

0305-0548(94)00070-0

ALGORITHMS FOR THE RURAL POSTMAN PROBLEM

W. L. Pearn¹ \dagger and T. C. Wu² \ddagger

¹Department of Industrial Engineering & Management, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 30050, R.O.C. and ²Tsuyung Senior Commercial and Industrial Vocational School, Taichung, Taiwan, R.O.C.

(Received March 1994; in revised form September 1994)

Scope and Purpose—Given an undirected (connected) street network, the well-known Chinese postman problem (CPP) is that of finding a shortest (or least-cost) postman tour covering all the edges (streets) in the network. The rural postman problem (RPP), is a generalization of the CPP, in which the underlying street network may not form a connected graph. Such situation occurs, particularly, in rural (or suburban) areas where only a subset of the streets need to be serviced. The RPP has been shown to be NP-complete, and heuristic solution procedures have been proposed to solve the problem approximately. The purpose of this paper is to review the existing solution procedures, and introduce two new algorithms to solve the problem near-optimally.

Abstract—The rural postman problem (RPP) is a practical extension of the well-known Chinese postman problem (CPP), in which a subset of the edges (streets) from the road network are required to be traversed at a minimal cost. The RPP is NP-complete if this subset does not form a weakly connected network. Therefore, it is unlikely that polynomial-time bounded algorithms exist for the problem. In this paper, we review the existing heuristic solution procedures, then present two new algorithms to solve the problem near-optimally. Computational results showed that the proposed new algorithms significantly outperformed the existing solution procedures.

1. INTRODUCTION

Given a connected undirected network G = (V, E) with a set of nodes V and a set of edges E, then the celebrated Chinese postman problem (CPP) is that of finding a shortest (or minimal-cost) postman tour such that each edge in E is traversed at least once. The rural postman problem (RPP) is a practical extension of the CPP, in which only a subset of the edges in E are required to be traversed at minimal cost. Such an extension, of course, accommodates real-world situations more closely. In particular, for rural (or suburban) areas where only a subset of the streets need to be serviced.

The RPP was first introduced by Orloff [1], and has received some research attention recently [2-4]. The RPP can be briefly defined as follows. We are given an undirected graph $G = (V, E, E_R)$ with V representing the set of nodes, E representing the set of edges (streets), and E_R ($\subseteq E$) representing the set of edges that must be serviced. Then, the RPP is to find a postman tour, starting from the depot, traversing each edge in E_R at least once, and returning to the same depot with total distance (cost) minimized. Clearly, if $E_R = E$, then the RPP reduces to the CPP.

Real-world applications directly related to the RPP include: routing of newspaper or mail delivery vehicles, parking meter coin collection or household refuse collection vehicles [7], street sweepers, snow plows and school buses [8]; spraying roads with salt [9, 10], inspection of electric power lines, or oil or gas pipelines, and reading electric meters [11].

⁺W. L. Pearn received his Ph.D. degree from University of Maryland at College Park, Maryland. His areas of interest include network optimization, and quality management. He has been with AT&T Bell Laboratories, and currently he is a professor of Operations Research in the Department of Industrial Engineering and Management at National Chiao Tung University, Taiwan, R.O.C.

[‡]T. C. Wu received his M.S. degree from Department of Industrial Engineering and Management, National Chiao Tung University. Currently, he is an instructor of Tsuyung Senior Commercial and Industrial Vocational School.

The RPP has been shown to be NP-complete if the required set of edges, E_R , does not form a weakly connected network but forms a number of disconnected components. Christofides *et al.* [2] presented an integer programming formulation of the problem, and developed an exact algorithm to solve the RPP optimally. The algorithm is essentially based on a branch-and-bound algorithm using Lagrangean relaxations. Unfortunately, their approach requires an exponential algorithm and is computationally inefficient; only problems of small and moderate size can be solved within reasonable amount of computer time. Because of the problem's complexity, a heuristic solution procedure [2] has been proposed to solve the problem approximately. In this paper, we first review this heuristic solution procedure, then present two new algorithms to solve the problem near-optimally.

2. EXISTING SOLUTION PROCEDURES

Christofides *et al.* [2] presented a heuristic solution procedure to solve the RPP approximately. The algorithm essentially consists of three phases. Phase I transforms the subnetwork (G_R) containing the required edges (E_R) into a complete network. Phase II applies the minimal spanning tree algorithm to render G_R connected. Phase III applies the minimal-cost matching algorithm to obtain an Eulerian network. The postman tour then can be constructed from the resulting Eulerian network. In the following, we briefly review this heuristic solution procedure.

