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ABSTRACT 

The alignment for optomechanical components is important in designing and manufacturing optical systems. This study 
uses optical fibers for example to find suitable optimization strategies for optomechanical alignment. The core diameter 
of the single-mode fiber is about 6µm to 9µm. Any slight misalignment or deformation of the optical mechanism will 
cause signification optical losses during connections. The alignment methods can be divided into passive and active 
ones. In the passive alignment, optical connectors, ferrules, and sleeves are used to align two optical fibers. In the active 
alignment, the best connection position with minimum connection losses must be found, and users usually take a lot of 
effort to do this. This study uses different optimum methodologies: non-gradient-based, gradient-based, and Hessian-
based methods, to find the optimum position. The non-gradient-based method has low accuracy and the efficiency cannot 
be increased. The gradient-based methods seem to have better efficiency to find the optimum position because it uses 
gradient information to calculate the search direction in every iteration. Finally for the Hessian-based methods, it is 
found that the advantage of using Hessian matrix is not obvious because the light intensity distribution is similar to the 
Gaussian distribution. 
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1. INTRODUCTION 
Fiber optic communications with low loss and broadband characteristics developed quickly after low-loss fibers were 
introduced in 1970. Because of the high capacity, high transmission rate, and no electromagnetic interference during 
optical communications, optical fibers have been steadily replacing copper wire as an appropriate means of signal 
transmission in recent years. 

Similar to other communication mediums, optical fibers do not have infinite length. Fibers should be aligned and 
connected to each other when building the optical fiber network. Methods used to align fibers can be divided into passive 
and active methods. The passive methods use optical connectors and mechanisms to align and joint fibers. But the core 
diameter of a single-mode fiber is about 6µm to 9µm. Any slight misalignment or deformation on the connecting 
mechanism will cause signification optical losses across connections. Therefore, the design of the passive component is 
very important, and high manufacturing precision is required to make the component. 

On the other hand, the active method will search the optimum position with the least transmission loss actively, and 
connect fibers in this position. It can ensure the connection performance of the two connecting fibers, but the time 
required for searching optimum position will increase the working-hours of component manufacturing. It will be 
unpractical if the time of searching optimum connection position is too much. Therefore, how to find the optimum 
connection position efficiently is the main objective in the active alignment method. 

The optical fiber alignment problem is a typical unconstrained optimum design problem. This optimum design problem 
adjusts the connection position to find the position with the maximum light intensity or minimum optical power loss. 
Therefore, the objective function is the light intensity and the design variables are the coordinate values of the 
connection position. There is no constraint in the fiber alignment problem unless the coordinate values of connection 
position, and the boundaries are not treated as constraints in the optimum design problem. The typical solving process of  
this optimum design problem is called a “searching process”, and it can be divided into two parts: finding search 
directions, and finding the step size along the determined search direction. The detail solving process will be explained in 
the next section. 
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In 2001, Tang, et al.1 used Hill-climbing Method to solve the alignment problem to find the optimum connection 
position. Mizukami, et al.2 simulated the alignment process as the equations of Hamiltonian Algorithm and solve the 
equations to find the position with maximum light intensity. Pham and Castellani3 simulated the searching process as 
moving in the light intensity surface to avoid the trap of local minimum, and solve the problem with gradient-based 
method. Chang and Chen4 used the predetermined search direction and used Swann’s Method and Quadratic Estimation 
Method to find the step size. In 2002, Siao and Li5 used Gaussian Function to estimate the light intensity in the search 
direction. In 2003, Zhang and Shi6 used Matlab/Simulink to solve Hamiltonian Algorithm to find the optimum 
connection position. Sung and Huang7 used Steepest Descent Method to calculate the search direction and used Golden 
Section Search to find the best step size. They also used Coordinate Search Method and Pattern Search Method to search 
the optimum connection position in the design space directly. In 2004, Zhang and Shi8 used Simplex Method to solve the 
fiber alignment problem. Chen et al. 9 used a novel Simplex Method to avoid the trap of local minimum. Sung and Chiu10 
used Genetic Algorithm to find the global optimum connection position and used Hill-climbing Method to improve the 
solution found with Genetic Algorithm. 

Coordinate Search Method, Pattern Search Method, Simplex Method, and Genetic Algorithm search the optimum 
solution in the design space directly and they are non-gradient-based method. They do not calculate the search direction 
and the efficiency will not good if the design space is large. The Hill-climbing Method used in the above literatures does 
not calculate the search direction, too. The optimum solution is searched in predetermined directions. Typically, the 
directions along with X and Y axis will be used repeatedly. The efficiency is limited because the directions along X and 
Y axis may not be the direction with maximum increase of the light intensity. Swann’s Method, Quadratic Estimation 
Method, Gaussian Function Estimation, and Golden Section Method are used to calculate the step size and they have to 
be used with a direction searching method, such as Steepest Descent Method. There are few direction searching methods 
used in the optical fiber alignment problem. This study will introduce some direction searching methods that can be used 
in the fiber alignment problem and compare the efficiency between them and Genetic Algorithm. 

