
ystolic priority queue for fast
ecoding of convolutional codes

H.-C. KUO
C . 4 . Wei

indexing terms: Convolutional decoding, Metric searching, Sequential decoding, Systolic arrays, Trellis modulation

Abstract: The operating speed of a sequential
decoder with stack algorithm is usually limited by
the time to search the best node for further exten-
sion. This problem can be completely alleviated by
using the systolic priority queue to replace the
stack memory. However, the systolic priority
queues developed previously are accessible only in
the cases when the number of inputs processed is
small. This is because the complexity of a queue
grows up quickly as the volume of data flowing
through it increases. Since the largest amount of
data flowing through a systolic priority queue is
equal to the number of inputs to this queue, the
systolic priority queue is not suitable for a system
with many inputs. A modified version of pre-
viously developed circuits is proposed. The
number of transmission gates required in this
circuit is proportional to 3N instead of N 2 , where
N is the number of inputs. And the total number
of control signals is proportional to 3N2 instead
of N 3 . But the number of comparators required is
proportional to C;", as before. This modified
circuit can be used in cases where the number of
inputs is small (N < 8). A new algorithm for the
multiple-inputs systolic priority queue (MISPQ) is
proposed. By using this algorithm, a MISPQ may
be implemented with several smaller queues, each
is used to process a part of data in the MISPQ.
Since the volume of data flowing through each
queue is small, these queues will be simpler.
However, some additional circuits should be used
for the interactions between queues. A circuit for
implementing this algorithm is presented and its
complexity is analysed. The number of transmis-
sion gates for the MISPQ is proportional to 3N,
the number of control signals is proportional to
(3N2/2), and the number of comparators is pro-
portional to 4C;i2+1. Thus this new architecture
is feasible for large N (e.g. N 3 8).

1 Introduction

Systolic priority queue [l, 21 is a circuit developed for
searching the best metric from a large set of metrics. The
fast and constant searching speed makes the systolic

~ ~~

0 IEE, 1995
Paper 21636 (ElO), first received 12th September 1994 and in revised
form 23rd June 1995
The authors are with the Institute of Electronics and Center for Tele-
communications Research, National Chiao-Tung University, Hsinchu,
Taiwan, Republic of China

282

priority queue useful in some applications. An important
example is that the systolic priority queue can be used to
replace the stacks in the stack algorithm for sequential
decoding [3-81. With such replacement, the sorting
problem in the sequential decoding can be alleviated
completely.

The linear systolic priority queue (Fig. 1) is used in a
sequential decoder by Chang and Yao [4]. In every oper-
ating cycle, one input is sent into this queue and one

insertlextract

Fig. 1 Architecture for linear systolic priority queue

output is extracted from it. Recently, Lavoie, Haccoun
and Savaria [6] have developed a parallel-entry systolic
priority queue (Fig. 2), which can accept two input

insert

insert
...

Fig. 2 Architecture for PESPQ

metrics at a time, and the best metric is extracted out in
the same cycle. The parallel-entry systolic priority queue
has been successfully applied to the sequential decoding
of rate l /n convolutional codes or high-rate puncture
convolutional codes 161. These algorithms for systolic
priority queues are well defined and can be easily
extended to the N-input case. However, the circuit com-
plexity grows quickly as N increases, because the
required number of transmission gates is proportional
to N 2 and the number of control signal is proportional to
N 3 .

In this paper, a modified circuit for the systolic pri-
ority queue is proposed. By restricting the possible desti-
nations for metric in each processor during the metrics
transmission operations, the circuit can be simplified
so that the number of transmission gates required is
proportional to 3N and the number of control signals is
proportional to 3N2. This modified circuit is suitable for
cases when N are small (N < 8). To cope with cases with
larger number of inputs, a new algorithm and the corre-
sponding architecture are then proposed for a multiple
inputs systolic priority queue (MISPQ). According to this
algorithm, a MISPQ consists of several smaller queues
with each queue processing a part of the data. Such an
arrangement will make the new MISPQ (type I1 MISPQ)

I E E Proc -Circuits Deuices Syst , Vol 142, No. 5, October 1995

simpler than other systolic priority queue when N is
large. For example, the number of transmission gates is
proportional to 3N and the number of control signals
proportional to (3N2/2) . This new algorithm is suitable
for fast sequential decoding of high-rate convolutional
codes or trellis modulation codes.

2 Operations of multiple inputs systolic priority
queues

In [3, 41 Chang and Yao used an array of processors to
replace the stack memory required in the stack sequential
decoder. These processors, called a systolic priority
queue, are properly arranged so as to deliver the best
metric quickly within a constant time interval. Since the
operations of a systolic priority queue are completed
simultaneously when the metrics travel through the pro-
cessors in the queue, the time to get the best metric is
always constant, no matter how many processors are
used. This method can efficiently improve the sorting
speed for searching best metric; otherwise the speed may
become quite slow if the size of memory used is large.
The implementations of the systolic priority queue with
RAM or registers have been discussed in [3] . However,
the combination of control signals and the distribution of
transmission paths into each processor is not as easy as
those on VLSI, for example, the following PESPQ.

Lavoie, Haccoun and Savaria [S , 61 further developed
an advanced architecture called the parallel-entry systolic
priority queue. Based on the operating principles and
some special circuit design, this new scheme of systolic
priority queue can complete all operations in a single
clock cycle. The parallel-entry systolic priority queue is
shown in Fig. 2. Following these research results, a
multiple-input systolic priority queue is represented in
Fig. 3, which is referred to as type I MISPQ. From Figs.

1 - 1 I - 2 I = 3 I = 4

. .

input 8
'2,N '3,N

Fig. 3 Architecture for type I MISPQ

4 to 6, the operations of type I MISPQ are demonstrated
step by step, where only the required connection lines are
shown. These Figures are used only for illustration.
When realising them with VLSI, the connection lines will
be more complicated, as shown in the following Section.

