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ABSTRACT 

We consider the iterative solutions of a certain class of algebraic matr ix  Riccati 
equations with two parameters,  c(0 < c < 1) and c~(0 < a < 1). Here c denotes 
the fraction of scattering per collision and a is an angular shift. Equations of 
this class are induced via invariant imbedding and the shifted Ganss-Lengendre 
quadrature formula from a "simple t ransport  model." 

The purpose of this paper is to describe the effects of the parameters  c, 
a,  and N (the dimension of the matrix) on the convergence rates of the it- 
erative solutions. We also compare the convergence rates of those i terative 
methods. 

1. I N T R O D U C T I O N  

Cons ide r  t he  a lgebra ic  m a t r i x  Ricca t i  equa t ion  of the  form 

B - A S  - S D  + S C S  = O. (1) 

Here A, B,  C,  and  D are mat r ices  of a p p r o x i m a t e  d imens ions  having  the  
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following structure: 
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1 1 1 
A N - x N -  = diag c ( w ~  + a )  ' c ( w  2 + @ ' ' ' ' '  c ( w ~ _  + a )  

where 

1 

1 

c~ c~ c)_ ] 

:= DA -- ia T,  

1 

i =  • ; 

1 
. ° 

[ 1 1 1 ] 
D N + x N +  diag c (w+ 1 _ a )  ' c ( w  + - c~) ' " " " ' c(w++ - a )  

: t_  c~ 4~+  
2 ( ~ t  - ~)  ' 2 ( , 0 2  - ~)  ' " " 2(~+~+ - ~ )  

T i  T 

:= DD -- diT; 

B = iiT; 

and 

C = da T. 

Equation (1) contains two parameters c and a. Here c denotes the average 
total number of particles emerging from a collision, which is assumed to be 
conservative, i.e., 0 < c < 1, and a(0 < a < 1) is an angular shift. The 
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dimensionally dependent quantities w~- and w + denote the Gauss-Legendre 
sets on [ - a ,  1] and [~, 1], respectively; and c[  and c + are, respectively, their 
corresponding weights. Such equation is induced via invariant imbedding 
(see, e.g., [1, 2]), and the shifted Gauss-Legendre quadrature formula (see, 
e.g., [3]), from a "simple t ransport  model" [4, 5]. 

For a = 0, two iterative procedures, one corresponding to a nonlinear 
version of the Gauss-Jocobi  method (G J) and the other associated with a 
nonlinear version of the Gauss-Seidel method (GS) were proposed, respec- 
tively, by Shimizu and Aoki [6], and Juang and Lin [7]. Sufficient conditions 
for the convergence of the GJ  and GS methods were given in [8] and [7], 
respectively. I t  was noted (see [9, Table 2]) that  those sufficient conditions 
would fail if c is not far away from 1. And it was also observed (see [9, 
Theorem 1]) tha t  both  iterations converge as long as (1) with c~ = 0 has a 
nonnegative solution (in the componentwise sense). Such observation can 
be easily extended to the case tha t  a ~ 0. Physically, one would expect 
tha t  (1) has a nonnegative solution for all 0 < c < 1 and 0 <_ ~ < 1. This 
is recently proved in [10]. Therefore, we shall not be worried about  the 
problem of convergence in this article. 

The purpose of this work is to analyze the behavior of the conver- 
gence rates of GJ and GS as parameters  c, a and N + vary. In partic- 
ular, we show tha t  for fixed ~ and N + two methods GJ and GS con- 
verge slower as c increases, and tha t  for fixed c and N +, GJ  and GS 
converge faster as c~ increases on [c~*, 1], for some 0 < ~* < 1. Some 
estimates for the convergence rates of both methods are obtained. Fur- 
thermore,  we show tha t  the GS method indeed converges no slower than  
the GJ  method. Finally, some numerical results and concluding remarks 
are presented. 

Since for c~ ~ 0 and c ~ 1, such iterative procedures are extremely 
slow, the relaxation methods, such as the Jacobi overrelaxation (JOR) and 
successive overrelaxation (SOR) methods, are more desirable. However, 
the convergence of the relaxation methods is difficult to prove. Moreover, 
the search for the optimal  w could be too expensive to be practical. Our 
analysis shall be a step forward toward understanding the phenomenon of 
the slow convergence as c ~ 1 and a ~ 0, and can be hopefully put to use 
in developing bet ter  algorithms such as multilevel methods. 

