min,1(Ĝ), d2
min,2(Ĝ)) = (4,4). Ĉ achieves the full diversity

as expected since rmin,1(Ĝ) = rmin,2(Ĝ) = NT . However,
the observation of d2

min,1(Ĝ) = d2
min,2(Ĝ) implies that only a

single level of protection is available although K = 2.
To provide UEP by STTC, we still employ the same encoder

architecture to guarantee full transmit diversity but the cor-
responding generator sequences are now searched according
to the proposed UEP measurements, instead of the average
diversity and coding gains. For the low diversity case, an
optimum choice of the generator sequences should result in
(R(G), ∆(G)) as large as possible. The generator sequences
are then optimized to maximize Ω(G) for the high diversity
case. By an exhaustive computer search, families of full-
diversity STTC with good UEP capability for both of the low-
diversity and high-diversity cases have been obtained; only
the family with two transmit antennas and QPSK are given
in Table I for illustration due to the length limitation. Note
that, compared with the optimal codes with the same rates and

memories in [7], UEP codes obtained for the low-diversity case
have the same or larger (R(G), ∆(G))’s; the new constructed
UEP codes can hence provide better protection for all input
streams.

B. SOSTTC for UEP

SOSTTC were first introduced in [13] to take the advantages
of STBC and STTC. By employing the trellis structure similar
to STTC but choosing a set of parameterized class of STBC as
the space-time signal points for transmission, SOSTTC have
been verified to provide a good trade-off between the rate and
diversity of space-time coded systems. Conventional designs
on SOSTTC are focused on maximizing the minimun coding
gain distance [13] of all codeword matrices only; the intrinsic
UEP capability of SOSTTC is thereby neglected unwittingly.
However, we observe that SOSTTC can be used for UEP as
long as the codes are now designed by optimizing the proposed
effective measurements rather than the original performance
index. Consider an example of SOSTTC with K=4, NT =2,
and the QPSK modulation which chooses the following two
types of STBC for transmission:

Type1 STBC:
(

s1 s2
−s∗2 s∗1

)

, Type2 STBC:
(

−s1 s2
s∗2 s∗1

)

where s1 and s2 are mapped from the input vector (u1,t, u2,t,
u3,t, u4,t) by the encoder G as depicted in Fig. 2, where
the associated trellis module has two states and at each time
instant the type of STBC used for transmission is determined
by the value of current state. By the definitions in Section
II, we have R(G) = (2, 2, 2, 2), ∆(G) = (4, 16, 16, 64),
and Ω(G) = (4, 8, 8, 16). This full-diversity code can thus
provide three-level UEP for both of the low-diversity and high-
diversity cases since the components in ∆(G) and Ω(G) are
now of three distinct values respectively.

C. UEP Scheme Based on UEPCC-STBC

STBC with the orthogonal design have been verified to
achieve full transmit diversity but with the drawback of no
coding gain [14]. On the other hand, UEP convolutional
codes, originally designed for the system of single transmit
antenna, can provide rich of coding gain for different input
streams, but the direct use of them in fading channels usually
suffers from a performance degradation. To take both of the
advantages of STBC and UEPCC, a space-time UEP scheme
which concatenates the both schemes as indicated in Fig. 3 is
proposed here. In this concatenated scheme, the information
bits are first encoded by an (N, K, V ) UEP convolutional code
with proper UEP capability to attain the desirable coding gain,
whose encoder has K inputs, N outputs, and memory V .
Let (c1,t, · · · , cN,t) denote the vector of coded bits at time
t. (c1,t, · · · , cN,t) is then processed by a specially designed
Ns×N mapping matrix Q to generate Ns modulated symbols
(y1,t, · · · , yNs,t) by

(y1,t, · · · , yNs,t)T = Q · (c1,t, · · · , cN,t)T .

Finally, (y1,t, · · · , yNs,t) is transformed into a space-time
codeword matrix with NT transmit antennas by a STBC
encoder to achieve the full transmit diversity. By an exhaustive
computer search, families of full-diversity codes with good
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UEP capability for both of the low-diversity and high-diversity
cases have been obtained. Only the family with two transmit
antennas and the Alamouti STBC [14] with QPSK are given
in Table II, where the generator matrices of UEPCC are
chosen to be canonical to avoid the catastrophic encoders
and the corresponding entries are expressed in octal form, for
illustration due to the length limitation.

IV. SIMULATION RESULTS

To verify the validity of the proposed UEP measurements,
UEP schemes based on STTC, SOSTTC, and UEPCC-STBC
are simulated for transmission over a block fading channel,
for which the fading gain is assumed to be constant within
each data frame of 130 symbols. In Fig. 1, the BER curves
corresponding to different input streams of the high-diversity
STTC are plotted. From the simulation results, all curves are
observed to have the same slope asymptotically; the code
in Table I achieves two-level UEP but the optimal code by
the conventional design can provide only a single level of
protection. Compared with the observation that R(G) = R(Ĝ)
= (2,2), Ω(G) = (4, 12), and Ω(Ĝ) = (4,4), the proposed
measurements can successfully predict the UEP capability.
Performance plots of the SOSTTC illustrated in Section III-B
are shown in Fig. 4; the three-level UEP observed in Fig. 4 is
also consistent with the prediction of ∆(G) = (4, 16, 16, 64)
for the low-diversity case. In addition, consider the UEP
scheme based on the (4,2,2) UEP convolutional code in Table
II with ∆(G) = (4, 144) and Ω(G) = (4, 24). Observed from
Fig. 5, the proposed measurements can precisely reflect the
UEP behavior for the both cases of NR = 2 and 4. Owing to
the different coding gains introduced by the UEP convolutional
code, this scheme can provide apparent performance gaps (up
to 6dB SNR gain at BER 10−5) between two UEP levels.