In the VLSI implementation, each column in Fig. 3
may be named as a slice [SI. Processors in each slice
belong to a group. The operations of systolic priority
queue are usually considered slice by slice. In the follow-
ing, the nomenclature slice is used frequently for ease of
describing the operations. Operations of type I MISPQ
are described in the following paragraph. The operations
of the linear systolic priority queue and the parallel-entry
systolic priority queue, and their direct extension to the
N-input case can be found in [3 , 6, 81. Note that pro-
IEE Proc.-Circuits Devices Syst., Vol. 142, No. 5, October 1995

cessors in Fig. 1 are labelled with one-dimensional nota-
tion, while the processors in Figs. 3-6 are labelled with
two-dimensional notation; however, the algorithms for
both cases are similar.

i - 1 i = 2 i - 3 I : 4

inout

. . .

Fig. 4 Insert input metrics and shqt metrics to right

i - 1 i - 2 i = 3 i - 4

input 1
~ '1,N 1 P2,N 1 '3, N

Fig. 5 Rearrange metrics in each slice

1 - 2 1 = 3 l = L

. . . .

input

Fig. 6 Extract best metric and shqt top metric to left

2.1
(a) Result of these operations : simultaneous insertion

of N new input metrics M , , M , , ..., M N into the queue,
and delivery of the best metric it contains.

Operations for type I MISPQ

(b) Mechanism of this algorithm:
(i) Insert N metrics simultaneously into the queue

and shift each metric at position Pi, to its right, i.e. to
Pi+,, j , where i 2 1, N 2 j 2 1. Note that the metric at
Pi, in each ith slice is not shifted, as shown in Fig. 4,
i.e.

insertion: M , --f P , , ,, M , + P , , ,, . . . , MN + N

283

and

shifting:Pi,l+Pi+l, 1,Pi,2-+Pi+l,2, ...,
P i , N + P i + l , N for i 2 1

(ii) Rearrange metric in each group of processors,
i.e. in each slice. Move the best metric in each slice to
its Iocal top position. The positions of the other
metrics are trivial, as shown in Fig. 5, i.e. for i 2 1,

Pi, c- best metric among those metrics in position

(Pi, o > Pi, 11 . . . 7 Pi, N)
Pi , 1 , P2, 2 , , . . , Pi, c the other N metrics

(The rearrangements of metrics in this algorithm and
in that of type 11 MISPQ discussed later are both
done by pairwise comparisons of processors in each
slice.)

from the queue, which is
always the best metric among all. At the same time

metric on the top of each slice to its left, as
shown in Fig. 6, i.e. for i 3 1,

(iii) Extract the

Pi, 4 P i , and P l , is extracted

Rearrange metrics in each slice again, as shown

Pi, t best metric among these metrics in position

(pi, 0 i Pi, 1, . . . > Pi, N>

Pi, P,, 2 , . . ., Pi, t the other N metrics

gh this mechanism consists of many steps, the
steps can be merged into two steps. The first step consists
of insertion, shifting metrics to the right, and sorting
metrics in each slice. The second step consists of shifting
the top metric in each slice to the left and sorting metrics
in each slice. Thus with a two-phase clocking scheme
these steps can also be completed in one single clock

f these steps is done by following the
presented in [SI. That is, the metrics

sitions are precompared to determine
orders are then used as reference for
these metrics onto their future posi-

A theorem with proof is derived to confirm that the
olic priority queue described can work as desired.

Dejinition I : As shown in Fig. 3, for a metric at processor
Pi, j , one may express the position of this processor with

tions.

pk , 0 < p ~ 9 1 Pk' , 0

(where k < i < k'; j Z 0 when k = i)

if Pi, is one processor in the set of processors S, where

= (P k , 1 , p k , 2 , - ' - 7 p k , h ' l

(p k + 1 , 0 > P k + 1 , 1 , . . . > P k + 1 , NI

(Pk+2,02Pk+2,1,...3Pk+2,N)

" ' (P k ' - l , O ? P k ' - l , l ~ ' ' ' , ' k ' - l . i i]

express the position of this processor with

p k , 0 ' L , J pk ' , 0

(where k < i < k'; j = 0 when i = k')

if Pi, is one processor in the set S', where

S' = s (P k , 0 , P k ' , 0 }

284

Theorem I : For a type I MISPQ, after any number of
insertion or deletion (extraction) operations, the kth good
metric is stored in some processor PE, j , where P l , <
Pi,j < p k , o . For example, the best metric (k = 1) will
always reside at P l , o . For another example, the third
good metric (k = 3) may reside at some place in slice 2 or
slice 1. But if it resides at somewhere in slice 3, the only
position must be P 3 , o .

Proof of theorem 1 : By induction as follows. The first
several steps can be easily checked by observations, so
that one may assume that after m steps of operation the
kth good metric resides in processor which satisfies

< Pi , < Pk, o . Then one is to prove that it is still
true at the (m + 1)th step.

(a) If the (m + 1)th operation is an insertion, the best
metric in the queue will still appear at P l , o for the kth
good metric, where k 3 2. First, if it resides in P z x l where
PI, < P i , P k p 1 , o , then after the new N metrics being
inserted this metric will still reside somewhere before
P k , o , and thus is a legal position (when k = 2 the case
P I , < Pi, < PI, will not occur). Secondly, if it resides
at P i , with Pk- 1, < PI , < Pk, o , then after operations,
this metric will reside at Pk, ?. This is because the other
metrics to be compared with this previous kth good
metric all have ranks not lower than k, otherwise
theorem 1 is violated at the mth step. Since the new rank
of this metric will not be lower than k, this is a legal
position again.

(b) If the (m + 11th operation is a deletion (extraction).
The new best metric will appear at P!, ?. This is because
the previous second good metric is originally at Pi, with
P I , < Pi, < P2, o , after shifting all top metrics to the
left the new best metric will appear somewhere among
the first (N + 1) positions. Now consider the position for
the kth good metric. First, if the previous kth (k 3 3)
good metric resides at some Pi, with P l , < Pi,, G
P k - J : o, then after operations it can still reside at a legal
position. This is because P I , < Pi, < P k - 1, o , thus is at
a legal position for the (k - 1)th good metric. Secondly, if
the previous kth (k 3 3) good metric resides at some posi-
tion Pi, with P k - < P i , 9 pk, then after operations
that metric will appear a t P k - 1, o . Because the metrics to
be compared with the previous kth good metric are
located originally at some Pi,J with P k - 1 , < Pi,] <
P k , D. Their ranks are all no less than k.