2. FORMULATION 

We first rewrite (1) as 

DAS + SDD = B + iaT S + Sid T + SCS.  (2) 
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In component form, (2) is 

¢(Wi- +O0(W~---O0 I 1 Nk~ 1 C k S k j  
Sij = i ~  -+w--S)" 1 + ~  : (w k + ( ~ )  

[ ][ ] 1 N -  c ~ S k j  1 + e k Sik 
:=c r i j  1 + ~  (w~-+(~) I + ~ E  (w+_(~ )  

= k=l 

:= W J S i j .  

The Gauss-Jacobi iteration is then defined as follows: 

s(P +1) _-- W j S  (p) ij  ij  " 

The Gauss-Seidel iteration can be formulated as 

CrS(P+I) 1 N -  CkDk_ j" ] 
S(p+l) 1 ~ kj 

ij = crij 1 + 2 k=l ( wk + 0/) -j- 2 =" (W k + 0~) J 

k ~k 1 t,+ K'(P) ~k ~ik 
x + + 5 

:= W s ( i , j , p ) .  

Consequently, the JOR and SOR are, respectively, 

and 

T(p+ 1) Txz ~(p) ij  z vv J o i j  , 

S (p+I) = w T  (p+I) w~S(p).  ij ij + ( 1 -  J ij , 
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1 + % Sik 
1 + ~  = (~k+--~) 

(3) 

(4) 

(5) 

(6a) 

(6b) 

T/(p+I) -- W s ( i ,  j ,  p) ,  (7a) 

S (p+I) wT(j p+I) -{- (1 \ r~(p) = - w ) ~ j  (Tb) ij 

Since we are only interested in positive solutions, the initial iteration for 
the procedures described above is defined to be 

S~ °) = 0 for all i, j. (8) 

To effectively analyze the convergence rate of both methods, the follow- 
ing transformation of Sij into Rij is essential, for reasons we shall detail 
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later. In the case of the Gauss-Jacobi,  consider the following iteration 
{ ~ , ( v ) ~ o o  . 

£tij Ip=O" 

R(p+l) [ l ~ C C - k ( w + - a ) R ~ P '  
ij = 1 +  5 wT+w ~ k=l 

N + + - "~ n(p) 1 ~ c% (W i + 0~)£Lik (9a) x 1 + 2  a''~ w ; +  + k=l Wk 

:= Uj(i,j,p) RI O) = 1 for all i,j. (9b) 

fD(P) 1oo The JOR version of the iteration t*qj Ip=O is then defined as 

T[ p+I) = Uj (i, j, p) (10a) 

R(P+ 1) wT(P+ 1) ij = ij + (1 _ WJ£LiJ'n(P) (lOb) 

RI°)= 1 for all i,j. (10c) 

~f R(P) o~ Similarly, the Gauss-Seidel and the SOR forms of the iteration ~--ij }v=O 
can be formulated, respectively, as follows: 

R(P+l) [ 1 ~ cck-(w + -  c~)R (p+I) 1 ~ cck-(w + -  o~) R(*}).] 
0 = 1 + ~ k=l w-'-J + + w---~ + 2 k=i w+ + wV J 

[ 1 ~ CCqk(W'~ +OL'R(p+I), ik 1 gk~ j cc + (wf._ + a) ttik''-'(P)- 
x l + ~ k = l  w~-+w+k + ~ = wi + w+ 

( l la )  

: =  u (i,y,v) R} O) = 1 for all i,j; ( l ib )  

and 

T(p+ 1) 0 = Us(i,j,p) 
~ n(p) R(P+I)ij = wT(P+I) + (1 - w)nij 

R!_°.) = 1 for all i,j. 

(12a) 

(125) 

(12c) 

REMARKS 

(1) The existence and multiplicity of the positive solutions of (1) have 
been addressed in [10]. Since the iteration procedures defined by (4), 
(5), and (8) are monotonically increasing, any positive solution of (1) 
is an upper bound for both iterations. Therefore, the convergence 
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of such iterations as well as the iterations defined by (9) and (11) 
(p) 

are assured. We shall denote the limits of the iterations {Sij }p=O 
(P) oo (OO) (OO) and {R~j }p=0 by S~j and Rij , respectively. 