2. METHODS FOR SOLVING OPTIMUM DESIGN PROBLEMS 
The optimum design model will be formulated as finding the solution with minimum objective function value. This 
formulation can also consider the problem of maximizing the objective function value by multiplying the objective 
function with minus 1. The Methods used to solve unconstrained optimum design problems can be divided into indirect 
methods and direct methods. Indirect methods are analytic methods. They solve the necessary condition first and check 
the sufficient condition of an optimum design problem. The necessary condition of an unconstrained optimum design 
problem is the components of the gradient vector of the objective function have to be zero, and the sufficient condition is 
the Hessian matrix of the objective function has to be positive definite. Indirect methods can get the exact and global 
optimum solution, but they need the explicit function between objective function gradient and design variables. 
Unfortunately, it is difficult to find the explicit function of the light intensity because the light intensity has to be 
detected on every position. Therefore, the indirect methods can not be used to solve the fiber alignment problem but the 
direct methods can. Direct methods are numerical methods, and they solve an optimum design problem by “searching”. 
It can be described by the following iterative prescription: 

 ;)()()1( kkk XXX ∆+=+       k=0, 1, 2… (1) 

where X(k) is the collection of design variables with vector form and the superscript notes the iteration number. ΔX(k) is 
the step from the solution of iteration k to iteration (k+1), and it is also a vector form. The step should be decided to 
improve the design. How to decide it is the main objective of solving methods. The step can be described by a “search 
direction” and a “step size” and it can be shown as follows: 

 ;)()()()1( kkkk dXX α+=+       k=0, 1, 2… (2) 

where d(k) is the search direction, and α(k) is the step size (scalar). Thus, the solving process can be divided into solving 
two subproblems: how to decide the search direction and how to decide the step size. The whole solving process is 
shown in Fig. 1. In the beginning, an initial solution X(0) should be selected, and it is the starting point of whole process. 
The search direction d(k) will be decided in the second step. There are many methods for determining the search direction 
and some popular methods will be introduced latter. Before moving along the search direction, the convergence 
condition of the process should be checked. The common convergence condition is that the gradient norm value of the 
objective function is less than a predetermined small value. It is similar to the necessary condition of indirect methods 
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but the norm is difficult to be zero when using numerical methods. Therefore, a predetermined small value is used 
instead of zero. Another common convergence condition is checking the difference of objective function values between 
two solutions, and the solving process will stop if the difference is less than a predetermined small value. It means it is 
not efficient to continue solving process for the small improvement of the objective function. The solving process will 
continue if the convergence condition is not satisfied. 

The step size along the search direction will be calculated if the solving process continues. The process of calculating the 
step size usually called “one-dimensional search” because it search optimum solution “along” the search direction. 
Hence, it becomes a one-dimensional problem in the step size calculating process no matter how many the dimension of 
the problem is. There are also many methods for the one-dimensional search in literatures as introduced above. This 
study only applied one method: the Golden Section Method11 for calculating the step size because it is not the main 
object in this study. After determining the search direction and the step size, the solution can be updated, and it can 
continue to the next iteration. 

 
Fig. 1. The solving process of direct methods 

There are many methods for deciding search direction, such as Steepest Descent Method, Conjugate Gradient Method, 
DFP (Davidon-Fletcher-Powell) Method, and BFGS (Broyden-Fletcher-Goldfarb-Shanno) Method. The front two 
methods are gradient-based methods and the others are Hessian-based methods. They will be introduced in following 
sections. 

2.1 Gradient-based methods 

Taylor’s series expansion for f(X) about the point X(k) is: 

 1
)()()( )()()( RXXcXfXf kkk +−⋅+=  (3) 

where c(k) is the gradient vector of f(X) at point X(k) and R1 is the remainder term. Using Taylor’s series expansion to 
approximate f(X) by ignoring the remainder term, and substitute X(k+1) of equation (2) for X. The equation (3) becomes: 

 )()()( )()()()()1( kkkkk dcXfXf α⋅+=+  (4) 

The model is formulated as finding the solution with minimum objective function value. Therefore f(X(k+1)) should be 
less than f(X(k)) if the design is suitable for updating. 

 0)()()( )()()()()1( <⋅=−+ kkkkk dcXfXf α  (5) 

Thus, any d(k) satisfies equation (5), i.e. the angle between d(k) and c(k) is between 90 degree and 270 degree, can be the 
search direction and the gradient-based methods use this concept to decide their search directions. 