From fa) and (b), it can be seen that theorem 1 still holds
at the (m + 1)th step. By induction, theorem 1 is always
true after any number of steps of the algorithm.

In the foI€owing, a new algorithm for the systolic pri-
ority queue referred to as type I1 multiple inputs systolic
priority queue is proposed. This new MISPQ is shown in
Fig. 7. Figs. 8 to 10 illustrate the operations of this queue
step by step. It can be seen that Fig. 3 is an abstract
representation of Fig. 7.

Definition 2: In each slice, group of processors may be
further divided into 'top group of processors' and
'bottom group of processors'. Thus one may use subslice
to describe the region where the subgroup of processors
reside. For example, in Fig. 7, each slice is divided into
two subslices.

Definition 3 : According to the operations of the queue
described subsequently, the best metric in slice i must
reside in the top position of one of the two subslices, i.e.
in T , o, or Bi, o . No matter where it is, one may define a

IEE Proc.-Circuits Devices Syst., Vol. 142, No. 5, October 1995

pseudo top position Pi,
That is

for the best metric in slice i.

Pi, o = T , o U Bi, o

2.2 Operations for type II MISPQ
(a) Result of these operations : simultaneous insertion

of N new input metrics M,, M , , ..., M N into the queue,
and delivery of the best metric it contains.

I = I 1 5 2 1 = 3 1 = 4

. . . .

L

. . . .

. . . .

Fig. 7 Architecture for type I I MISPQ

i = 2 i = 3 i = 4

inout r -

. .

Fig. 8
(Note that mechanism is the same in bottom subslice)

Insert input metrics and shgt metrics to right in top subslice

input

I! T3,N12 E l . T&,N12

Fig. 9
(Note that mechanism is the same in bottom subslice)

Rearrange metrics in top subslice

1EE ?'roc.-Circuits Devices Syst., Vol. 142, No. 5 , October 1995

. .

(b) Mechanism of this algorithm:
(i) Insert N metrics simultaneously into the queue

and shift each metric at position T , to its right, i.e. to
T+l , j , and Bi, to j , where i = 1, 2, ...; j = 1, 2,
. . ., N / 2 . Note that the metrics at Ti, and Bi, in each

input

i = 1

1 ?.NI2

. .

. _ .