Here, the matrix R (~) = ( R ~ ) )  is a positive solution of the follow- 
ing equation: 

1 N- cc k (w + _ ~)Rkj  1 cc k 
J 1 +  

R , j =  = w;  = w;+ k + 

(13) 

(P) for all i , j ,  and p, we conclude (2) Noting, via induction, that  Sij >_ Sij 
that  S (~) = (S!~)~ is the minimal positive solution of (1) in the x - 7 , .7  , "  

sense that  if S is any positive solution of (1), then Sij _> Si (~) for 
all i , j .  Similarly, R (~) is the minimal positive solution of (13). 

r , ( p ) l ~  and {S}~)}p=0 are The relationship between the iterations t;t~j ~fp=O c ~  

provided by the following lemma: 

LEMMA 1. The Gauss-Jacobi, Gauss-Seidel, JOR, and SOR versions 
r a(p) l ~  of toij  Ip=o are, respectively, related to those of {RI p) }p=0 by the following 

formula. 

S(P+I)ij = crij~tijn(p) for all i , j  and aUp = O, 1,2, . . . ,  c~. (14) 

Consequently, for each i, j the iteration {S} p) }~=o enjoys the same conver- 
• (p)  

gence rate as its corresponding iteratwn { R~j }p=O. 

PROOF. Since the proof leading to the assertion of the lemma for each 
iterative procedure is the same, we shall only illustrate the SOR method. 

For p = 0, and i , j ,  clearly, 

S}1 ~_ D(0) 
) : c r i j  -~- ¢ : l i j x t i j  . 

Suppose (14) is true up to p = n + 1, and i _< k - 1 and j _< l - 1. Then 

S(~ +1) = wWs(k ,  ~, n) + (1 - w)S(~ ) 

crktwUs(k,g,n 1) + (1 .~_ ~(n-1) = - -  - -  "w}c.-I  k £ . q . k ~  

= crk t (wT~  ) + (1 - wlR~? -1)) 
A_ D ( n )  
(..-I k £ 1 C k , l  . 

The second equality above is justified by the induction hypothesis. This 
proves the first assertion of the lemma. The last assertion of the lemma 
now follows from (14). • 
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W-- N -  To further simplify the notation, the quadrature sets { ~ } i = 1  and 
r + ' , N  + {wi )i=l and their corresponding weights {c~-}~N__l and {c + N+ }i=1 over the 
intervals [ - a ,  1] and [a, 1], respectively, are to be normalized into the stan- 
dard interval [-1,  1]. In particular, s u p p o s e  { x  i- }i=lN- and S~+IN+ are the t'~i li=1 
quadrature sets and - N -  / , 4 + l . N  + {d~ }i=l and tm Ji=x are their associate quadrature 
weights over the interval [-1,  1]. Then, for all i, 

w~- = 1 - o ~ + x ~ ( l + a ) 2  ' w+ = l + ~ + x + ( 1 - a ) 2  (15a) 

c~- = (1 +2a)d~- , c+ - (1 - 2  a)d+ (15b) 

Without  loss of generality, we shall assume henceforth that  

- 1  < x  + < x  + < . . .  < x++ < 1  and (16) 
- 1  < x  l < x  2 < . . . < x  N_ < 1 .  

Substituting (15) into (9), (10), (11), and (12), respectively, we obtain, 
respectively, 

~j = 1 + ~ = 2-~-~x~-0 --~-) + - - x - ~ l ' ~ ; ) J  

k~l + 2 - (P) (i )(1 + l 

:= c - - (P) 1 +  E d k  +fi(xk+ (P) (17a) 1 + -~ E dk gj(xk )RkJ 4 )Rik 
k = l  k = l  

:= "Uj(i,j,p) RI °) = 1 for all i,j; (17b) 

and 
T (p+I) = -Ua(i, j, p) (18a) ij 

"'~(P) (18b) R (p+I),j = wT (p+I) + (1 - w)n~j 

RI°)= 1 for all i,j; (18c) 

R(~+I) c c + + (p) 

k = l  k=i 

× 1 + 4 k : l c  E d-kgj(x-k)R~ p+I) + -4 Ek=j d;g~(x-k)R~) (19a) 

:= -Us(i,j,p) R~ °) = 1 for all i,j; (19b) 
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and 

T(i p+I) =-Us( i , j ,p )  

R(p+ 1) wT(P+ 1) ij ~j + (1 ""(P) = - -  W ) 1 ~ i j  

R l ° ~ -  - 1 for all i , j .  