Initial solution

Decide search direction

Convergence? 

Calculate the step size

The optimum solution

Update solution

Yes

No
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2.1.1 Steepest Descent Method 

The gradient vector at a point X indicates in the direction of maximum increase in the objective function. The Steepest 
Descent Method uses the direction of maximum decrease in the objective function as its search direction. Thus it uses the 
direction that is opposite to the gradient vector. It can be shown as: 

 )()( kk cd −=  (6) 

2.1.2 Conjugate Gradient Method 

Steepest Descent Method uses the simplest way to decide the search direction, but it is usually not efficient in general 
case because search directions of two continuous iterations in Steepest Descent Method are orthogonal to each other. 
Therefore, there are many methods to modify the search direction of Steepest Descent Method, and Conjugate Gradient 
Method is one of them. Conjugate Gradient Method adds the information of the last search direction to this search 
direction to improve the efficiency. It can be shown as: 

 )1()()()( −+−= kkkk dcd β       k=1, 2, 3… (7) 
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The first search direction is: 

 )0()0( cd −=  (9) 

At the first search direction, it is the same as the Steepest Descent Method because no last search direction can be used. 
Thus, the first two solutions of them will be the same. 

2.2 Hessian-based methods 

Taylor’s series expansion for the objective function f(X) at the point X(k) can be expressed in detail: 

 2
)()()()()()( )()(

2
1)()()( RXXHXXXXcXfXf kkTkkkk +−−+−⋅+=  (10) 

where H(k) is the Hessian matrix of the objective function at point X(k) and R2 is the remainder term. Ignore the remainder 
term, equation (10) can be simplified as: 

 XHXXcXfXf kTkk ∆∆+∆⋅+= )()()(

2
1)()(  (11) 

The optimum design problem becomes finding ΔX that causes minimum f(X). As solving it with analytic methods, set 
the first differential equation equal to zero and solve it. 

 0
)(
)( )()( =∆+=

∆∂
∂ XHc

X
Xf kk  (12) 

Then, )(1)( kk cHX
−

−=∆  (13) 

It can be used as the search direction in the iteration k. These kinds of methods are called Hessian-based methods 
because they use the Hessian matrix of the objective function to decide the search direction. Using equation (10) to 
approximate f(X) is more accurate than using equation (3). Thus, the searching will be more efficient in general case. For 
some applications, calculating Hessian matrix may be tedious or even impossible, and sometimes the Hessian matrix will 
be singular. Therefore, some methods overcome these drawbacks by generating an approximation for the Hessian matrix 
and its inverse. 
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2.2.1 DFP Method 

DFP Method [11] generates an approximate inverse of the Hessian matrix of f(X). Its search direction is shown as 
follows: 

 )()()( kkk cAd −=  (14) 

where )()()()1( kkkk CBAA ++=+  (15) 
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 )()()( kkk ds α=  (18) 

 )()1()( kkk ccy −= +  (19) 

 )()()( kkk yAz =  (20) 

A(0) is set as the identity matrix at beginning. 

2.2.2 BFGS Method 

BFGS Method11 generates an approximation of the Hessian matrix of f(X). Its search direction is shown as follows: 
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HA
(0) is set as the identity matrix at beginning. 

2.3 Non-gradient-based method 

Genetic Algorithm is used to solve the optimum design problem in many applications because it is suitable for different 
problem, such as discrete design variable problem and the problem that the objective function gradient can not be 
calculated, because it does not use the gradient information of the problem. Its solving process is much different from 
gradient-based methods and Hessian-based methods. At beginning, it generates many individuals, i.e. solutions, 
randomly and these individuals are called a generation. The individual number is called the population size. The 
objective function value of every individual will be calculated, and the individual has a good objective function value 
will has high probability to generate individuals of the next generation. The operators used to generate new individuals 
are called crossover and mutation12. These operators simulate the propagation process in the nature and this is the reason 
why it is called the “genetic” algorithm. The solving process will be stopped when the predetermine generation number 
is complete, and the best individual of all is the optimum solution of Genetic Algorithm. 

3. RESULTS AND DISCUSSION 
The real light intensity detected by the equipment is transferred to voltage as shown in Fig. 2(a), and Fig. 2(b) shows the 
light intensity contour. 
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Fig. 2. (a) Light intensity (b) light intensity contour 

The center circles are the light intensity in the fiber with 9μm diameter. The light intensity will multiply minus 1 later 
because the optimum design problem is formulated as finding the minimum objective function value. Before starting to 
search the optimum connection position, fibers will be aligned roughly first and the rough alignment may be on any side 
to the optimum connection position. Thus, cases with different points will be used as initial solutions in the solving 
process. The case I uses (X, Y) = (8, 10) as the initial point, and the case II uses (X, Y) = (10, 8) as the initial point. The 
results are shown in Table 1. 