. . .

~~~~~ . . . .  

MN BI,NIZ B2,~/2 B~,NI~ B~,NQ 

Fig. 10 Extract best metric and shgt top metric to right 

ith slice are not shifted, as shown in Fig. 8, i.e. for 
i =  1,2, ..., 

insertion : 

Ml ' Tl,l> M 2  + Tl,'*.> MN/2 --* Tl,N/2 

and 

MN/2+1'B1,1, M N / 2 + 2 + B 1 , 2 , ' * . ~  M N 4 B l . N J 2  

then 

shifting : 

T.1 + T + l , l ?  T.2 + T+1,27* - .?  T . N / 2  --* T + l , N / 2  

B i , l  'Bi+l,1,Bi,2'Bi+l,2,...,Bi,N/2'Bi+1.N/2 

(ii) Rearrange metrics in each subgroup of pro- 
cessors, i.e. in each subslice. Move the best metric in 
each subslice to its local top position for the top 
subslice and Bi, for the bottom subslice). The posi- 
tions of the other metrics are trivial, as shown in Fig. 
9, i.e. for i = 1,2, ..., 

T,  t best metric among (Ti, o ,  Ti, 1, , . . , 1;, Njz) 
Bi, + best metric among (Bi, o, Bi, ,, . . . , Bi, N/Z) 

Ti. 1, T,  2 7 . f .  2 T ,  NI2 

c the other N / 2  metrics in the top subslice 

Bi ,  1, Bi, 2 2 . . . 7  Bi, N/2 

c the other N / 2  metrics in the bottom subslice 
(iii) Shift the best metric in Pi,  to P i -  1,  o ,  and then 

If(metric in T ,  o)  2 (metric in Bi, o), and 
1,  o) 2 (metric in Bi-  1,  o)  

shift metric in T ,  to T -  ,, 

the best metric in P,, is extracted, i.e. for i = 2, 3 , .  . . , 

(metric in 

285 



If(metric in T, o) > (metric in Bi, o), and 
(metric in T-l, o) < (metric in Bi-l ,  o) 

shift metric in T ,  to Bip 1,  

If (metric in 7;, o) < (metric in Bi, o), and 
(metric in Bip 1,  o) (metric in T -  1 ,  o) 

shift metric in Bi,  to T -  
If(metric in T ,  o) < (metric in Bi, o), and 

(metric in T -  1, o) < (metric in BiPl,  o) 

shift metric in Bi, to B i -  

For i = I ,  i.e. in the frontend, the better metric in 
TI ,  and Bl, is extracted out. 

(iv) Rearrange metrics in each subslice again. Move 
the best metric in each subslice to its local top position 
(T,o for the top subslice and Bi,o for the bottom 
subslice). The positions of the other metrics are trivial, 
as shown in Fig. 9, i.e. for i = 1, 2, . . ., 

T ,  c best metric among (T, o ,  T ,  1, . . . , 7;, N / 2 )  

Bi, +- best metric among (Bi ,  o ,  Bi, 1, . . . , Bi, N12)  

?;, 1 9  T ,  2 2 . . ' 9 T ,  N / 2  

+ the other N/2 metrics in the top subslice 

Bi, 1, B i ,  2 > ' . . > B i ,  N / 2  

+- the other N / 2  metrics in the bottom subslice 

Now recombine the subgroups ( T ,  T ,  2 ,  . . . , ?;, N , 2 )  and 
(Bi, 1, Bi, 2 ,  . . . , Bi, N I 2 )  in the ith slice into a group ( P i ,  
Pi, 2 ,  . . . , Pi, N ) ,  i.e. let Pi, = 7;, 1, Pi, = T ,  2 ,  . . ., 

Pi, = Bi, Ni2. And processors T ,  together with pro- 
cessor Bi,o are treated as a single processor Pi,o. It is 
found that the mechanism of type I1 MISPQ is exactly 
the same as that of type I MISPQ. For example, result 
for the rearrangement operation in each subslice of type 
I1 MISPQ is that the best metric in the ith slice will 
reside at Pi, o ,  as expected in type I MISPQ. The result 
for the metric insertion and metrics shifting-right oper- 
ations of type I1 MISPQ can also be easily checked to be 
the same as that of type I MISPQ. We propose a 
theorem similar to theorem 1. According to this, the best 
metric in type I1 MISPQ is extracted for every cycle. 

- 
pi, N I 2  = T ,  N / 2  7 and p i ,  N I 2  + 1 = Bi, 1,  p'  r , N / 2 t 2  - B i , 2 ,  ...) 

Theorem 2: In every ith slice, where i = 1, 2, ..., if the 
processors 7;, and Bl, are viewed as a single processor 
Pi, 0 ,  and Processors (T,  1,  T,  2 ,  . . . , T ,  N / 2 )  and ( B ,  1 ,  

B i , 2 ,  ..., B i , N l 2 )  are recombined into (Pi, 1, Pi,2,  . .., 
P i , N ) ,  then for a type I1 MISPQ, after any number of 
insertion or deletion (extraction) operations, the kth good 
metric is stored in some processor Pi, j ,  where Pl, 6 
p i , j G P k , ~ .  

Proof of theorem 2: As for theorem 1 but first the pro- 
cessors T ,  and Bi, should be recombined in the manner 
described. 

3 Implementations for MISPQ 

This Section considers the implementations for both 
types of MISPQ. First, the circuit developed previously 
for type I MISPQ is reviewed; secondly, some modifi- 
cations on that circuit are discussed. The modified circuit 

is shown to be more suitable for MISPQ than the pre- 
vious circuit. The circuit for type I1 MISPQ is then con- 
sidered. Complexities of the last-mentioned two circuits 
are compared for different values of N .  

3.1 
The parallel-entry systolic priority queue designed by 
Lavoie, Haccoun, and Savaria [ 5  61 is the first VLSI 
realisation for the MISPQ (the parallel-entry systolic 
priority queue is similar to a type I MISPQ with the 
number of inputs N = 2). This circuit can complete all 
operations in a single clock cycle, where each clock cycle 
consists of two phases (Dl and (D2.  All circuits discussed 
in this Section are also operated according to a two- 
phase clocking scheme duplicated in Fig. 11. 

Circuit realisations for type I MISPQ 

clock cvcle 
I 

rearrange I I - rearrange - -  , - 
insertion; extraction; 
shift right shift left 

r 
I -  _ -  

L' 
Q 1  Q2 

Fig. 11 
0, phase 1 for one cycle 
0, phase 2 for one cycle 

Timing diagramfor new systolic priority queue 

To ensure that the parallel-entry systolic priority 
queue works following the timing diagram in Fig. 11, 
each slice of processors in Fig. 1 can be implemented as 
Fig. 12 [SI. As shown there, three comparators and nine 

controlled transmission gates are required. Each trans- 
mission gate is controlled by a signal composed of com- 
binational AND logic with two inputs. Note that each 
signal corresponds to the pairwise comparison result for 
some processor with the other two processors, although 
they are expressed as a + b, c + d, or e + f in Fig. 12. 
This architecture can be extended to the case where there 
are N + 1 processors in each slice, i.e. to the N-inputs 
case. In such a case, C;+l comparators and ( N  + 1)' 
controlled transmission gates are required for this archi- 
tecture. And each transmission gate is controlled by a 
signal composed of combinational AND logic with N 
inputs. Each signal corresponds to the pairwise compari- 
son result for some processor with the other N pro- 
cessors. The circuit for four-input systolic priority queue 