We shall henceforth work on the equations (17)-(20). 

(2oa) 

(2Ob) 

(2Oc) 

3. THE MAIN RESULTS 

Our objective in this section is to study the effect of parameters c, a and 
that  of the dimension on the iterative procedures defined by (17)-(18). 

LEMMA 2. Let {RlP)}p= o be the sequence defined by (17), and let ~(p) c c  - m a x  : = 

"~(P) and-(P) • n(p) Then the following holds: m a x i , j l ~ i j  , l - m i  n : :  m l n i , j l ~ i j  . 

(i) For fixed i, j, a, and g +, then RI p) is increasing with respect to c for 
p =  1 ,2 , . . . , oc .  

(ii) For fixed c, a, and j, R} p)~z is increasing with respect to i for all p = 

1 , 2 , . . . ,  c~. Likewise, RI p) is increasing with respect to j for all fixed 
c ,a , j ,  andp.  Here p = 1 , 2 , . . . , c c .  

(iii) For fixed c and N +, there exists an a*, where 0 < a* < 1 such 
that R} p) is decreasing with respect to a on [a*, 1] for all i , j  and 
p =  1 ,2 , . . . , c~ .  

(iv) For a = O, N -  = N +, R (°~) is a symmetric matrix. 

PROOF. The assertion of (i) and (ii) follows from (17a) and an inducti- 
on on p. To see (iii), differentiating fi (x +) with respect to a, we obtain that  

of~(x~ ~ , :1  

(1 + x : )  r(x+L j - x~-)~ 2 - 2~(2 + x :  + ~+) + ( x f  - x : ) ]  

(2 + x [ (1  + a) + x+(1 - a))  2 a=, 

- 4 ( 1  + x0  2 
= ( 2 + x ; ( l + ~ ) + x ~ ( 1 _ ~ ) ) 2  <0.  

Similarly, Ogi(x;)/Oa[a=l < O. 
An induction on p from (17a) will give /iii) as asserted. To prove (iv), 

• ( p )  (P)  we see, again, that  an induction will give Rij = Rji for all i, j and p, and 
(o~) 

hence R}~ ) = R j i  . • 
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REMARKS. (1) From computational data, it is expected that  for i _< j, 
RI~ ) is decreasing in a on [0, 1], and that  for i > j, R ~  ) is increasing in 
on [0, K] and decreasing in ~ on [~, 1]. Here ~ depends on i, j and is in 
between 0 and 1. (2) Similar assertions to (i)-(iii) of Lemma 2 hold for the 

fD(P) lOO iteration l~ij Ip=0 defined by (19). 

r r ) (P)  l c~ Let lnij Ip=O be the sequence defined by (17), and recall that  {R~P)}~= 0 

converges monotonically upward to the minimal positive solution R ~  ) of 
(13). Set 

R I ?  > - R ly  > :=  el~ > (21) 

so that  

e (P+ l )  c 
i j  ~ 

N -  N + 

E _ _ (p) c x- - ' ,+~  ~x+~ (p) dk gj(x k )ekj + ~ ~ ak Ji~ k )eik 
k = l  k = l  

+ + (~) - ( ~ >  ~ d k ~ ( X k ) R ~ k  
k = l  

k = l  \ k----1 

c c + x+ (~) _(p) <_ ~ Z d ; g 3 ( ~ ; )  l + ~ d ~ f ~ (  k ) n ~  ~3 
k = l  k = l  

C C _(p) 

k = l  k = l  

N -  N + 

"--'-- - 4 ~ (fikgj)eik . (22) + -: V '  - - (~) 
4 

k = l  k = l  

Let E = ( e l l , e l 2 , . . . , e l N + , e 2 1 , . . - , e 2 N + , e 3 1 , . . . , e N - 1 , . . . , e N - N + ) T -  The 
inequality (22) can be written as 

E(p +1) _< GjE (p). 

