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ABSTRACT

In this paper, we present a multi-spectral video surveillance sys-
tem. Improved background modeling and appearance-based ob-
ject tracking are proposed with both signal-level and decision-level
multi-spectral information fusion. In addition to modeling obser-
vations in each spectral channel by a typical pixel-level mixture-
of-Gaussian-based model, we also model high level factors such
as confidence of each modality, motion, object area, and lighting
with a hierarchical probabilistic model feedback. This hierarchical
model can enhance the performance of different challenging envi-
ronment conditions, such as global illumination changes, and ran-
dom parameter failures of background subtraction. Moreover, real-
world vision problems include occlusion and merge/split are man-
aged by our non-parametric tracking methodology and appearance-
distance histogram. Our experiment in object tracking shows that
under normal conditions, our system extends the capability of sin-
gle spectral sensor, and under severe environment conditions, the
overall system performance outperforms traditional direct fusion
techniques in tracking reliability. This promising performance also
encourages us to further extend our techniques to general multi-
spectral and multi-modal surveillance.

Categories and Subject Descriptors

1.4.6 [Image Processing and Computer Vision]: Segmentation—
pixel classification; 1.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—sensor fusion, tracking

General Terms
Algorithms, Design

Keywords

Background modeling, object appearance tracking, multi-spectral
sensor, object occlusion, object merge and split, sensor fusion, video
surveillance
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1. INTRODUCTION

Background modeling and appearance-based object tracking are
important techniques which are applied commonly in video sur-
veillance. Even though with great progresses in the computer vi-
sion area, their performance and robustness are still greatly af-
fected and limited by the environment conditions especially with
typical visible spectrum sensor only. Those environmental factors
include lighting, shadow, weather, occlusion, etc. Solutions for
those performance limitations are using different spectral modal-
ities and/or using multi-sensory setups. Adding another spectral
modality within the same sensor can not only improve visual signal
reliability in normal conditions but also enhance the signal robust-
ness in challenging conditions. As the costs of infrared cameras
keep decreasing, it will be more and more appealing to deploying
multi-spectral sensors. On the other hand, multi-sensory setup will
help enhance fault tolerance at system level. It is our belief that ap-
plying multi-spectral and multi-sensory system setups will be the
final solution for reliable real-world video surveillance. In this ar-
ticle, we, however, will first only focus on applying multi-spectral
sensor information processing to enhance the robustness of back-
ground modeling and appearance-based object tracking.

A great deal of research has studied methodologies for using
multi-modal or multi-spectral separately in background subtraction
and appearance-based object tracking. Here we will review some
of them in order to have a better insight of the advantages of us-
ing our proposed approach. Stauffer and Grimson [9] proposed a
statistical framework to model the scene background. They char-
acterized each image pixel with a mixture-of-Gaussian model and
adaptively updated the model with new observations. This method
has been shown as one of the most effective approach to describe
the background, and it serves as the framework of our pixel-level
background model. However, with another sensor modality, us-
ing higher-level object information to update the background model
will be beneficial.

Javed et al. [7] presented a bottom-to-top hierarchical background
subtraction using both color and gradient information. Although
they did not use different spectral modalities, the usage of an extra
modality from gradient information is illustrative of how to fuse an-
other modality to typical visible spectrum background modeling in
the signal level and decision level. Their approach separates fore-
ground objects and updates the background model using three dif-
ferent level information from pixel, region, to frame. We consider
this work as an important framework for single multi-modal sensor
setup, and we extend the idea of signal fusion and the high level
information feedback to multi-spectral sensors specifically while
the assumptions and observations for each channel are significantly
different in our work.



Conaire at el. [1] proposed a background information fusion tech-
nique in long-wave infrared (LWIR) and visible spectrum video
which is the closest to out proposed work. However, they made sev-
eral assumptions in background modeling based on human tracking
which may not be applicable for general object tracking. More-
over, there is no framework dealing with inconsistency between
two channels except rule-based decisions. In their following work,
Conaire at el. [2] presented an idea of using “Transferable Belief
Model” to adaptively update the appearance model by combin-
ing foreground segments information in different spectral channels.
Their usage of “belief fusion” is crucial to solve the decision incon-
sistency between different channels, but their algorithm uses only
the current observation and does not have sufficient information
about the camera belief of each individual object along the time
when updating the appearance. Additionally, they did not discuss
the framework for object merge, split, and occlusion, lighting cor-
rection, by taking the advantage of different spectral modalities.