Table 1. (a) Data of case I (b) data of case II 

 
The “function calls” is the number of calculating the objective function value and they usually cost most of the time in 
the solving process. Thus, it can be used to evaluate the efficiency of solving methods. But the iteration number will be 
better used when comparing the direction searching methods because the function calls depends on not only the direction 
decision but the one-dimensional search process. 

The iteration number of Conjugate Gradient Method is the same as Steepest Descent Method in case II, but they are very 
different in case I. In case I, the search direction of Steepest Descent Method in iteration 1 points to the optimum 
solution closely, as shown in Fig. 3(a), and the norm of the objective function gradient of iteration 1 is larger than 
iteration 0, as shown in Table 2. Therefore, the β(1) is large and the effect of the last search direction is also large when 
using Conjugate Gradient Method. Thus, the search direction will not point to the optimum solution and the efficiency 
will be reduced, as shown in Fig. 3(b). In case II, the initial point of iteration one is close to the optimum solution and the 
objective function norm is small, as shown in Table 2. Therefore, the β(1) is small, and the Conjugate Gradient Method 
degenerates to Steepest Descent Method, as shown in Fig. 3(d)(e). 

(a) (b) 

(a) 
Case I Function calls Iteration number Objective function value 

Steepest Descent Method 505 4 -4.892 
Conjugate Gradient Method 1045 11 -4.889 

DFP Method 504 5 -4.892 
BFGS Method 398 5 -4.892 

(b) 
Case II Function calls Iteration number Objective function value 

Steepest Descent Method 324 3 -4.892 
Conjugate Gradient Method 324 3 -4.892 

DFP Method 276 3 -4.892 
BFGS Method 276 3 -4.892 
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Fig. 3. Searching pass of solving methods (a) Steepest Descent Method in case I (b) Conjugate Gradient Method in case I (c) 

DFP Method in case I (d) Steepest Descent Method in case II (e) Conjugate Gradient Method in case II (f) DFP Method 
in case II 

Table 2. Objective function norms of Steepest Descent Method and Conjugate Gradient Method 

 
With the similar reason, the search direction of DFP Method will be modified far from the Steepest Descent Method’s, as 
shown in Fig. 3(c), by approximate inverse Hessian matrix in case I and the efficiency will be decreased. 

The Genetic Algorithm is also used in this study and the results are shown in Table 3. 
Table 3. Results of Genetic Algorithm 

 
The population region is set as a square and it is from (X, Y) = (80, 80) to (120, 120). The total individual number is set 
as 400 because the function calls in case I and case II are about 300 to 500. The results of Genetic Algorithm are not 
better than the results of gradient-based methods and Hessian-based methods, but they are good enough because the 
differences are less than 0.3%. Although the Genetic Algorithm is workable, it is difficult to enhance the efficiency of 

 ||c(0)|| ||c(1)|| β(1) 
Case I 0.044 0.073 2.705 
Case II 0.076 0.007 0.008

 
(a) (b) (c) 

(d) (e) (f) 

Objective function value of the best individual Population size Generation First time Second time Third time 
40 10 -4.883 -4.879 -4.890 
20 20 -4.884 -4.890 -4.890 
10 40 -4.884 -4.885 -4.889 
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Genetic Algorithm. On the contrary, enhancing the efficiency of gradient-based methods and Hessian-based methods is 
easily. As shown in Table 1, the solving process only has about 4 iterations and it means most function calls are 
happened in the one-dimensional search. Thus, enhancing the efficiency of the one-dimensional search is helpful for 
enhancing the efficiency of the fiber alignment. 

4. COLCLUSIONS 
The core diameter of the single-mode fiber is about 6µm to 9µm. Any slight misalignment or deformation of the optical 
mechanism will cause signification optical losses during connections. The optical fiber alignment problem is a typical 
unconstrained optimum design problem. This study uses different optimum methodologies: non-gradient-based (Genetic 
Algorithm), gradient-based (Steepest Descent Method and Conjugate Gradient Method), and Hessian-based methods 
(DFP Method and BFGS Method), to find the optimum position. Therefore, conclusions can be summarized as follows: 

1. The iteration number of Steepest Descent Method is small because the light intensity distribution is similar to 
Gaussian distribution. 

2. The Steepest Descent Method is better in the alignment problem because the iteration number is small and any 
modification of the gradient information will let the search direction far from the optimum point. 

3. A good one-dimensional search method is important in the fiber alignment problem because the iteration number of 
solving process is small and most function calls are happened in the one-dimensional search. 

4. Genetic Algorithm is suitable for the fiber alignment problem but it is difficult to enhancing the efficiency. 
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