(A) Christofides et al. Algorithm

Phase I (Graph transformation)

- Step 1. Let $G_{\mathbb{R}} = (V_{\mathbb{R}}, E_{\mathbb{R}})$ be the subnetwork consisting of the required edges, $E_{\mathbb{R}}$, and the corresponding set of nodes, $V_{\mathbb{R}}$. Transform $G_{\mathbb{R}}$ into a complete network by adding an edge between every pair of nodes in $G_{\mathbb{R}}$. Let $E_{\mathbb{A}}$ be the set of artificial edges generated from this transformation. The cost of an edge (i, j)in $E_{\mathbb{A}}$ is defined as c_{ij} =the shortest path length between the nodes *i* and *j* from the original network. Call the resulting network $G_{\mathbb{R}C_0} = (V_{\mathbb{R}}, E_{\mathbb{R}} \cup E_{\mathbb{A}})$.
- Step 2. Simplify G_{RC_0} by eliminating: (1) all edges $(i, j) \in E_A$ for which the edge cost $c_{ij} = c_{ik} + c_{kj}$ for some k, and (2) one of the two edges in parallel if they both have the same cost. Call the resulting network G_{RC} .

Phase II (Minimal spanning tree)

- Step 1. Let $\{C_1, C_2, \ldots, C_r\}$ be the set of components from G_R , and G_C the condensed graph obtained from G_R by treating each component as a node. An edge (i, j) of G_C exists if there exists an edge $(x, y) \in G_{RC}$ with $x \in C_i$, $y \in C_j$. Define the cost of an edge $(i, j) \in G_C$ as $d(i, j) = d(C_i, C_j) = \min_{x,y} \{d(x, y) u_x u_y\}$, where u_x, u_y are multipliers.
- Step 2. Apply the minimal spanning tree (MST) algorithm over $G_{\rm C}$. Let $E_{\rm T}$ be the set of edges from the MST solution.

Phase III (Minimal-cost matching)

Solve the CPP over $G_{\mathbf{R}} \cup E_{\mathbf{T}}$ by applying the minimal-cost matching algorithm [12] to obtain an Eulerian network. Let $E_{\mathbf{M}}$ be the set of edges from the matching solution. Then, the resulting network $G_{\mathbf{R}} \cup E_{\mathbf{T}} \cup E_{\mathbf{M}}$ is the desired RPP solution.

For the multipliers, u_x and y_y , Christofides *et al.* [2] considered $u_i = -\eta$ (deg(*i*)-2), where deg(*i*) is the degree of node *i* from the original network *G*. This algorithm requires the application of the minimal-cost matching algorithm, which is of $O(|V|^3)$, where |V| = the number of nodes from the original network *G*. Therefore, the complexity of Christofides *et al.* algorithm is $O(|V|^3)$. In the case where the underlying network satisfying the *triangular inequality* property, Benavent *et al.* [4] showed that the performance of this algorithm, in the worst case, has a bound of 3/2. That is (Christofides *et al.* Solution)/(Optimal Solution) $\leq 3/2$. In the following example, we show that this bound is reachable.

Example 1. Consider the RPP network depicted in Fig. 1(a) with nine nodes forming three components, $\{(1, 3), (2, 3)\}$, $\{(4, 5), (5, 6)\}$, and $\{(7, 8), (8, 9)\}$. Christofides *et al.*'s algorithm first performed the transformation (Phase I) converting the original network into one (G_{RC}) shown in

Fig. 1. (a) The original RPP network in Example 1. (b) The transformed network. (c) The resulting network after applying the MST algorithm. (d) The resulting network after applying the matching algorithm. (e) The optimal RPP solution.

Table 1. Parameter analysis of Christofides et al. algorithm (10 problems). (Underlines indicate the best solution)

Problem number	V	$ V_{Ge} $	E	$ E_{\mathbf{R}} $	$\eta = 1$	$\eta = 2$	$\eta = 3$	$\eta = 4$	$\eta = 5$	$\eta = 6$
1	29	3	79	43	<u>510</u>	<u>510</u>	526	526	526	526
2	43	4	203	42	471	475	475	475	482	482
3	25	5	84	24	320	328	327	341	341	341
4	37	6	79	38	$\frac{320}{421}$ $\frac{359}{359}$	<u>421</u>	425	425	425	435
5	33	7	99	33	359	359	372	371	371	385
6	25	8	75	16	284	$\frac{359}{301}$	301	301	295	295
7	39	9	85	31	418	<u>415</u>	439	439	449	449
8	46	10	199	37	501	500	516	516	516	516
9	49	11	140	35	433	445	447	466	466	466
10	43	12	117	32	406	422	428	427	431	431

Fig. 1(b). The algorithm then proceeded with applying the minimal spanning tree algorithm (Phase II) generating artificial edges $E_T = \{(3, 8), (5, 8)\}$. The resulting network is displayed in Fig. 1(c). The Christofides *et al.* algorithm terminated with applying the minimal-cost matching algorithm (Phase III), generating artificial edges $E_M = \{(1, 3), (4, 5), (2, 9), (6, 7)\}$. The resulting network, shown in Fig. 1(d), constitutes an RPP solution with a total cost of 18. We note that the same solution can be obtained for any chosen multiplier η , $\eta > 0$. Since the optimal solution for this problem (see Fig. 1e), has a total cost of 12, we have (Christofides *et al.* Solution)/(Optimal Solution) = 3/2.