Torresan et al. [10] also presented a model-level infrared and
visible spectrum information fusion system for pedestrian detection
and tracking. They tried to apply this bi-modal system to solve sev-
eral problems mentioned previously including, object merge, and
occlusion. They reported successful improvements as compared
to traditional visible spectrum only solutions. However, they only
used rule-based decisions in the model level which will again have
problems when there is an inconsistency between the two spectral
observations.

The methodology that we propose in this article is a hierarchi-
cal information fusion approach from pixel level to object level. It
applies multi-spectral sensors to enhance the background modeling
and appearance object tracking in real-world surveillance environ-
ment considerations. Additionally, high-level camera confidence
model for each individual detected object is proposed to resolve the
problem of signal fusion among multiple channels. Improved fault
tolerance for challenging vision problems such as lighting varia-
tions, object merge, split, and occlusion are going to be discussed
as well.

This paper is organized as follows. In Section 2, we present
the proposed method for background modeling of a multi-spectral
sensor with hierarchical information feedback. In Section 3, we
propose a environment invariant pixel-level image fusion for ap-
pearance tracking. We use a probabilistic similarity model to deal
with object occlusion in single camera view in Section 4. Object
merge and split decisions by appearance-distance information are
discussed in Section 5. In Section 6, we discuss the performance of
the proposed method with public and customized testing sequences.
Finally, we briefly conclude our work with some future directions
in Section 7.

2. BACKGROUND MODELING BY MULTI-
SPECTRAL INFORMATION

As mentioned before, we apply a mixture-of-Gaussian model to
describe the background scenes. We first perform this background
modeling which updates the background model by pixel-level ob-
servations. Then after grouping the objects by the connected com-
ponent analysis in each channel, we feedback observations from
previous object-level information to each background pixel in each
channel. We also assume that the pixel error probability of each
channel at the feature level is independent, so each channel can be
updated separately. Moreover, in our system, image registration
is done properly so that the correspondence of each pixel in each
channel is already calibrated. As a result, we do not combine in-
dependent observations until final foreground regions are needed.
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The probability density function of kth Gaussian at pixel(z,y) at
time ¢,
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Where b(z, y) is the current observation, and m(z, y)x and o (x, y) 7
are the mean and variance for kth Gaussian at location (z,y) re-
spectively.

Shadow detection is performed first to prevent putting shadows,
which are caused by moving objects, into the background model-
ing. For visible spectrum, most shadows happen during the daytime
and less commonly in the nighttime. However, if the full moon or
the street light is present, the observation in visible spectrum is still
interfered strongly by the shadow pixels. On the other hand, shad-
ows for moving objects are less critical in infrared channel due to
small sensitivity of temperature or reflectivity beyond visible spec-
trum. As a result, removing shadows from the visible channel by
infrared channel observation is informative. Our shadow detection
process is motivated by Cucchiara et al. [3] and is enhanced by the
infrared channel observations. First, we perform image color space
conversion. We convert the color image from RGB format to HSV
in possible foreground regions. The criteria for a shadow region
is defined as if its HSV observations and corresponding infrared
observations follow,
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Where h, s, and v are the HSV values at the given pixel location.
H,q4; and S, q; are the average hue and saturation values at the cor-
responding adjacent region. Where ¢, the observation at the same
location in infrared channel, is not categorized as a foreground
pixel I;. £ is a small threshold for low luminance property of the
shadow. Rgq; defines adjacent region radius which is estimated
by the previously identified object size,D,y;, its projected motion
magnitude,| M,q;|, and a tolerance threshold,y. If a pixel is cate-
gorized as a shadow pixel, we do not update the observation to the
background model.