Here Gj is a large and sparse matrix with the following structure; 

I 
Dll + B1 D12 . . . . . .  D 1 N -  ] 

O.21 D22  ÷ B 2  . . . . . .  

c 
a j  = ~ ::i  ::: 

1_ DN-1 DN-2 . . . . . .  D N - N -  ÷ B N -  N + N - x N + N  - 
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where Dij = diag [gjlfi ,  gj:- f i , . . . ,  gj+fi],  and Bk = (gi~j)N+ xN+- In the 
case of the Gauss-Seidel iteration, one can similarly obtain that  

i-1 j-1 
el~+l) _ 4c ~--~(gkjfi)ekj~"~'~ - 7 ,  (p+l) 4C E-(f/k~'~J'~e(P+l)ik 

k=l k=l  

N -  N + 
c - - (v) c - _ (~) (23) <- 4 E ( g k j f i ) e k j  ÷ 4 

k=i k=j  

Let G j  = D ÷ L + U, where L and U are strictly lower and strictly upper 
triangular matrices of Gj .  Then (23) in the matrix form is 

E(v +1) < G s E  (p), 

where G8 = ( I -  L ) - I ( D  + U). 

DEFINITION 1. The convergence rates of the Gauss-Jacob± and the 
Gauss-Seidel methods are defined to be the spectral radii p(Gj)  and p(Gs) 
of Gj  and Gs, respectively. To emphasize the dependency of p(Gy) on the 
parameters, we shall denote p(Gj) by CGJ(c, ~, N±).  Likewise, p(Gs) by 
CGS(c, a, N+).  

REMARK. As noted earlier the iterations defined by the Gauss-Jacob± 
and the Gauss-Seidel methods converges to the minimal positive solution 
of (13). Therefore, it is reasonable to assume from hereafter that  p(Gj)  
and p(G8) are no greater than 1. 

We are now ready to state our first main result. 

THEOREM 1. 

(i) For fixed c, c~ and N ±, the Gauss-Seidel iteration always converges no 
slower than the Gauss-Jacob± method, i.e., CGJ(c,c~,N ±) >_ CGS  
(c,c~,N±). 

(ii) For fixed c~ and N ±, CGJ and CGS are increasing in c. 
(iii) For fixed c and N ±, CGJ and CGS are decreasing in o~ for c~ E [c~*, 1], 

where ~* is as in Lemma 2(iii). 

PROOF. We first note that  G j  and Gs are nonnegative matrices (in the 
componentwise sense). It follows from the well-known Perron-Frobenius 
theorem that  p(Gs) is an eigenvalue of Gs. Let p(Gs) = ,k _< 1, then there 
exists a vector E ~ 0 such that  

(I  - L ) - I ( D  + U ) E  = )~E. 
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Hence, 

(AL + D + U)E = AE. 

Since G j  > AL + D + U, we conclude t h a t  

p(Gj)  > p(AL + D + U) >_ A. 

The  second and the  last  assert ions of the  t heo rem are direct  consequences 
of L e m m a  2 and the  Pe r ron-Froben ius  theorem.  • 

REMARK. The  numerical  results suggest  t h a t  a* = 0. 

L E M M A  3. 

(i) maxl<_j<g+ jgj  (x) = gg+ (X), maxl< i<  N- f i (x)  = f g -  (X). 
(ii) N -  N + + + ~ k = l  d-kgj(xk ) and ~'~.k=l dk f i (xk ) converges up to f1_1 gj(x) dx and 

fl_ 1 f i (x )  dx, respectively, as N + ---+ oc. 

(iii) sup l<N+<o ~ maxl<_j<N+ f_l I gj(x) dx = limj-~N+ fl_ 1 g j ( x ) d x  = 2 ( 1 -  
~)en 2/(1 - ~) := a(~). 

(iv) suPl<_N_<o o max l< i<  N- fl_l f i ( x ) d x  = limi--.N- fl_ 1 f i ( x ) d x  = 2(1+  
a ) e n 2 / ( 1  + a )  := F ( a ) .  

PROOF. A direct calculat ion will give the  assert ion of L e m m a  30).  To 
see (ii), we note, (e.g., see [(3, 5.3.29)] t ha t  

1 N 

f h(x) dx - Z dkh(~k) EN(h)  
J -  1 k=l  

22n+1(n!) 4 h(2n) (r~) 

(2n + 1)[(2n!)]2 (2n)! 