To demonstrate the benefit of applying UEP, a gray image is
transmitted over Rayleigh fading channels under the protection
of the both STTCs with the same rate and memory considered
in Fig. 1. At SNR = −1dB, the reconstructed images with and
without applying UEP are shown in Fig. 6(a) and Fig. 6(b). It
can be seen that the better visual quality is obtained with the
usage of UEP. The peak signal-to-noise ratio (PSNR) curves in
Fig.7 also shows the improvement of the reconstructed images
with the aid of UEP.

V. CONCLUSION

In this paper, two types of performance indicies: (R(G),
∆(G)) and Ω(G) are proposed to measure the intrinsic UEP
capability of space-time codes. Based on those measurements,
we demonstrate that STTC and SOSTTC can be used for
UEP as long as the corresponding encoders are properly
designed. In addition, UEPCC are concatenated with STBC
to construct another full-diversity UEP scheme which can
provide more choices of UEP levels. Simulation results also
verify the effectiveness of the proposed UEP measurements for
multimedia transmission. Finally, tables of space-time codes
with good UEP capability are given by a computer search.
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TABLE II
UEP SPACE-TIME CODES BASED ON UEPCC-STBC

WITH QPSK MODULATION AND TWO TRANSMIT ANTENNAS

(N, K, V ) Generator Matrix UEP Measurements

(4, 2, 2)

(

1 0 0 1

7 7 5 0

)

∆(G) = (4, 144)

Ω(G) = (4, 24)

(4, 2, 3)

(

1 1 0 0

13 0 15 17

)

∆(G) = (64, 196)

Ω(G) = (16, 28)

(4, 2, 4)

(

1 0 0 1

25 33 37 0

)

∆(G) = (4, 256)

Ω(G) = (4, 32)

(4, 2, 5)

(

1 0 7 6

14 13 15 5

)

∆(G) = (144, 256)

Ω(G) = (24, 32)

(4, 2, 6)

(

0 5 7 1

35 11 35 20

)

∆(G) = (64, 256)

Ω(G) = (16, 32)

(4, 3, 2)









0 0 1 1

1 0 1 0

5 7 0 0









∆(G) = (4, 4, 64)

Ω(G) = (4, 4, 16)

(4, 3, 3)









1 1 1 1

2 3 1 0

5 3 4 0









∆(G) = (16, 36, 36)

Ω(G) = (8, 12, 12)

(4, 3, 4)









1 1 1 1

1 2 3 0

16 5 15 0









∆(G) = (16, 64, 100)

Ω(G) = (8, 16, 20)

(4, 3, 5)









1 1 1 1

1 2 3 0

36 11 31 0
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Fig. 1. Performance plots of STTC with generator sequences: g1 =
[(0, 1), (1, 0)], g2 = [(2, 0), (2, 2)] and ĝ1 = [(0, 1) , (1, 0)], ĝ2 =
[(0, 2) , (2, 0)], respectively.

0Z

1Z

1Z

0Z

Minimum Effective Determinant

4

16

16

64

00

Z
0

Z
1

Z
00

Z
01

Z
10

Z
11

Z000 Z001 Z010 Z011 Z100 Z101 Z110 Z111

22

02

20

11

33

13

31

01

23

10

32

03

21

12

30

QPSK Modulation Indicies for s
1
 and s

2I1I2

Type-1
STBC

Encoders2

I1I2

0

1

Type-2
STBC

Encoder

s1

s1

s2
1

3
2

0

State0

State1

State0

State1

u
1,t

u
2,t

u
3,t

u
4,t

u
1,t

u
2,t

u
3.t

u
4,t

Fig. 2. The encoder structure of SOSTTC.

10 12 14 16 18 20 22
10

−4

10
−3

10
−2

E
b
/N

0
(dB)

B
E

R

 

 

N
R

=1 Averge BER of U
1

N
R

=1 Averge BER of U
2
 & U

3
N

R
=1 Averge BER of U

4
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0 2 4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
(dB)

B
E

R

 

 

Average BER of U
1
 for N

R
=2

Average BER of U
2
 for N

R
=2

Average BER of U
1
 for N

R
=4

Average BER of U
2
 for N

R
=4

Fig. 5. Performance plots of UEPCC-STBC with two transmit antennas.
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Fig. 6. The reconstructed images without and with UEP at SNR = −1dB.
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Fig. 7. PSNR curves of both reconstructed images for coding schemes
with/without UEP.
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