If a shadow is caused by background objects or moving clouds,
there will not be an obvious moving foreground object pertaining
to it. If the shadow is caused by a moving foreground object, the
angle between the object and the shadow is then determined by the
angle between the two largest group motion vectors which are nor-
malized by the total pixels within each region. This can alleviate
the side effects result from non-rigid object motion. Afterwards, we
construct and update a lighting map which describe largest global
illumination source locations by recursively minimizing the mean
square error of angles between all the objects and their correspond-
ing shadows. In this article, we assume only one global illumina-
tion source is present. This light source location information will
be used later when we approximate the illumination correction in
the next section.

There are two parameters describing the updating properties of
adaptive background modeling. 7 is related to prior weighting and
« is related to the updating speed. If pixel observations of the two
rectangular blobs are not consistent in each channel, it will cause
a mismatch in foreground region area and pixel observations are
relatively “unstable” as compared to pixels in other regions. So
within the non-overlapping or inconsistent areas, we decrease the
weighting n of the maximum Gaussian to be less than the normal
setting for the current observation, and re-normalize the weighting



of other distribution correspondingly by the following equation,
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Where k4 is an adaptive coefficient changing with the overall im-
age contrast. It is learned from sample training sequences by mini-
mizing the detection error of manually indexed foreground objects.
This operation relates the confidence of background pixel updates
to the degree of observation overlap. As our methods shows, in
unstable regions, the weighting of predominant errors could be de-
creased and the real background or foreground pixels could be re-
vealed in the following frames.

The object motion magnitude would imply the updating speed of
the background. For example, when the foreground object move-
ment is fast, the background pixel near the object region should be
updated slower and vice versa due to the imaging capture defects.
By using this observation, random motion noises caused by light-
ing or sensor sensitivity will not be included into the background.
We calculate a group motion vector and project it back to possible
motion trace regions. This group motion vector is calculated by
correlating all the pixel’s motion vectors within a foreground ob-
ject blob. As a result, the updating speed « in the trace regions is
decreased by the following equation,

Qmod = Qorg X k:]\/f/|Mg7‘oup|

Where ks again is an adaptive coefficient learned from the sample
sequences by estimation maximization of manually indexed fore-
ground objects. |Mgyroup| is the magnitude of the motion vector
normalized to the known camera coordinate for alleviating three
dimension distortion. This operation shows that if the observa-
tions are not consistent, then a decrease in the current reliability
for that observation is applied. Moreover, a exponential decaying
time modification factor is attached to each pixel. If within a re-
gion there is no foreground object detected for a certain amount of
time, the background updating speed and weighting pertaining to
that region will go back to the normal settings gradually.

Assuming the size of the object and the motion direction will not
change significantly during each observation period, we can model
the object confidence factor from each sensor by a two-dimension
Gaussian distribution defined as follows,
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Where s is either visible or infrared. O, o (s) are the current obser-
vations of object motion and area size. fim,q and 0., . are means
and covariance of the tracked motion and area respectively in each
modality. This Gaussian confidence model indicates that if the ob-
ject size of a new observation of a given object is closer to the mean
size of its previous observations, it is more reliable. For example,
if an object enters the scene, its observed size will be increasing
gradually and then reach a steady state. It will decrease when it
leaves the scene. The same activity can be observed when there is
a occlusion event. For object motion, it has a similar observation
activity as the object area size. As a result, this confidence model
can describe the object observation reliability within the view. This
model can greatly alleviate the problems of sudden global illumina-
tion changes of video cameras and sudden polar reversals of ther-
mal sensors.

Finally, P(z,y) is then defined as a foreground pixel if it satisfies
the following condition,

Cobj(v) X Py(x,y) + Cobj (i) X Piz,y) > Ly X po 4+ Ii X ps
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Figure 1: Foreground pixels in different modalities. ((a): Fore-
ground pixels in the visible spectrum. (b): Foreground pixels
in the infrared spectrum. (c): Foreground pixels in the direct
signal fusion. (d): Foreground pixels in the proposed weighted
fusion.)