shown in Fig. 14 is used as an example. Ten comparators 
and 25 controlled transmission gates are required here. 

I E E  Proc.-Clrcuits Deuces Syst., Vol. 142, N o  5,  October 1995 286 



From this example it is found that the complexity of this 
architecture will become unfeasible if N increases further. 

It is interesting to see that the operations of this circuit 
in Fig. 12 are not exactly the same as the operating rules 

for type 1 MISPQ. The best metric in each slice does not 
always reside, at a predetermined processor. As shown 
next, there is some advantage in complexity if a circuit is 
designed following the rules for type 1 MISPQ. A modi- 
fied circuit for the PESPQ is depicted in Fig. 13. This 

Fig. 14 
queue 

Circuit for realising slice in type I four-input systolic priority 

signal A = condition where PI is largest 
signal B = condition where P, is largest 
signal C = condition where P3 is largest 
signal D = condition where P, is largest 
signal E = condition where P, is largest 

circuit is operated strictly following the operating rules 
for type I MISPQ. As shown in Fig. 13, this architecture 
is a little simpler than that in Fig. 12, i.e. seven controlled 
transmission gates are used here. When extended to the 
case of N-inputs, C;" comparators and 3N + 1 con- 
trolled transmission gates are required for this architec- 
ture. Each transmission gate is controlled by a signal, 
which is composed of combinational AND logic with N 
inputs. 

The number of controlled transmission gates required 
in this modified circuit is less than that required in the 
original circuit. The reason is that, in the original circuit, 
the metric in each processor in a slice may be transferred 
to one of N + 1 other processors in each clock cycle. 
Since there are N i- 1 processors, thus a total of 
(N + 1)(N + 1) controlled transmission gates are 
required. Obeying the operating rules of type I MISPQ, 
in the modified circuit, the metric in each processor in a 
slice (except the processor containing the best metric) will 
be transferred to the top processor (if the metric is best) 
or a fixed processor. In this case, only two controlled 
transmission gates are required, no matter what the value 
N is. The processor containing the best metric is con- 

nected to the other N + 1 processors. Thus a total of 
2N + (N + 1) controlled transmission gates are required 
in the modified circuit, which is simpler than the original 
circuit when implementing a type I MISPQ. The 
example, when the modified circuit is used to implement 
a four-input systolic priority queue, is shown in Fig. 15. 

- 

IEE Proc.-Circuits Devices Syst., Vol. 142, No. 5, October 1995 287 

Fig. 15 
Signals as for Fig. 14 

Circuit for realising slice in modijied type I MISPQ 

The number of controlled transmission gates is 13, which 
is about half of that in the original circuit. 

3.2 Circuit realisation for type II MISPQ 
As shown in Fig. 7, a type I1 MISPQ with N inputs is 
roughly a combination of two N/2 inputs systolic priority 
queues, thus it is expected that the circuit for type I 
MISPQ with N / 2  inputs may be adopted to implement a 
type I1 MISPQ. 

The circuit for the type JI MISPQ is shown in Fig. 16; 
the control signals for each gate are shown in Fig. 18. 
Since the signals for controlling a systolic priority queue 
are complicated, they are defined in Fig. 17. The func- 
tions of gates in this circuit are described in Fig. 19, with 
two group of functions for two phases, respectively The 
reader may follow Figs. 16-19 to check the mechanisms 
of the type I1 MISPQ. An example is given later to illus- 
trate the operation of this circuit. The circuit in Fig. 16 
can be repeated to form a systolic priority queue with 
larger storage capacity. But it is very important to note 
that, in the 1 / 0  port, this circuit will be different. Refer- 
ring to Fig. 16 with i = 1, it is found that the real body of 
a systolic priority queue should start from Tl ,o  and 
B?,  ,.. Those transmission gates PG,, to PG,, will be 
eliminated and replaced by a switch to select TI , ,  or 
Bl ,  , as the best. Processors To, 1, To, z ,  Bo, 1, and Bo, are 
replaced by the input port. 

Since a type I1 MISPQ is operated as two independent 
queues in clock phase (Dl, all the Boolean values for 
TLEi and BL, should be false at Ol to make all the con- 
nections (through some 'plug-in' gates PGij) between the 
top subslices and the bottom subslices opened. The 
output port for a commonly used comparator [:9] is 
modified so that at phase Q1 the comparison result will 
always be 00 as shown in Figs. 20-23. And at phase Oz, 
the comparators should work normally so that exchange 
of metrics between subslices is possible. In such a case, 
TLEi is true when 17;.,, is larger than or equal to B , , , .  
Otherwise, BL, is true. 

The processor TB,+,,, or BT,,,,, mentioned in Fig. 
16 is not a fixed processor. At phase (Dl, TB,,,,, rep- 
resents T + f , o  and B7;+l,o represents B i + l , O ,  respec- 
tively. But they both represent the larger of + 1, , and 
Bi+  , at phase Oz. Such arrangements are to satisfy the 
mechanism of the type I1 MISPQ; i.e. at phase z, is 
compared with T-l ,  ,, T-,, 2 ,  . . . , and T- , ,  N/2, and Bi, , 
is compared with B i - , ,  1, Bi-  1, z ,  . . . , and Bi-l ,  N,2. But 
at phase Oz , the larger of T +  1, , and Bi+ 1, is to be com- 



pared with 1 ,  Ti- 1, ’, . . . , Ti- or with (Bi-l, 1, 
B,- 2 ,  . . . , Bi_  N,2). The comparator used for compar- 
ing TB,+l ,o  with T , j  or BT+l ,o  with Bi , j  (forj  = 1, 2, 
. . . , N/2)  may be a specially designed three-input compa- 
rator. But additional logic gates will be inserted, thus the 
time for comparison operation will increase. To avoid 
this, two comparators are used, as shown in Figs. 24-26. 

As shown in Fig. 16, 13 comparators and 22 controlled 
transmission gates are required in a slice of the type I1 
MISPQ with four inputs. The number of input signals for 
controlling a gate range from four to six. When extending 
this architecture to N inputs case, there are 4C;12+l + 1 
comparators and 3N + 10 controlled transmission gates 
required. This is counted as follows. The pairwise com- 
parisons among the ( N / 2 )  + 1 processors Ti, Ti, ’, ..., 
Ti, and Ti+ 1, in the top subslice require C;12+’ 