We experimented with the Christofides *et al.* algorithm on 10 sample problems, where η was initially set to $\eta = 1, 2, 3, 4$, and 5. The results, displayed in Table 1, indicated that the solution obtained on these problems achieved best problem solutions for $\eta = 1$ and 2, and that the solution

values increased for other η values. Therefore, we limited the choice of multipliers for this algorithm to $\eta = 1$ and 2.

3. NEW ALGORITHMS

We point out that the performance of the Christofides *et al.* algorithm can be greatly affected by the values of the chosen multipliers, η . In addition, we feel that Phase I of the algorithm (graph transformation) contributed insignificantly in obtaining efficient solutions although the transformation simplifies the problem structure in formulating the RPP. In attempting to improve the solution, we propose the following modifications. The modified approach considers the new distance $d(C_i, C_j) = \min_{x,y} \{ \operatorname{spl}(x, y) | x \in C_i, y \in C_j \} + \lambda$ with a penalty λ (rather than $d(C_i, C_j)$ $= \min_{x,y} \{ d(x, y) - u_x - u_y \} \}$ added in defining the distances in the condensed network G_C , where $\operatorname{spl}(x, y)$ is the length of the shortest path between node x and node y from the original graph G. Obviously, different penalty values generate different RPP solutions. Therefore, we can choose a set of λ values to generate some RPP solutions, then select the best among all as the solution from this approach. The modified approach can be described as follows.

(B) Modified Christofides et al. Algorithm

Phase I (Minimal spanning tree)

- Step 1. Define the distance between every pair of nodes $i, j \in G_C$ as $d(i, j) = d(C_i, C_j) = \min_{x,y} \{ spl(x, y) | x \in C_i, y \in C_j \} + \lambda$, with λ set to $\lambda_0 = 0$ initially. Apply the minimal spanning tree (MST) algorithm over G_C . Let $E_{T_0}(\lambda)$ be the set of edges from the minimal spanning tree solution.
- Step 2. Simplify $E_{T_0}(\lambda)$ by eliminating all the duplicated copies of the edges that are in parallel. Call the resulting set of edges $E_T(\lambda)$.

Phase II (Minimal-cost matching)

Solve the CPP over $G_{\mathbf{R}} \cup E_{\mathbf{T}}(\lambda)$ by applying the minimal-cost matching algorithm [12] to obtain an Eulerian network. A postman tour then can be constructed from this Eulerian network. Let $E_{\mathbf{M}}(\lambda)$ be the set of edges from the matching solution. Call the resulting RPP solution $G(\lambda) = G_{\mathbf{R}} \cup E_{\mathbf{T}}(\lambda) \cup E_{\mathbf{M}}(\lambda)$.

Phase III (Iterations with varied parameter values)

Repeat Phases I and II for a set of chosen values $\{\lambda_1, \lambda_2, ..., \lambda_k\}$ for the penalty parameter λ , generating a set of RPP solutions $\{G(\lambda_i)\}$, i=0, 1, 2, ..., k. Select the best (with the smallest value) among all as the solution from this approach.

Example 2. Consider the RPP network depicted in Fig. 2(a) with seven nodes forming three components, $\{(1, 2), (2, 3)\}$, $\{(4, 5)\}$, and $\{(6, 7)\}$. It is straightforward to verify that the modified approach obtains solutions with values equaling 30, 29, 26, 26 for $\lambda = 0$, 1, 2, and 3, respectively (see Fig. 2b, c, d, and e). Therefore, the solution for the modified approach is 26, which is optimal.

We note that for the RPP described in Example 1, the Christofides *et al.* algorithm obtained a solution with a value (18) that is 1.5 times that (12) of the problem optimal solution. But, if we apply the modified approach with the penalty parameter λ set to $\lambda = 0$, then the optimal solution, which has a value of 12, can be obtained.

It should be noted that in applying the minimal spanning tree algorithm to connect the components in G_c , the penalty parameter, λ , is added to the distance $d(i, j) = d(C_i, C_j)$ only for those (i, j) in $E_T(\lambda_0)$. We experimented with the algorithm on the same 10 test problems described previously using seven values of λ , which were initially set to $\lambda = 0, 1, 2, 3, 4, 5$, and 6. The results are displayed in Table 2. It appeared that the solution obtained on these problems achieved best problem solutions for $\lambda = 0, 1, 2, and 3$, and that solution values increased when λ exceeded the range of [0, 3]. Therefore, we limited the choice of penalty values for this algorithm to $\lambda = 0, 1, 2, and 3$.

(C) Reverse Christofides et al. Algorithm

The approaches by reversing the steps (or phases) of the existing solution procedures have been considered in developing new solution strategies [13-15]. In some cases, the reverse approaches

Fig. 2. (a) The original RPP network in Example 2. (b) The modified approach solution for $\lambda = 0$. (c) The modified approach solution for $\lambda = 1$. (d) The modified approach solution for $\lambda = 2$. (e) The modified approach solution for $\lambda = 3$.