Where I, and I; are the overall image contrast which are mea-
sured previously by the dynamic range of each pixel in visible and
infrared spectrum respectively. ., and p; are thresholds of de-
tecting foreground pixels in the visible spectrum and the infrared
spectrum respectively. This adaptive threshold based on the current
global contrast ratio further provides robust foreground observa-
tions. Sample results of updating the background modeling with
the discussed bottom-up approach is illustrated in Figure 1. From
Figure 1 (a) to (d) are visible only, infrared only, direct fusion, and
our approach respectively. Direct combination refers to treating in-
frared signal as the fourth channel besides three channels in visible
spectrum with the same weighting and performing the background
modeling directly. For direct combination and our approach, the
foreground pixels are drawn on the visible channel image for com-
parison and visualization. As we can see, the foreground regions
are better extracted by our proposed approach especially for those
foreground pixels whose color are closer to the background near
the object outlier.

3. OBJECT TRACKING WITH WEIGHTED
MULTI-SPECTRAL FUSION

As soon as we determine foreground regions, we can match those
rectangular blobs with previously recognized appearance models.
Signal-level fusion appearance based object modeling has several
advantages compared to object-level or decision-level fusion. Those
advantages include possible smaller number of feature data dimen-
sions for object modeling, and better robustness when one or more
modalities fail constantly. The latter one is especially important
since there is usually no prior knowledge of the signal robustness of
each channel along the time. However, the challenge of signal-level
fusion is how well the representation fused from selected signals
covers the original feature space with physical observation supports
if possible.

Infrared images help us remove shadows and some occlusions.
However, for appearance based tracking, the infrared channel does
not provide enough resolution as compared to visible spectrum.



On the other hand, the visible spectrum contains more information
about the object appearance but is more noisy when in a complex
background. As a result, combining two channels can improve the
performance and robustness of appearance model. Lighting cor-
rection is always a challenging issue in visible spectrum image
processing. Moreover, the appearance in visible spectrum changes
significantly when the lighting condition changes. Here we propose
a signal-level image fusion appearance model invariant to global
lighting variations.

If the object size is small, the shape of the object is less important
when reflecting the environment lighting. Then we assume the di-
rectional cylinder reflectance is applicable to the object reflectance.
As a result, the reflected intensity in visible spectrum can be char-
acterized by the angle between the reflectance normal vector and
the light source location. For each spectral channel, the response is
defined as follows,

A2 o TTC 1
5y = [ e T A
In HSV representation, the corresponding A for maximum f(7") de-
termines the color which is related to the hue and saturation value.
The intensity of f(7") which is the V value corresponds to the total
reflected phon flux. In the LWIR, the intensity of the response cor-
responds to the total amount energy emitted by the object. Scribner
et al. [8] showed that there is a mild anti-correlation between LWIR
and visible spectrum, but they are still compliment enough to pro-
vide useful information. Based on our coverage of the spectral,
we can represent a “virtual eye” which can perceive the total re-
ceived energy by defining a new V channel with the reflected and
emitted energy at the same time. If both the lighting and temper-
ature reach a equilibrium and independent, then the appearance in
the new modified V channel should also be consistent. If we sim-
ply add V channel and the intensity channel together, when one of
the observation fails to work the appearance would change signifi-
cantly. Thus, we combine the intensity of the infrared channel and
the V channel in color image with our embedded sensor confidence
model.

With sensor confidence model, if the observations are not stable,
we can still have a stable appearance model. As mentioned above,
the intensity of v in the visible spectrum and the intensity in the
LWIR is not fully compliment. Instead, they are non-linearly mild
anti-correlated when their intensities are below certain values. As
a result, we calculate a calibration curve to fix this problem so that
we can add two channels together at any value. This calibration
curve is learned from fitting a non-linear equation so that the corre-
lation coefficient of the intensity in the visible spectrum and LWIR
is close to zero. In our experiment, we apply a fourth-order poly-
nomial to adjust the LWIR intensity. After normalizing the range
of intensity in infrared image from O to 1 to be the same as V in
visible spectrum, the new fused V is calculated by the following
equation,

Cob;(v)

Cot; (0) + Coy (0) X Viis X (1 — cos(0))

Vmod =

Cobj (i)
T Cons (0) + Cony ()