The  assert ion of the  L e m m a  3(ii) now follows f rom the above error  formula.  
T h e  proof  of (iii) and (iv) is similar,  we i l lustrate only (iv). 

Let  Yi = (1 + a) (1  + xi).  Then  

1 
f_ f~(x) dx en (1 + ~)x~ + (3 - ~) (1 + C~)(1 + Xi) 

z (1 + o~)(1 + xi)  

= Yi gn yi + 2 - 2a := H(y~). 
Yi 

Now, 

dH 2 - 2(~ 
dyi ~n(yi + 2 2a)  ~n yi Yi + 2 - 2c~ 
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and 

dYi (Yi + 2 -- 2ct) 2 (Yi + 2 -- 2ct)yi <- O. 

Since 0 _< xi _< 1, we have t h a t  0 _< y, _< 2(1 + c~). Therefore,  the  m i n i m u m  
of dH/dy~ occurs at  Yi = 2(1 + c~). Hence, dH/dyi  >_ dH/dyily~=2(l+c,) = 
fn  2 - ~n(1 + c~) - (1 - c~)/2 >_ 0. Therefore,  H is increasing in xi. More- 
over, xi are zeros of  Legendre polynomial ,  so t ha t  XN- -* 1 as N -  --* oo. 
Consequently,  

f__i sup m a x  f i (x)  dx = sup H( (1  + a) (1  + Xl)) 
l < N - < o c  I < N < N -  1 I < N -  <oo 

= , ( 2 ( 1  + Ol))= 2(1 + o l ) g n ( 1 - ~  ) .  II 

In the  following, we are to obta in  upper  and lower bounds  for CGJ(c ,  c~, 
+ N ) .  Using (22) and L e m m a  3(i), we see immedia te ly  t h a t  

N -  N + 
C 

)(fJ% + e(P+I) < ~ /~,~"~{gkg+ - -  (P )  C ( p )  ~ - -  
i j  - -  

k=l  k = l  

N = N + 
C 

- 4  
k=l  k = j  

(24) 

Let  rank  one matr ices  M 2  and N2 be defined as follows: M2 ----- ( ? N -  

g j g + ) N - x N -  and N2 = ( fN-(gg+)N+xg+,  then  (24) gives the  following 
form: 

E (p+D < GE (p), 

c M where G = ~( 2 × I + I × N2). The  nota t ion  x denotes  the  Konecker  
p roduc t  (see, e.g., [1, p. 235]). Noting t ha t  M2 and N2 are matr ices  of 
rank  one, we conclude t h a t  

and 

+ + (~) (25a) c Z dk IN-(xk)R -  p(M2) = k=lE d;gN+ (x k 1 Jr- ~ k=l  

= dk fN -  (X 1 
[ k = l  

c - x -  (~) 

k= l  
(25b) 
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It follows from the fact 0 _< Gj < G that 

c M CGJ(c , a ,N  +) <_ ~ ( p ( 2 ) )  +p(N2)). 

As Y + ~ c~, we see that c/4(p(M2)) + p(N2) approaches 

(I - ~2)c2 C[F(~) + G(~)] + 
8 

× 3+c~+y,(l_c~)dY '+ ,3_~Tx,-(1-+c~) dx' 

:=  U(c, ~, ~).  (26) 

Here F(a)  and G(c~) are defined as in the Lemma 3, and R(x, y) satisfies 
the following nonlinear integral equation: 

R(x,y)= (1+ c(1-c~2) 12 + y_~ll__~) ~x~(l +c~) + y)R(x',y) ) 

1 2 + x ( l + c ~ ) + Y ' ( 1 - ~ ) d Y '  . (27) 

Noting that max-l<~,y<l R(x, y) = R(1, 1), we see that (26) is bounded 
above by 

c [  G(~) + F((~) + 4 cR(I'I---~)G(c~)F(~)] " 2 (28) 

Similarly, replacing M2 and N2 by M1 = (?lgjl) and Yl = (~igl) ,  
respectively, one would conclude that 

p(M1) + p(N1) <_ CGJ(c, c~, n+). 