Table 2. Parameter analysis of the modified Christofides et al. algorithm (10 problems). (Underlines indicate the best solution)

Problem number	V	$ V_{\rm Ge} $	<i>E</i>	E _R	$\lambda = 0$	λ=1	λ=2	$\lambda = 3$	<i>λ</i> = 4	$\lambda = 5$	i = 6
1	29	3	79	42	510	510	<u>508</u>	508	510	510	510
2	43	4	203	42	467	467	467	<u>508</u> 471	471	471	471
3	25	5	84	24	$\frac{467}{319}$	467 319	$\frac{467}{315}$	319	319	319	319
4	37	6	79	38	419	411	411	<u>411</u>	417	419	419
5	33	7	99	33	349	$\frac{411}{345}$	$\frac{411}{345}\\\frac{284}{409}$	345	349	349	349
6	25	8	75	16	294	293	284	292	294	294	294
7	39	9	85	31	437	<u>407</u>	409	409	409	409	409
8	46	10	199	37	501	496	498	501	501	501	501
9	49	11	140	35	430	496 430	429	421	420	430	430
10	43	12	117	32	404	402	404	404	404	404	404

perform remarkably well. Recall that the Christofides *et al.* algorithm consists of two main segments, the minimal spanning tree and the minimal-cost matching. The reverse approach of the Christofides *et al.* algorithm, in this case, first applies the minimal-cost matching, then the minimal spanning tree algorithms.

Phase I (Minimal-cost matching)

Define the distance between every pair of nodes $i, j \in G_R$ as $d(i, j) = \min_{x,y} \{ spl(x, y) \} + \lambda$, with λ set to $\lambda_0 = 0$ initially, where spl(x, y) is the length of the shortest path between node x and node y from the original graph G. Apply the minimal-cost matching algorithm [12] over G_R . Let $E_M(\lambda)$ be the set of edges from the matching solution.

Problem number	V	$ V_{\rm Gc} $	<i>E</i>	E _R	$\lambda = 0$	$\lambda = 1$	$\lambda = 2$	$\lambda = 3$	$\lambda = 4$	λ = 5
1	29	3	79	43	510	514	514	514	514	514
2	43	4	203	42	469	479	479	479	479	479
3	25	5	84	24	315	332	332	332	332	332
4	37	6	79	38	413	460	460	460	460	460
5	33	7	99	33	315	375	375	375	375	375
6	25	8	75	16	294	322	322	322	322	322
7	39	9	85	31	412	435	435	435	435	435
8	46	10	199	37	503	538	538	538	538	538
9	49	11	140	35	427	439	439	439	439	439
10	43	12	117	32	403	447	447	447	447	447

Table 3. Parameter analysis of the reverse Christofides et al. algorithm (10 problems). (Underlines indicate the best solution)

Phase II (Minimal spanning tree).

- Step 1. Apply the minimal spanning tree algorithm over the condensed network obtained from $G_{\rm R} \cup E_{\rm M}(\lambda)$ by treating each component as a single point. Let $E_{\rm T_0}(\lambda)$ be the set of edges from the minimal spanning tree solution.
- **Step 2.** Remove all duplicated edges from $E_{T_0}(\lambda)$, and let $E_T(\lambda)$ be the resulting set of edges (after removing duplicated edges). Then, $G_R \cup E_M(\lambda) \cup E_T(\lambda) \cup E_T(\lambda)$ is the desired RPP solution.

Phase III (Iterations with varied parameter values).

Repeat Phases I and II for a set of chosen values $\{\lambda_1, \lambda_2, ..., \lambda_k\}$ for the penalty parameter λ , generating a set of RPP solutions $\{G(\lambda_i)\}, i=0, 1, 2, ..., k$. Select the best (with the smallest value) among all as the solution from this approach.

We note that in applying the minimal-cost matching algorithm (Phase I) to obtain an even network, the penalty parameter, λ , is added to the distance d(i, j) only for those (i, j) in $E_M(\lambda_0)$. The penalty values, λ , for the reverse approach are automatically set to $\lambda = 0, 1, 2, \text{ and } 3$ initially (same as that for the original algorithm). The results of our preliminary experiments (see Table 3) indicated that the reverse approach achieved best problem solutions (10 out of 10 problems) for $\lambda = 0$. We therefore set the choice of parameter values of the reverse approach to $\lambda = 0$.

4. COMPUTATIONAL COMPARISONS

For the purpose of testing the proposed new solution procedures (modified and reverse approaches) and comparing them with the Christofides *et al.* algorithm, we generate 10 sets, a total of 200 problems. These problems are generated by randomly linking a pair of nodes, forming networks with various numbers of components. Their sizes range from three components, 15 nodes, 31 edges with 11 required edges, to 12 components, 52 nodes, 266 edges with 61 required edges. The edge lengths of these problems are also randomly generated, ranging from 1 to 20. These test problems are described in the following with |V| representing the number of nodes from the original network, $|V_{Gc}|$ representing the number of components, |E| representing the number of edges, and $|E_R|$ representing the number of required edges.