Where f(.) is the calibration function. 6 is the angle between light
source and the normal vector of camera viewing plane. This angle
is estimated by the collective moving object shadows with the weak
perspective camera model. The lighting correction based on as-
sumptions include that there is only one global diffuse light source,
the object can be described as an Lambertian reflector, and the po-
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Figure 2: Illumination relationships among the light source,
objects, and the camera (Red cylinders: object reflectance sur-
faces, Blue ellipses: moving shadows, Green lines: estimated
incident light paths)

lar angle ¢ is ignored. As a result, the observed reflected intensity
is only proportional to the cos(6). The object surface reflectance is
linearly interpolated and centered. 6 is estimated by the maximum
length vector of foreground object and its shadow if it exists. The
initialization of the location of global light source is described as
follows. First, we select a small number of training frames to pro-
vide initial information about the light source. Second, we select
foreground objects manually and convert the reflectance of each
foreground object by spherical harmonic transform. Third, we se-
lect the first six spherical harmonic transform coefficients of each
foreground object as the reflectance vector. Finally, we select a
global illumination source by minimizing the square root sum of
euclidian distance of coefficients of each object reflectance vec-
tor. We then apply this initial light source information for follow-
ing lighting compensation with a confined searching range for the
new light source location. Figure 2 demonstrates the relationship
among illumination source location, object reflectance surface, and
the light incident path. As also can be seen in the figure, static
shadows are not selected because of the absence of moving object
in their neighborhood. This new v representation covers properties
of intrinsic object reflectivity, extrinsic incident illumination, and
object emissivity. Our channel confidence model also provide bet-
ter weighting among them. This fused v channel is more robust to
sudden illumination changes and blinking effects in some lighting
conditions based on the combination of two spectral signal and the
confidence model.

Isard and MacCormick [6] presented a particle filter with mixture-
of-Gaussian distributions for color-based appearance tracking. It
is suitable for multiple object tracking, and we use the same rep-
resentation for our appearance tracking and updating mechanism.
However, we add our new invariant V channel in the appearance
model instead of traditional H and S channels only in HSV repre-
sentation or other color representations in visible spectrum. There
are several supports for using this method in this article, such as the
same mixture-of-Gaussian background modeling, Gaussian distri-
bution based confidence model, and thermal error patterns are usu-
ally modeled as Gaussian distributions as well. Here we use a 10-
component mixture of Gaussian model in our fused signal domains
for each response based on our preliminary k-means clustering ex-



periment. For comparison, we found that in order to represent the
same foreground objects in the visible spectrum requires at least a
18-component mixture of Gaussian model in the normal condition.
This again confirms that a signal-level of fusion is efficient.

Adaptive weighting is also updated by the relationship of con-
fidence factors. Additionally, within the object blobs, we also in-
crease the weighting at the edges of infrared channel, since for in-
frared channel, more information is preserved at the boundary po-
sitions. The non uniformed weighted is applied again witha 5 x 5
Gaussian mask so that pixels with larger distance from the center
will have larger weighting coefficients.

4. OBJECT TRACKING UNDER OCCLU-
SION

If there is an obvious mismatch between two observations in two
spectral channels, it possibly results from object occlusion. Typical
occlusion detection works on detecting sudden or gradually dis-
appear objects. A probabilistic framework of occlusion detection
is given in Elgammal and Davis [5]. We applied the same esti-
mation maximization approach as the main building block but we
further extended it with our multi-spectral system setup. Since we
do not presume consistent observations between two spectral chan-
nels, the occlusion detection can be more efficient and effective
by our weighted fusion which embeds camera confidence models.
First of all, we have to assume that before the object is occluded,
it has been detected before so that we have registered its isolated
appearance model.

There are three possible types of occlusions in our multi-spectral
system, including, visible spectrum occlusion, infrared spectrum
occlusion, and complete occlusion. For the first two types of oc-
clusions, they are automatically resolved by our method since em-
bedded camera confidence model can manage those partial signal
occlusions. For the third type of occlusion, it can also be managed
by maximizing a non-parametric model of our fused appearance
with extra spatial and time information. We then define a likeli-
hood function and apply an estimation maximization method to find
the maximum likelihood of the appearance based on our weighted
fused image histogram, spatial distribution, and object motion his-
tory. Since we use our fused histogram with lighting compensation,
we are able to assume that within the blob if the same appearance
would appear as the same regardless of its relative locations. This is
based on assumptions that the global illumination and the thermal
equilibrium do not change significantly during the occluded period.
Whenever there is a new foreground object appearing in the view,
we calculate the following expectation maximization similarity cri-
terion for the reported possible lost objects to address the possible
occlusion problem,