Comparators. An equal amount of processors are 

required for comparing Bi+ 1, with T ,  1, T ,  2 ,  . . . , q, N/2. 
And the same case is in the bottom subslice. Finally, one 
additional comparator is required for comparing T ,  
with B,,o, thus a total of 4C;/’+’ + 1 comparators are 
required. 

The number of transmission gates required in the top 
subslice is 3(N/2) + 1 from the architecture of modified 
type I MISPQ in Section 3.1. The same number is 
required in the bottom subslice. But there are additional 
eight transmission gates for the exchange of data between 
the top and bottom subslices. Thus a total of 2(3N/ 
2 + 1) + 8 transmission gates are required. The number 
of inputs to the combinational logic gates ranges from 
(N/2) + 2 to (N/2) + 4 as seen from Fig. 18. It is noted 
here that the number of comparators for the type I1 
MISPQ is 4C;’’+’ + 1 because the three-input compara- 
tor is implemented in a direct manner as shown in Figs. 

Fig. 16 Circuit realisation for slice in MlSPQ ( N  = cc) and neighbouring conjguration 

Signals representing relationships between metrics in processors 

d;: Ti ,2  > TB,,,,, z Ti, , e;:  TB,,,,, > Ti, , > Ti, f ; :  TB;,,,, > Ti, > Ti, , 
8;:  5;. , > B;, 2 BT;,,,, 6,: B ,  , 2 B T j + l ,  , > B ,  E,: B;, > B;, , > BT,,,, , 
a;: B i , 2  > BT;,,., > 6;. , 6 , :  5T,,,,, > B;, , 3 Bi ,2  f;: BT,,,,, > B;, > B,,, 

TLE,: T;, , BL ;: Bi, ,, > Ti, , Q1 : when in phase Q1 

Note: TBi,, and BT,,o both represent the larger of Tj ,o  and Bi,o at Q 2 ,  but 
TB,, , represents T,, , and BT,, , represents B;, , at Ql. 

a;:  T;, 1 > T;, 2 > TB;,,,, b;: T;, 1 2 TB;,,,, > T;, 2 c;: Ti.> > T;, 1 > TB;,,, 0 

Fig. 17 Signals in slice 

288 I E E  Proc.-Circuits Devices Syst., Vol. 142, No. 5, October I995 



24-26. This results in a total of 2C:/'+' + 1 comparators 
idle during the operation of type I1 MISPQ. If the com- 
parators are shared between the top and bottom sub- 
slices, half amount of them can be saved and only 
2C:/2+1 + 1 comparators are required. Of course, more 
connection lines are required for those metrics to be 

transferred to the comparators in the counter part sub- 
slice. To be fair, such a comparator-sharing scheme is not 
considered when comparing the complexities of the three 
architectures discussed in this paper. 

The complexities of type I1 MISPQ and the two ver- 
sions of type I MISPQ are shown in Table 1. It is found 

Upper half slice Lower half slice 

functions at @, functions at 0, functions at Q, functions at Qz 

transfer T,, , to T,, , , ,  

transfer T,,2 to T,+,, ,  

loop T,,,,, back to itself 
or no operation 
transfer T,, , , ,  to T,,,, , 
or no operation 
transfer T,, , , ,  to T,, , , ,  
or no operation 
always open, no operation 

or to T,,,, 1 

or to T,+l,2 

always open, no operation 

always open, no operation 

transfer T, , to T,, ,  
or loop T,, , back to itself 
transfer T,, to T,, 
or loop T,, back to itself 
transfer T,+l,o to T,, ,  
or no operation 
transfer T,,,, , to T,, , 
or no operation 
transfer T,,, , to T,, 
or no operation 
transfer T,, , , ,  to 6, , ,  
or no operation 
transfer T,,,, to 6,. , 
or no operation 
transfer T,, , , ,  to 6, ,2  
or no operation 

transfer 6 , ~  , to I?,,,,, 

transfer to B, , , , ,  

loop 6,+l.o back to itself 
or no operation 
transfer B, , , , ,  to IT,,,, 
or no operation 
transfer B, , , , ,  to B, , , , ,  
or no operation 
always open, no operation 

or to B , , , , ,  

or to B,,,,  2 

always open, no operation 

always open, no operation 

transfer B ;, , to 6 ;, 
or loop 6;. , back to itself 
transfer 6 ;, to 6,. , 
or loop 6,. back to itself 
transfer 1 3 ; + , , ~  to 
or no operation 
transfer 6i+,.0 to B ; , ,  
or no operation 
transfer B, , , , ,  to 1 9 ; , ~  
or no operation 
transfer 6;+, , ,  to T;,, 
or no operation 
transfer 6i+1,0 to T i , 1  
or no operation 
transfer 6 ;+,, to Ti, 
or no operation 

CG,,,,, always open, no operation loop back to itself CGi+,,2 always open, no operation loop B, , , , ,  back to itselt 

Notes: (i) First function for each gate control signal is function when that signal is true, and second function (i.e. function described 
after 'or.. .') is when it is false; (ii) 'No operation' means gates controlled by those signals can be neglected at that time 

or no operation or no operation 

Fig. 19 Functions of control gates 

x 1  Y1 x 2  Y2 X n  Y n  a,+tb,,1 Condition 

x ,y ,  =00 01 11 10 this stage 
until 

a,b, 

10 00 01 T = B  
01 01 01 T > B  
10 10 10 T < B  

00 00 
01 01 
10 10 , , - ,  

Fig. 20 Comparator for comparing T i , o  and B i ,o :  architecture for Fig. 23 Truth tabelfor 2 e 2 2  
iteration realisation 
Metric of q. ,, = xi, x2 ,  . . ., x,; metric of Bi, = y , ,  y ,  , . . , , y ,  

+>(-- I 

L _ _ _ _ _ _ _ _ _ _ - - - - - -  -I 
Fig. 21 Typical cell for one bit 

Fig. 22 

IEE Proc.-Circuits Devices Syst., Vol. 142, No.  5, October 1995 

Output port of Fig. 20 

X n  Zn 

- 

Fig. 24 
B i , o w i t h T , - l , j ( j = 1 , 2  ,..., n/2) 
Comparator is also used to compare Bi .  
where comparator is located. Metric of T ,  
y 2 ,  . . . , yn, metric of q-  ,, is z , ,  z2, . . . , zm 

Comparator architecture for comparing the larger of T ,  and 

and q, ,, with E , _  ,, j ,  depending on 
is x,, x 2 ,  . . . , x v ,  metric of B f ,  is y , ,  

Condition 

00 max ( T j , o r  Bi.0) 
is equal to T ; - , , ,  

01 max (Ti ,  I 6 ;, o )  
is larger than T,-l,i 

10 max (T;, , ,  B i ,o)  
is smaller than T , - , , ,  

Fig. 25 Output conditions for Fig. 24 

289 



that the type I1 MISPQ is preferable when the number of 
inputs N 16. In the case of 16 inputs, the numbers of 
comparators for the type I1 MISPQ and the modified 
type I MISPQ are similar (145 : 136), and the numbers of 

I a l out 1 
I 

I I 
I 

I 
I 

L _ _ - _ _ _ _ _ _ _ _ _ _ _  J 

C 

I out 2 d 

Fig .  26 

Table 1 : Complexity comparisons for three circuits 

Output portfor Fig. 24 

Type I Modified Typ II 
MISPQ type I MfSPa 

MISPQ 

Comparators C+' CY+' 4C2"*+' + 1 
Controlled ( N + l ) '  3N+1 3N+10 
transmission gates 
Signals for N N ( N P )  + 2 
connected to one or 
transmission aate fNI21 + 4 

transmission gates for these two circuits are similar 
(58 : 49). But the number of inputs for controlling a trans- 