Set A: 20 problems; $|V_{Gc}| = 3$, $15 \le |V| \le 40$, $11 \le |E_R| \le 47$, $31 \le |E| \le 157$; Set B: 20 problems; $|V_{Gc}| = 4$, $24 \le |V| \le 42$, $25 \le |E_R| \le 49$, $40 \le |E| \le 203$; Set C: 20 problems; $|V_{Gc}| = 5$, $24 \le |V| \le 43$, $19 \le |E_R| \le 48$, $68 \le |E| \le 189$; Set D: 20 problems; $|V_{Gc}| = 6$, $22 \le |V| \le 45$, $18 \le |E_R| \le 46$, $46 \le |E| \le 170$; Set E: 20 problems; $|V_{Gc}| = 7$, $21 \le |V| \le 50$, $15 \le |E_R| \le 61$, $51 \le |E| \le 119$; Set F: 20 problems; $|V_{Gc}| = 8$, $25 \le |V| \le 49$, $16 \le |E_R| \le 49$, $59 \le |E| \le 178$; Set G: 20 problems; $|V_{Gc}| = 9$, $26 \le |V| \le 49$, $16 \le |E_R| \le 47$, $51 \le |E| \le 266$; Set H: 20 problems; $|V_{Gc}| = 10$, $31 \le |V| \le 47$, $17 \le |E_R| \le 44$, $60 \le |E| \le 211$; Set I: 20 problems; $|V_{Gc}| = 11$, $29 \le |V| \le 52$, $16 \le |E_R| \le 38$, $48 \le |E| \le 148$; Set J: 20 problems; $|V_{Gc}| = 12$, $29 \le |V| \le 48$, $17 \le |E_R| \le 41$, $63 \le |E| \le 211$. Table 4. Number of problems receiving the best solution

Problem set	Number of problems	V	E	E _R	Christofides algorithm	Modified Christofides	Reverse Christofides
A	20	15-40	31-157	11-47	6	19	10
В	20	24-43	40-203	25-49	2	13	10
С	20	24-43	68-189	19-48	2	11	13
D	20	22-45	46-170	18-46	2	12	9
E	20	21-50	51-199	15-61	2	12	8
F	20	25-49	59-178	16-49	2	12	11
G	20	26-49	51-266	16-47	1	11	11
н	20	31-47	60-211	17-44	1	16	6
I	20	29-52	48-148	16-38	1	13	6
J	20	29-48	63-211	17-41	2	14	6

Table 5. Average percentage above the problem's lower bound

Problem set	Number of problems	V	E	$ E_{R} $	Christofides algorithm	Modified Christofides	Reverse Christofides
A	20	15-40	31-157	11-47	2.48	1.54	2.79
В	20	24-43	40-203	25-49	2.68	2.01	2.41
C	20	24-43	68-189	19-48	3.37	2.02	1.99
D	20	22-45	46-170	18-46	3.76	2.34	2.79
E	20	21-50	51-199	15-61	5.77	4.14	5.55
F	20	25-49	59-178	16-49	4.66	3.51	3.39
G	20	26-49	51-266	16-47	6.22	4.87	5.70
Н	20	31-47	60-211	17-44	8.44	5.74	7.42
1	20	29-52	48-148	16-38	9.10	6.87	11.11
J	20	29-48	63-211	17-41	5.78	3.72	5.77

Table 6. The worst solution in terms of percentage above the lower bound

Problem set	Number of problems	V	<i>E</i>	E _R	Christofides algorithm	Modified Christofides	Reverse Christofides
A	20	15-40	31-157	11-47	14.38	10.18	14.52
В	20	24-43	40-203	25-49	7.74	7.78	11.27
С	20	24 43	68 189	19-48	6.87	5.68	6.44
D	20	22 45	46 170	18~46	10.11	7.87	6.91
E	20	21-50	51-199	15-61	21.05	17.37	34.55
F	20	25-49	59-178	16-49	8.05	9.04	12.08
G	20	26-49	51-266	16-47	15.79	15.33	21.33
Н	20	31-47	60-211	17-44	30.38	22.69	37.69
1	20	29-52	48-148	16-38	22.01	20.71	51.18
J	20	29-48	63-211	17-41	13.64	14.94	27.27

We ran through these 10 sets, 200 test problems for the three algorithms original, modified, and the reverse approaches. We compared their performance with respect to (1) number of problems receiving the best solution, (2) the average percentage above the problem lower bound, and (3) the worst solution in terms of percentage above the problem lower bound. The results on the 10 sets of test problems are displayed in Tables 4, 5, and 6. Table 7 summarizes the performance comparisons of the three algorithms on the 200 test problems, including (4) average rank among the three algorithms, and (5) the number of problems achieving the problem lower bound (hence the solution must be optimal). We note that the lower bounds, used as a convenient reference point for assessing the accuracy of the heuristic solutions, were obtained from solving the CPP over the subnetwork $G_{\rm R}$. In comparing the modified and the original approaches, the test results showed that:

(1) The modified approach improved the original algorithm (excluding ties) for 14, 16, 16, 17, 16, 16, 16, 19, 18, 17 problems (out of 20) respectively in the 10 sets of test problems (an average of 82.5%);

(2) The modified approach improved the original algorithm for 1.55% (on the average) in terms of percentage above the problem lower bound;

(3) The modified approach received 133 best solutions (including at least 11 optimal solutions) out of 200 test problems (an average of 66.5%). Compare this with 21 best solutions (including

Table 7. Performance comparisons of the three algorithms (200 problems)

	Christofides algorithm	Modified Christofides	Reverse Christofides
Average % above the lower bound	5.23	3.68	4.89
Average rank among the three algorithms	2.43	1.38	1.74
Number of problems receiving the best solutions Worst solution among 200 problems in terms	21	133	90
of % above the lower bound	30.38	22.69	51.18
Number of problems achieving the lower bound	2	11	6

Table 8. Run time comparisons (in CPU seconds) of the three algorithms

Problem set	Number of problems	V	<i>E</i>	E _R	Christofides algorithm	Modified Christofides	Reverse Christofides
A	20	15-40	31-157	11-47	0.086	0.112	0.060
В	20	24-43	40-203	25-49	0.088	0.121	0.066
С	20	24-43	68-189	19-48	0.103	0.132	0.077
D	20	22-45	46-170	18-46	0.099	0.155	0.085
E	20	21-50	51-199	15-61	0.156	0.225	0.116
F	20	25-49	59-178	16-49	0.149	0.221	0.108
G	20	26-49	51-266	16-47	0.167	0.258	0.119
Н	20	31-47	60-211	17-44	0.168	0.255	0.134
I	20	29-52	48-148	16-38	0.174	0.276	0.131
J	20	29-48	63-211	17-41	0.173	0.303	0.145

two optimal solutions) for the original algorithm (an average of 10.5%), the improvement is significant;

(4) The modified approach improved the original algorithm for 7.69% with respect to the worst solution in terms of percentage above the problem lower bound.

For the comparison of the reverse and the original approaches, we note that:

(1) The reverse approach improved the original algorithm (excluding ties) for 10, 17, 15, 16, 14, 17, 15, 14, 13, 12 problems (out of 20) respectively in the 10 sets of test problems (an average of 71.5%);

(2) The reverse approach slightly improved the original algorithm 0.34% (on the average) in terms of percentage above the problem lower bound;

(3) The reverse approach received 90 best solutions (including at least six optimal solutions) out of 200 test problems (an average of 45.0%). Compare this with 21 best solutions (including two optimal solutions) for the original algorithm (an average of 10.5%), the improvement is also significant;

(4) The performance of the reverse approach is considered to be worse than that of the original algorithm with respect to the worst solution in terms of percentage above the problem lower bound.

In our testing, the run times for problems of the same size are very much the same. Table 8 displayed the average run time required for the three algorithms in CPU seconds on the PC 486 DX-33. We note that all the three algorithm run very fast. For the 200 sample problems we tested (some networks have 50 nodes, 199 edges with 61 required edges), we have found none of them required more than 0.3 CPU seconds.

None of the three algorithms seem to work well with respect to the worst solution in terms of percentage above the lower bound (approximately 30%, 23%, and 51% respectively for the three algorithms). This is partially due to the fact that our lower bounds were obtained from solving the standard CPP over the subnetwork (G_R) derived from the original one. This may cause the lower bound to perform poorly in some cases. In comparing the modified and the reverse approaches, it appeared that the performance of the reverse approach is worse than that of the modified algorithm. We note, however, that for those problems in which the reverse approach outperformed the modified algorithm, the networks all have a relatively large proportion of odd-degree nodes. For further testing, we took additional 50 problems. These problems all have a large number of odd-degree nodes (exceeding 50%) with sizes ranging from three components, 16 nodes, 40 edges