S(’fbj = args maleogPr(O(i,tﬂH(k,t))

i=1

Where n represents the total number of the histogram dimension,
and k is the total number of object trackers which were observed
before but lost. Sffb]- is the similarity between the newly registered
foreground object 7 and the reported lost object k. O(3, t) is the cur-
rent observation of the newly found object i. H (k, t) represents the
kth tracker appearance histogram with time distribution adjustment
at time t. H (k,t) include two types of temporal related informa-
tion, object tracked time and motion direction history. The object
tracked time is a ratio calculated by dividing the tracked length of
a lost object by its length of lost length. If the ratio is larger, we are
more confident in linking that object to close foreground regions.
For motion direction history, we record the object movement direc-
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tion along with a exponential decaying weighting. This exponen-
tial decaying weighting will not only have larger weighting on lat-
est object movement direction but also preserve consistent previous
movement trait. This weighted history can provide the probability
of the object motion direction if its movement is consistent, and
also it can alleviate the problem for burst movement. These two
temporal related criteria provide a lost tracker with possibilities to
pick up the reappearing object even if the new foreground object
is not spatially close enough or is with insignificant changes in ap-
pearance. However, if the object is occluded for a long time, the
existing occluded tracker information may be disappear because of
this exponential time decaying and lost time ratio. In this case, a
new tracker will be created. Besides, if Sop; is below a small pre-
defined threshold, the new foreground object is also considered as
a new tracker without matching to any of the lost trackers.

S. MERGE AND SPLIT BY APPEARANCE-
DISTANCE HISTOGRAM

The performance of multiple object merge and split can also be
greatly improved by the correlation with two spectral channel ob-
servations. We would like to calculate the relationship between ap-
pearance and proximity by color and infrared intensity information
at the same time. Typically, people used proximity of the object to
define the merge and split. Here since we have more compliment
observations, we should be able to make better decisions about the
object merge and split. We characterized the distance between dif-
ferent appearance set by a appearance-distance joint histogram. At
each distance, we have a corresponding histogram to describe the
object appearances. At euclidian distance k, the histogram of ap-
pearance set ¢ and j is defined as follows,

AY (k) =" Pyi(k)

where A™7 (k) is the sum of color-thermal appearance pairs of set
i and set j at pixel distance k. Pp7 (k) is one when the set of the
hue and the modified v value at (z, y) is the color-thermal set ¢ and
within euclidian distance k the set of the hue and the modified v
value is the color-thermal set j. It is zero otherwise.

It is reasonable to assume that the appearance and the distance
are independent between each object if there is no prior knowledge
of the object. This appearance-distance histogram is a three dimen-
sional histogram with three independent axes, hue, modified v, and
euclidian pixel distance. If the distance is 1, the diagonal entries
will be connected clusters with same appearances. We quantized
the object hue color to twelve true color values and modified v value
to ten levels since it is more efficient in storage size and less error
sensitive compared to full hue and modified v scales. The number
of distance is calculated based on the threshold used in morpho-
logical operations in connected components. The threshold used in
connected component analysis determines the connectivity of ob-
jects in the object blob formation process so if we decide to split or
merge objects we should use that factor in our distance calculation.
We assume that when the object first observed, the appearance of
the whole object is registered. This assumption means that only
the previously observed object pixels would be taken into account.
As a result, the new coming pixels for a gradually appearing object
will only be put into the appearance histogram for the next frame.
Then the appearance-distance histogram can be used to determine
the degree of object merge and split.