mission gate in the type I1 MISPQ is about half of that 
in the modified type I MISPQ. For the case of eight 
inputs, the selection between these two schemes is not so 
straightforward. But, generally speaking, the modified 

clock2 , 

Fig. 27 Sequential search on quaternary tree 

To 1To 2 Tl.OT1 1T1 2 15(21/-11-11-11 
1-q-q 
BO.lB0.2 Bl.OB1.1B1.2 

a inputs at the  I10 

T0.l To.2 T1.0 T1.1 T1.2 

m 
BO.lB0.2 Bl,OBl,lB1,2 

clock3 

type I MISPQ is preferred in this case. This is because 
the numbers of comparators and transmission gates are 
lesser (41 : 36 and 34 : 25), and the number of inputs for 
controlling a gate is similar to that for type I1 MISPQ. 
For the cases where inputs are smaller than eight, the 
modified type I MISPQ is preferred. 

An example demonstrates the operations of the type I1 
MISPQ. Fig. 27 shows the quaternary tree on which the 
sequential search is conducted. The metric of each node 
is written on the tree. These metrics will be stored in 
and/or extracted from the MISPQ during the sequential 
search. The clock cycles are also labelled on the tree to 
denote the sequence of search operations. In Fig. 28, from 
step (a) to step (c), the metrics distributions in the 
MISPQ for each clock cycle during the sequential search 
are shown. For convenience's sake, processors in the 
MISPQ are replaced by blocks and the connection lines 
are neglected. In the following, we describe the transmis- 
sion procedure for each metric in detail so that the circuit 
of MISPQ can be verified by following thiq example with 
reference to Figs. 16-19. 

As shown in Fig. 28, the blocks correspond to the 
circuit in Fig. 16 with i = 1, where To,, and B,,,, not 
shown, are used as output ports. Processors To,] and 
Bo, ( j  = 1, 2) are used as input ports. Those processors 
behind (and including) T,, and B,, , form the real body 
of a systolic priority queue. Note that those transmission 
gates PG,,, to PG,,, are replaced by a simple switch 
controlled by TLE, and BL,. 

Referring to step (a) in Fig. 28, the queue is filled with 
the smallest metrics at the beginning, in this example - 1 
is used. At phase 
(for j = 1 to 6) are opened as can be checked from Fig. 
18, because the signals BL, and TLEi (for i = 1, 2, . . .) are 
always forced to be 0 (false) at phase B1. Thus from 
clock, to clock,, when at phase dDI, one can treat the 
processors in the top subslices and those in the bottom 
subslices as two independent groups. At dD, of clock,, the 
metric 5 in To, , is transferred to T,, , through the gate 
Go, 4 .  And the metric - 1 in T,, , is transferred to T,, 
through the gate G , , 2 .  The metric 2 in To,2 is trans- 
ferred to TI,  * through the complement gate of Go, S .  At 
the bottom, the metric 3 in Bo, , is transferred to B,,,, 
through the gate (?io,4. And the metric -1 in B i + o  is 

of any clock, the plug-in gates PG,, 

b inputs ut the I/O port at Q1 of clock2 

m rn m m m  m 
Bo,tB0,2 Bl,OBl,lB1,2 B2.0 f39lB0.2 ~l,OBl,lB1,2 B2.0 BO.lB0.2 Bl,O~l,lB1,2 B2,o 

c inputs at the 110 port at Q1 of clock3 at c $ ~  of clock3 

Fig. 28 
(a) inputs at IjO port at @, of clock, 
(b)  inputs at IjO port at of clock, at Q2 of clock, 
(c) inputs at IjO port at Q2 of clock, 

290 

Metrics travelling through systolic priority queue from (a) to (c) for three clock cycles 
at @, of clock, 

at @, of clock, 

I E E  Proc.-Circuits Devices Syst., Vol 142, No.  5, October 1995 



transferred to B1, through the gate Gl, , . The metric 1 
in Bo,, 4 transferred to B,,, through the complement 
gate of Go, 5 .  Although those -1 metrics will also be 
redistributed following the rules defined by the control 
signals; it is trivial to describe the details. 

At a, of clockl, the metric 5 in Tl ,o  is transferred to 
To, (extracted out) through the gate Gl, 1. The metric 2 
in T,, is transferred to TI, through the gate Gl, 5 .  The 
metric - 1 in T,, is transferred to T,, , through the gate 
G2, , , since metric in T,, is equal to that in B2, so that 
metric in T,, is transferred (TLE, is true). Metric - 1 in 
T,,l is looped back to itself through the complement 
gate of Gl, , . Furthermore, since the result of comparing 
Tl ,o  (5) and Bl,o (3) makes BL, to be 0 (false), the 
metrics 3, -1, and 1 in processors B,,,, B,, ,, and Bl,, 
are forced to loop back to themsel_ves through the gate 
CG,,,, the complement gate of G,,, ,  and the com- 
plement gate of G,, 5 .  

Referring to step (b) of Fig. 28, at <D, of clock,, four 
inputs are inserted into the queue again. At this time, the 
metric 4 in To, , is transferred to T,, through the gate 
Go, ,. And the metric 2 in T,, is transferred to T,, , 
through the gate G,,,. The metric 2 in To,, is trans- 
ferred to Tl, through the complement gate of Go, S .  At 
the bottom, the m5tric 7 in Bo,, is transferred to Bl,o 
through the gate G o , 5 ,  and the metric 3 oriinally in 
B,, is transferred to B1, , through the gate GI, 3 .  The 
metric 1 orighal4y in Bl,2 will be transferred to Bz,o 
through the gate Gl ,  5 .  The metric 3 in BQ, , is transferred 
to B,, , through the complement gate of Go, ,. 

At a, of clock,, the metric 7 in B,,o is, transferred 
to Tq,  (extracted out) through the gate G,, , (and a 
selection switch not shown), because BL, is true. The 
metric 3 in B,, , is transferred to Bl,o through the gate e,, 4 .  The metric 1 in B,, is transferred to Bl, through 
the gate G,, , , because the comparison of T,, (- 1) and 
B,,o (1) makes the signal BL, be 1 (true). Metric 3 in 
B1,2 is looped back to itself through the complement 
gate of e,, 5 .  Furthermore, since the result of comparing 
Tl ,o  (4) and Bl,o (7) makes TLE, to be 0 (false), the 
metrics 4, 2, and 2 in processors TI, o ,  TI,  1,  and Tl, are 
forced to loop b to themselves through the gate 
CG,, ,, the compl nt gate of G,,, ,  and the com- 
plement gate of G,, 5 .  

Referring to step (c) of Fig. 28, at m1 of clock,, four 
inputs are inserted into the queue. Th_e metric 8 in Bo, , is 
transferred to Bl, through the gate Go, , and the metric 
3 orienally in B,, is transferred to B,, , through the 
gate G,, 3 .  The metric 3 otiginally in Bl, 2. is transferred 
to B,, through the gate G,, 5 .  The metric 5 in Bo, , is 
Fansferred to B,,, through the complement gate of 