Problem number	<i> V</i>	E	E _R	Lower bound	Christofides algorithm	Modified Christofides	Reverse Christofides
A'1	26	56	28	388	402 399 399	403 399 398 399	
A'2	26	55	24	323	333 333 335	329 329 329 329	329
A 2 A'3	18	40	23	274	276 286 286	278 276 276 276 276	$\frac{329}{278}$
	28	72	23	518	<u>527</u> 527 527	525 525 525 525	524
A'4	28 16	48	20	256	<u>262</u> 278 278		262
A'5						264 <u>262</u> <u>262</u> <u>262</u>	
B '1	28	54	20	293	<u>323</u> 329 329	$\frac{323}{122}$ $\frac{323}{122}$ $\frac{323}{122}$ $\frac{323}{122}$	323
B'2	29	130	46	443	455 455 455	453 452 453 453	451
B'3	32	63	29	438	478 478 478	470 469 469 470	468
B'4	26	105	25	294	298 298 298	304 298 302 300	<u>296</u>
B'5	34	101	34	507	511 511 522	512 510 510 <u>509</u>	515
C'1	27	175	34	438	447 448 448	440 439 439 439	440
C'2	29	120	27	389	397 401 401	397 397 397 397	<u>397</u>
C'3	30	150	30	383	390 393 393	390 390 390 390	385
C'4	32	115	24	284	292 288 288	289 289 289 289	284
C'5	28	101	24	300	323 330 330	305 304 305 305	302
D'1	38	105	32	443	453 457 456	456 455 456 456	453
D'2	28	97	29	390	404 398 398	404 398 404 402	400
D'3	32	138	22	287	291 291 303	294 294 294 294	293
D'4	41	121	40	624	<u>644</u> 654 654	643 643 639 638	636
D'5	38	148	49	581	584 589 588	583 583 583 583	583
E'1	41	198	44	551	569 569 579	561 561 561 561	557
E 1 E'2	40	198	51	580	597 597 597		588
						<u>585</u> <u>585</u> <u>585</u> <u>585</u>	
E'3	35	168	48	527	555 570 572	543 542 542 543	$\frac{541}{420}$
E'4 E'5	42 41	248 232	43 39	414 450	424 424 424 458 464 464	$\frac{420}{455}$ $\frac{420}{455}$ $\frac{420}{455}$ $\frac{420}{455}$	420 454
							20.01
F'1	41	252	48	566	577 580 580	598 577 579 579	574
F'2	31	105	23	327	343 343 358	346 338 335 338	329
F'3	49	188	47	622	637 637 640	638 637 638 638	632
F'4	48	224	44	466	479 490 490	<u>472 472 472 472</u>	476
F′5	35	158	28	295	307 310 315	307 305 307 307	<u>303</u>
G′1	47	168	35	444	462 462 462	457 457 457 457	<u>452</u>
G'2	45	175	40	508	529 524 524	542 527 527 527	514
G'3	37	211	32	407	423 428 428	411 <u>41</u> 1 411 411	413
G'4	42	103	37	442	478 478 488	470 466 468 470	462
G'5	45	186	27	251	<u>262</u> 272 272	265 264 265 265	263
H'1	44	207	31	399	415 415 415	408 408 408 408	403
H'2	47	126	34	431	466 466 470	461 460 456 461	449
H'3	44	112	28	324	364 364 364	352 352 352 352	360
H'4	34	85	24	274	303 317 317	$\frac{332}{291}$ $\frac{332}{288}$ $\frac{332}{291}$ $\frac{332}{291}$	286
H'5	48	133	33	436	441 452 457	445 437 445 445	476
I'1	42	126	31	473	497 515 507	515 498 506 506	501
1'2	42	81	22	345	<u>497</u> 313 307 397 397 415	397 393 397 397	391
1'3	49	189	30	401	410 421 421	405 405 405 405	405
1'4	37	105	-30	316	335 366 364	$\frac{403}{346}$ $\frac{403}{337}$ $\frac{403}{337}$ $\frac{403}{346}$	$\frac{403}{324}$
14 1′5	40	103	31	394	405 409 409	414 404 404 404	$\frac{324}{408}$
J'1	46	146	35	446			
		146	35 21	446 304	461 481 486	$\frac{460}{314} \frac{460}{311} \frac{460}{314} \frac{460}{314}$	$\frac{460}{304}$
J'2	35				323 325 315		
J'3	46	315	31	382	390 390 396	385 383 388 388	396
J'4	33	68	19	286	314 331 331	317 341 317 317	$\frac{302}{400}$
J'5	48	138	41	472	491 495 505	<u>489</u> <u>489</u> <u>489</u> <u>489</u>	490

Table 9. Solution values generated by the three algorithms (50 problems). (Underlines indicate the best solution)