When objects cross each other, only one dominant object can be
observed. As a result, when they split to different direction, the
appearance-distance histogram will have an increasing amount in
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Figure 3: Merge/Split results in different spectrums. ((a): Ob-
ject segments in the visible channel - incorrectly fractional. (b):
Object segments in the infrared channel - incorrectly merged.
(c): Object segments in the direct fusion - incorrectly merged.
(d): Object segments in our proposed fusion - correctly split.)

the off-diagonal entries at distance k£ and smaller than k, where
k is the proximity threshold for connected component, since off-
diagonal terms refer to different color-thermal pairs. The values
of off-diagonal entries can help us determine which appearance is
moving away or moving closer to other color-thermal appearance
groups. As a result, we define the merge and split by,

/ DAY (k)
k' <=k

ot

If we assume only one part is split from the group blob or merge
into the group blob each time, we can determine the split and the
merge component by separate the largest component with mixed
appearance entries from the original component at k. This regula-
tion can be translated to a maximum volume cut with largest dis-
tance from the diagonal axis in the appearance-distance histogram
which is also similar to maximizing the Bhattacharyya distance be-
tween two sets of appearance histograms, but our histograms are
multi-dimensional. Every time, we split or merge one part of object
blobs and recursively check the threshold for each newly generated
blobs until there is no further cuts or combinations. Additionally,
this cut or combination is non-rectangular and generates results
comparable to Davis and Shama [4] with a much lower compu-
tation complexity but higher storage penalties. However, although
objects are non-rectangular, we still use rectangular blobs for sim-
plicity. As a result, possible overlapped regions will be observed.
Among those overlapped regions, pixels are updated based on the
larger corresponding blobs.

The color appearance can be different in different parts of the ob-
ject in the visible spectrum, so they may not satisfy the appearance-
distance criteria. However, if we assume that the object has a uni-
form temperature distribution if it emits, we can still observe a more
uniform moving blob. With only infrared channel, it is almost im-
possible to distinguish human body temperature, so it needs other
appearance descriptions. In either situation, we would still satisfy

dk’ >0 or <90
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Figure 4: Average object recall and false alarm rate for differ-
ent system requirements (From left to right of each bin cluster:
Blue: proposed weighted fusion, Green: direct fusion, Yellow:
infrared only, Red: visible only)

the overall criteria when both channels are available. This kind of
extra object information can not be observed if only visible spec-
trum signal or infrared spectrum is used. By using this criteria with
multi-spectral data, we can perform better in split and merge deci-
sions as compared to traditional morphological operations in visi-
ble spectrum only. Figure 3 shows the effects of merge and split.
As we can observe from the figure, objects are incorrectly split into
pieces in visible spectrum due to different colors within the object.
They are also incorrectly merged in both infrared only and direct
combination method. For our appearance-distance criteria, those
three parts can be separated into two parts even from the closely
combined object in the first iteration.

6. EXPERIMENT RESULTS

We used IEEE OTCBVS WS Series Bench [4] to test our single
multi-spectral sensor background modeling and appearance track-
ing. However, the benchmark does not have enough challenging
scenes except for shadows, so we added several artificial errors
into it. Linearly adjusted contrast infrared images and low inten-
sity color images were created from the original sequences to sim-
ulate the effects of low temperature contrast and nighttime scenes
during a 24-hour surveillance. We measured the dynamic range of
image contrast from sample images which were taken during dif-
ferent lighting and temperature conditions. We used this dynamic
range to modify the test bench. As aresult, ratio 1 refers to the best
contrast ratio, ratio 0.5 refers to contrast ratio linearly interpolated
to one half of the full dynamic range, O refers to the minimum ratio,
and so on.

We would like to first demonstrate that under normal conditions,
using our proposed multi-spectral system can enhance the surveil-
lance performance. False alarm is one of the most undesirable
properties in video surveillance, so we use false alarm rate under
the same recall rate as the performance measurement. In Figure 4,
we compare the false alarm rate while changing different recall
rates for each method, including, the visible spectrum only, in-
frared only, direct fusion, and our proposed fusion. Every time,
we modify the thresholds to achieve the desired recall rate or above
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Figure 5: Average object recall of different image contrast ra-
tios (From left to right of each bin cluster: Blue: proposed
weighted fusion, Green: direct fusion, Yellow: infrared only,
Red: visible only)

depending on the system characteristics. We can observe that while
maintaining the same object recall rate, our system greatly outper-
formed other systems with greatly reduced false alarm rates. More-
over, as the figure shows, direct fusion of the visible spectrum and
infrared spectrum improves the performance as compared to single
spectrum, but it still generates high false alarms when the required
precision rate is high. This observation clearly indicates that even
under normal conditions, the observations in each spectral channel
are not consistent and in turn limit the performance. As a result, a
direct fusion technique is not applicable.