Go, 4 .  At the top, the metric 4 in To, , is to be compared 
with the metric 4 originally in Tl ,o  and the metric 2 in 
To,,. At this point, the importance of precisely defining 
the relationships and positions for all processors is clear. 
Since the two best metric are the same, how the data will 
flow depends completely on the definitions. According to 
control rules shown in Fig. 18, the condition do is true, 
thus the metric 4 in To,, will be transferred to Tl ,o  
through Go, 5 .  And the metric 4 originally in Tl,  will be 
transferred to T,, , through the gate G,, , . The metric 2 
in To,i is transferred to T,,, through the complement 
gate of Go,,. The metric 2 originally in T,, , is trans- 
ferred to T,. through the gate G,, ,. Again, the defini- 
tions determined the flow paths for those data originally 
in Tl, , and T,, 2 .  

At @, of clock,, the metric 8 in Bl,o is, transferred 
to To,o (extracted out) through the gate Gl ,  (and a 
IEE Proc.-Circuits Devices Syst., Vol. 142, No.  5, October 1995 

selection switch not shown), The mztric 5 in Bl, is trans- 
ferred to Bl ,o  through the gate G1,,. The metric 3 in 
B,, is transferred to B1,> through the gate G,, , at the 
same time, the metric 2 in T,,o is looped back to itself 
through the gate CG,, ,. Since the result of comparing 
Tl,o (4) and Bl,o (8) makes TLE, to be 0 (false), the 
metrics 4, 2, and 4 in processors Tl, o ,  Tl, 1, and TI, , are 
forced to loop back to themselves through the gate 
CG,,,, the complement gate of GI,,, and the com- 
plement gate of G,, S. The metric 2 in B2, comes from 
T,,O not shown in Fig. 28. If the systolic priority queue 
contains only eight elements as shown in Fig. 28, this 
metric will be lost forever. 

Other new architectures may be developed following 
the spirit of type I1 MISPQ. The MISPQ may be imple- 
mented with smaller queues, where each queue is used for 
processing a part of data in this MLSPQ. For example, 
an eight-input systolic priority queue can be implemented 
with two four-input systolic priority queues. Also, it may 
be implemented with four parallel-entry systolic priority 
queues. Following this idea, one can develop the type I11 
MISPQ, type IV MISPQ, and so on. Although this idea 
may be extended further so that the control signals in 
each subslice and the comparison operations will be less 
sensitive to the value of N, care must be taken when con- 
sidering the actual benefits generated by using such archi- 
tecture. This is because, as the number of subslices in a 
slice increases, the number of transmission gates for the 
interconnections between these subslices also increases. 
For example, if a four-input systolic priority queue is 
implemented with four type I single-input SPQs, there 
are 24 transmission gates between these queues, a large 
number when considering the complexity of these single- 
input SPQs. On the other hand, if 16-input SPQ is imple- 
mented, it is a good choice to divide it into four type I 
four-input SPQs. 

5 Conclusion 

A new algorithm and architecture for multiple inputs 
systolic priority queue (MISPQ) has been presented. This 
new architecture is built in a hierarchical form, i.e., one 
NISPQ consists of several smaller queues as basic com- 
ponents. Compared withthe previously developed systolic 
priority queues [3-61, this MISPQ is promising when 
N > 16. By modifying the previous circuit for systolic pri- 
ority queue [5 ,  61, a circuit for type I MISPQ has also 
been developed. The number of controlled transmission 
gates for this circuit is proportional to N instead of NZ 
for the original circuit. This modified circuit is shown to 
be suitable for implementing MISPQ when N is eight or 
smaller. From the analysis in Section 3.2 it is found that 
the benefits of the type I1 MISPQ are corrupted because 
of use of additional 2CYl2+' comparators when compar- 
ing T B i + l , o  or TBi+ , ,o  with x , j  or Thus the well 
defined comparator sharing schemes or multiple-input 
comparators are desired for future studies for the MISPQ 
with smaller N .  

Notice that in a sequential decoder, each node on the 
tree may contain information bits ranging from 30 to 70. 
Although some information bits may be stored in the 
RAM so that only the metric and the address in the 
RAM are stored by the systolic priority queue [SI, the 
number of bits may still be large. For such cases, how to 
arrange the 1/0 pins becomes a problem. By implement- 
ing the queue containing only the metrics on one chip 
and the queues containing other bits on other chips may 
be a solution. However, the complexity will increase and 

29 1 



the operating speed become slower since the control 
signals should be transferred between chips. 

6 References 

1 GUIBAS, L.J., and LIANG, F.M.: ‘Systolic stacks, queues, and 
counters’. Conference on Advanced research zn VLSI, MIT, 1982 

2 LEISERSON, C.E.: ‘Systolic priority queue’. Proceedings of Caltech 
conference on VLSI, 1979 

3 CHANG, C.Y. : ‘Systolic array architecture for convolutional decod- 
ing algorithms: Viterbi algorithm and stack algorithm’. PhD disser- 
tation, University of California, Los Angeles, 1986 

4 CHANG, C.Y., and YAO, K.: ‘Systolic array architecture for the 
sequential stack decoding algorithm’, Proc. SPIE, 1986, 696, 

5 LAVOIE, P., BELZILE, J., TOULGOAT, M., HACCOWN, D., and 
pp. 196-203 

292 

SAVARIA, Y.: ‘VLSI design of a systolic priority queue chip for 
sequential decoders’. Proceedings of 1988 Canadian conference on 
VLSI (Halifax, Nova Scotia, Canada), 1988, pp. 1-9 

6 LAVOIE, P., HACCOWN, D., and SAVARIA, Y.: ‘A systolic archi- 
tecture for fast stack sequential decoders’, IEEE Trans., 1994, 
COM-42, pp. 324-335 

7 BELANGER, N., HACCOUN, D., and SAVARIA, Y.: ‘A multipro- 
cessor architecture for multiple path stack sequential decoders’, 
IEEE Trans., 1994, COM-42, pp. 951-957 

8 KUO, H.C., and WEI, C.H.: ‘Sequential decoding of convolutional 
codes by a compressed multiple queue algorithm’, IEE Proc.-Comm., 

9 ROTH, C.H.: ‘Fundamentals of logic design’. West Publishing 

10 LIN, S., and COSTELLO, D.J.: ‘Error control coding: fundamen- 

1994,141, (4), pp. 212-222 

Company, 1985 

tals and applications’. Prentice-Hall, New Jersey, 1983 

IEE  Proc.-Circuits Devices Syst., Vol 142, No. 5, October 1995 