Here 

cZd:f (xk p(M1) ~- E d;gl(x; 1 + -~ )Rlk 
k = l  k = l  

(29a) 

+ c dZgl(x;)R 7) p(N1) = E d k f l ( x  1 + -~ 
k = l  k = l  

(29b) 
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We summarize the above results in the following theorem: 

THEOREM 2. 

(i) p(M1) + p(N1) <_ CGJ(c ,~ ,N  +) ~_ p ( M 2 ) +  p(N2), where p(M2), 
p(N2), p(M1) and p(N1) are defined in (25a), (25b) and (29a), (295) 
respectively. 

(ii) CGJ(c,~, c~) <_ U(c,(~, oc) < c/4[G(a)+r(~)+R(1,  1)F(~)G(c~)/2], 
where U(c, c~, c~) is defined as in (26). 

REMARKS 

(1) For N ± = 1,c = 1 and a = 0, (17) reduces to 

R (p+l) = 1 + - -  (30a) 

R (°) = 0. (30b) 

A simple calculation would give tha t  {R (p) }~°= 0 converges extremely 
slowly to the exact solution R = 4. In this special case p(M1) -~ 
p(N1) = p(M2) = p(N2) = 1/2, and hence CGJ(1 ,0 ,1)  = 1; this 
indeed, suggests that  the entire scheme almost stalls. 

(2) When c ~ 1 and a ~ 0, the upper bound for CGJ(c,  a ,  N+) ,  N + = 
1 ,2 , . . .  , ~ ,  is not as good as when c ~ 0 and a ~-. 1. 

(3) If  the convergence rate analysis were to proceed without using the 
transformation (14), then we shall accordingly obtain f i (w +) -- 
1/(w + - a) and gi(wk) = 1/(w; + a), both of which are then not 
even integrable over [a, 1] and I - a ,  1], respectively. 

We shall next consider the asymptotic  rates of convergence of the GJ  
method as N + = N -  --~ oc. Consider the following iteration: 

12 dy '  , 

:= Uj(x,y,p), R(°)(x,y) = 1. 

Suppose (27) has a positive solution R(x, y). Then the monotonically 
increasing sequence {R (°) (x, y)}p=, has an upper bound R(x, y). Therefore, 
R(P)(x, y) converges to a limit, say R(~)(x, y), which is a solution of (27). 
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Let e (p) (x, y ) : =  R (~)(x,  y) - R (p) (x, y). 
Then a similar procedure as done in (22) will give 

x 1 +  1 2 + y ( l _ o ~ ) + x , ( l + t ~ ) d x '  

x [1 + c(l - ~2) f4 l 2 +(e+x)R(~)(x'Y')x(l 7 ~-+--~y' (f-- a) dy'] 
: :  (~je(p)) (x ,  y). 

Following the standard technique (see, e.g., [11, Theorem 8.7-5]), one will 
be able to show that  G: X -~ X, where X = C([0, 1] x [0, 1]), is a linear 
compact integral operator. Moreover, the calculations similar to those in 
Lemma 3 will give 

IICJII _< U(c,c~,oo). 

REMARK. We would expect that  the spectral radius of Gj as N gets 
larger would be a good approximation of that  of Gj. 

We shall conclude this section with the following example: 
Let N -  = N + = 2, then 

{D11 + B1 D12 ) 
G j  = ~ D21 D22 + B2 

---- J g2f11 

By noting that  

7i = -gi 
-~. : f .  = ½ 

g l f ] 2  g21fl 
gl2fl J- g2f12 0 

N 

0 g21f2 q- gl/21 

for i = 1,2, 

f o r /  = 1,2, 

for i , j  = 1,2 and i # j, 
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gij ~- gji  -'~ f j i  ~- f i j  -- 1 for i ¢ j ,  

we conclude that  each of the column sums of G j2 is equal to c / 2 ( f  1 + f2) ,  
and hence p(Gj~) = c/2(-f  I + ']2). 