with 20 required edges, to 12 components, 49 nodes, 315 edges with 51 required edges. These problems are described in the following:

```
Set A': 5 problems; |V_{Gc}| = 3, 16 \le |V| \le 28, 20 \le |E_R| \le 28, 40 \le |E| \le 72;
Set B': 5 problems; |V_{Gc}| = 4, 26 \le |V| \le 34, 30 \le |E_R| \le 46, 54 \le |E| \le 130;
Set C': 5 problems; |V_{Gc}| = 5, 27 \le |V| \le 32, 24 \le |E_R| \le 34, 101 \le |E| \le 175;
Set D': 5 problems; |V_{Gc}| = 6, 28 \le |V| \le 41, 22 \le |E_R| \le 49, 97 \le |E| \le 148;
Set E': 5 problems; |V_{Gc}| = 7, 35 \le |V| \le 42, 39 \le |E_R| \le 51, 168 \le |E| \le 248;
Set F': 5 problems; |V_{Gc}| = 8, 31 \le |V| \le 49, 23 \le |E_R| \le 48, 105 \le |E| \le 222;
Set G': 5 problems; |V_{Gc}| = 9, 37 \le |V| \le 47, 27 \le |E_R| \le 40, 103 \le |E| \le 211;
Set H': 5 problems; |V_{Gc}| = 10, 34 \le |V| \le 48, 24 \le |E_R| \le 34, 85 \le |E| \le 207;
Set I': 5 problems; |V_{Gc}| = 11, 37 \le |V| \le 49, 18 \le |E_R| \le 31, 81 \le |E| \le 189;
Set J': 5 problems; |V_{Gc}| = 12, 33 \le |V| \le 48, 19 \le |E_R| \le 41, 68 \le |E| \le 315.
```

Table 10. Performance comparisons of the three algorithms (50 problems)

	Christofides algorithm	Modified Christofides	Reverse Christofides
Average % above the lower bound	4.12	3.31	3.07
Average rank among the three algorithms	2.34	1.70	1.38
Number of problems receiving the best solutions Worst solution among 50 problems in terms	8	20	36
of % above the lower bound	15.07	13.91	13.33
Number of problems achieving the lower bound	0	0	2

The solutions of these 50 problems generated by the three algorithms are displayed in Table 9. Comparisons among the three algorithms in terms of average percentage above the lower bound, average rank, number of problems receiving the best solutions, worst solution in terms of percentage above the lower bound, and number of problems achieving the problem lower bound (hence the solution must be optimal), is summarized in Table 10. The results indicated that (1) the modified and reverse approaches once again outperformed the original algorithm, and (2) the reverse approach outperformed the modified algorithm.

5. CONCLUSIONS

In this paper, we considered an interesting generalization of the well-known Chinese postman problem, called the Rural Postman Problem (RPP). We first reviewed the heuristic solution procedure introduced by Christofides *et al.* [2], then developed two new algorithms to solve the problem approximately. The proposed two new procedures run very fast, and work well in general. We have tested them on many problems which were arbitrarily generated, and compared with the existing solution procedure (the Christofides *et al.* algorithm). The results indicated that the proposed two new approaches indeed improved the existing algorithm. The two new algorithms were also compared with each other, and we found that for problems with near-odd (a large proportion of odd-degree nodes) network structure, the reverse approach outperformed the modified algorithm.

REFERENCES

- 1. C. S. Orloff, A fundamental problem in vehicle routing. Networks 4, 35-64 (1974).
- 2. N. Christofides, V. Campos, A. Corberan and E. Mota, An algorithm for the rural postman problem. Imperial College Report IC-OR (1981).
- 3. N. Christofides, V. Campos, A. Corberan and E. Mota, An algorithm for the rural postman problem on a directed graph. *Mathl Programming Study* 26, 155-166 (1986).
- E. Benavent, V. Campos, A. Corberan and E. Mota, Analisis de heuristicos para el problema del cartero rural. Trabajos De Estadística Y De Investigacion Operativa 36, 27-38 (1985).
- 5. L. Levy and L. Bodin, Scheduling in the postal carriers for the Unites States postal service: an application of arc partitioning and routing. *Vehicle Routing: Methods and Studies*, pp. 359-394. North Holland, Amsterdam (1988).
- 6. J. N. Holt and A. M. Watts, Vehicle routing and scheduling in the newspaper industry. Vehicle Routing: Methods and Studies, pp. 347-358. North Holland, Amsterdam (1988).
- 7. E. Beltrami and L. Bodin, Networks and vehicle routing for municipal waste collection. Networks 4, 65-94 (1974).
- 8. J. Desrosiers, J. A. Ferland, J. M. Rousseau, G. Lapalme and L. Chapleau, An overview of a school busing system. Scientific Management of Transport Systems, pp. 235–243. North Holland, Amsterdam (1987).
- 9. R. W. Eglese and L. Y. O. Li, Efficient routeing for winter gritting. J. Opl Res. Soc. 43, 1031-1034 (1992).
- 10. R. W. Eglese, Routeing winter gritting vehicles. Discr. appl. Math., to appear.
- 11. H. I. Stern and M. Dror, Routing electric meter readers. Computers and Ops Res. 6, 209-223 (1970).
- 12. J. Edmonds and E. Johnson, Matching, Euler tours and the Chinese postman problem. Math. Programming 4, 88-124 (1973).
- G. N. Frederickson, Approximation algorithms for some postman problems. J. Assoc. Computing Machinery 26, 538-554 (1979).
- 14. W. L. Pearn and M. L. Li, Algorithms for the windy postman problem. Computers Ops Res. 21, 641-651 (1994).
- W. L. Pearn and C. M. Liu, Algorithms for the Chinese postman problem on mixed networks. Computers Ops Res. 22, 479-489 (1995).