4. NUMERICAL EXAMPLES AND CONCLUDING REMARKS 

We provide the following tables: 

TABLE 1 

~ = 0 . 1  AND N -  = N  + - - 3  

c GJ GS J O R / w  S O R / w  UB LB CGJ CGS 

c = 0.1 10 9 8/1.03 7/1.02 0.069 0.025 0.051 0.028 
c = 0.2 13 11 10/1.07 9/1.03 0.143 0.051 0.105 0.059 
c = 0.3 16 13 11/1.11 10/1.07 0.223 0.078 0.162 0.094 
c = 0.4 19 15 13/1.15 11/1.09 0.312 0.106 0.224 0.138 
c = 0.5 22 18 15/1.20 12/1.13 0.411 0.134 0.290 0.189 
c = 0.6 27 21 18/1.24 14/1.17 0.525 0.164 0.364 0.251 
c = 0.7 34 26 22/1.29 16/1.25 0.659 0.196 0.448 0.329 
c = 0.8 44 33 27/1.40 20/1.32 0.826 0.229 0.546 0.428 
c = 0.9 66 48 38/1.53 26/1.50 1.060 0.266 0.673 0.570 
c = 1.0 263 186 140/1.84 88/1.99 1.584 0.312 0.913 0.877 

TABLE 2 

c = 0 . 9  AND N = 3  

c~ GJ  GS J O R / w  S O R / w  UB LB CGJ CGS 

= 0.0 68 50 40/1.52 28/1.49 1.081 0.269 0.684 0.582 
= 0.1 66 48 38/1.53 26/1.50 1.060 0.266 0.673 0.570 
= 0.2 59 44 36/1.47 24/1.46 1.001 0.258 0.644 0.536 

a = 0.3 51 38 31/1.45 22/1.40 0.915 0.244 0.600 0.486 
= 0.4 44 33 27/1.39 20/1.32 0.810 0.225 0.544 0.427 

a = 0.5 37 28 24/1.30 17/1.28 0.695 0.202 0.480 0.363 
= 0.6 30 24 20/1.26 15/1.22 0.573 0.174 0.409 0.296 
= 0.7 25 20 17/1.20 13/1.17 0.446 0.141 0.331 0.230 
= 0.8 20 16 14/1.14 12/1.10 0.313 0.102 0.242 0.164 
= 0.9 14 13 11/1.08 10/1.05 0.169 0.056 0.138 0.092 
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TABLE 3 
c----0.9 AND c~:0.1 
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Dim. GJ GS JOR/w SOR/w UB LB CGJ CGS 

N =  2 65 52 38/1.53 26/1.65 0.991 0.409 0.673 0.599 
N =  3 66 48 39/1.53 26/1.50 1.060 0.266 0.673 0.570 
N =  4 66 46 39/1.53 26/1.46 1.088 0.187 0.673 0.552 
N =  5 66 44 39/1.53 26/1.42 1.102 0.140 0.673 0.539 
N =  6 66 43 39/1.53 26/1.40 1.110 0.109 0.673 0.530 

Here the column of GJ denotes the number iterates necessary to solve (13) 
within the prescribed error by the Causs-Jacobi method. Likewise for GS, 
JOR, and SOR. The stopping criterion for all the iterative processes is 

R(m+l) (m) 10_1] " maxi,j  --ij -- Ri j  ] < The optimal w in the fourth and fifth 
columns are obtained by trial and error. The columns of UB and LB give 
the upper and lower bounds for the convergence rate of the GJ method, 
which are given in Theorem 20). The eighth and ninth columns of Table 1 
gives the numerical convergence rates of the GJ and GS methods. It is 
estimated by using the quantity maxi,j = [RI? +1) _ Ri  j(m) [/]Rij(m) _ Ri  j(m+l) ]. 

Based upon the results presented here, the following related matters 
would appear to warrant further investigation: 

(1) It appears numerically that the smaller a is the slower the conver- 
gence is. However, we are unable to prove this at this point. 

(2) From Table 3, it appears that the choice of the optimal w is very 
insensitive to the dimension of the matrix. The advantage of such 
observation, if confirmed, is apparent. 

(3) Although our examples only deal with small dimension, (1) or (13) 
is indeed large, dense, and nonlinear. And the convergence rates of 
the G J, GS, JOR, and SOR methods are not satisfactory for c ~ 1 
and c~ ~ 0. Therefore, how to accelerate the iteration, and/or  how 
the multigrid methods can be brought in is of great interest. 

(4) It would be also interesting to analyze the errors produced by the 
discretization of the continuous model, such as (27), as well as those 
created by iterative procedures together. 

The first author (J.J) wishes to thank Mr. A. D. Lin ]or providing the nu- 
merical data. 
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