Secondly, we would like to show the advantages of multi-spectral
system when the environmental conditions are poor. We used our
linearly adjusted sequences to test this situation. For every experi-
ment in the direct fusion and our weighted fusion, we only changed
one signal channel while the other signal channel stays in 0.8 con-
trast and calculated the average of two. This is based on our obser-
vation that two channels will not have the best contrast case at the
same time, nor does the worst contrast. In this experiment, we used
recall and precision as our performance metrics since they were
more illustrative in demonstrating different spectrum properties in
different image contrasts. From Figure 5 and 6, we can observe
that when the image contrast ratio close to the best condition, all
three methods perform comparably in recall, but the visible only
and infrared only already have fairly low precision rates. When it
is slightly worse than the premium conditions, the performance of
direct fusion and proposed weighted fusion start to perform much
better than single spectral tracking. However, when the image con-
trast ratio keeps decreasing to lower than 0.5, our proposed fusion
system shows a significant performance advantage while direct fu-
sion performs even worse than as compared to the default 0.8 in
the other spectrum. This indicates that when one of the spectrum
fails to work, direct fusion will degrade the overall performance
even if the other spectrum signal is still quite robust. Moreover,
the performance of our proposed system stays relatively stable in
most conditions. Especially when one of the signal channel has ex-
tremely low contrast, our system performs the same as one strong
signal from the default and is not affected by the partial failure.
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Figure 6: Average object precision of different image contrast
ratios (From left to right of each bin cluster: Blue: proposed
weighted fusion, Green: direct fusion, Yellow: infrared only,
Red: visible only)

This observation indicates the effectiveness of our camera signal
confidence modeling.

Thirdly, we would like to show that using our proposed fusion
method, the histogram matching stays consistently in different en-
vironment variations. This also indicates that under poor condi-
tions, our system has a better chance to match the same objects
without modifying the threshold. The average error of the his-
togram appearance matching is summarized in Figure 7. The x
coordinate represents the contrast ratio for each spectrum. The
y coordinate is the average sum of the histogram error. Here we
only record matching errors with the closest matches. As we can
observe from the figure, without any additional information from
other spectral observations, the average matching error increases
exponentially when the image quality gets worse. Also, the visible
channel starts relatively well in good conditions as compared to the
infrared channel but the performance worsens greatly faster than
the infrared when the image contrast goes low. On the other hand,
matching errors increase only linearly when two spectral channels
are utilized in our proposed weighted fusion, and also the slope
is flat. Moreover, direct fusion does not perform better than sin-
gle spectrum only, and it also has an exponential increasing slope.
This also shows that under different environment conditions, un-
weighted spectral fusion is not applicable.

Finally, we also inserted artificial occlusions in the sequences.
We randomly selected five regions within the scene and placed a
“black box™ which blocks out the observations in that region arti-
ficially. The performance of object merge and split is calculated
manually by three different subjects. The average performance of
occlusion, merge and split are calculated based on 0.8 and 0.4 im-
age contrast condition and is shown as Figure 8. From Figure 8,
we can observe that with only single spectral sensor, performance
for object occlusion, merge and split is much worse than direct sig-
nal combination and our confidence weighted method. The visible
spectrum performs poorly in both merge and split because of the
variations of object color appearances. The infrared spectrum per-
forms relatively better in merge but fairly poor in split since there
is not enough resolution for the split operations. Additionally, di-
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Figure 7: Average object histogram matching error (From top
to bottom: Red-Dash: visible only, Yellow-Dash: infrared only,
Green-Solid: direct fusion, Blue-Solid: proposed weighted fu-
sion)

rect fusion does not noticeably outperform single spectrum systems
when the image contrast is low. On the other hand, our method sig-
nificantly outperforms all the other methods when the image con-
trast ratio is low.

7. CONCLUSION

We present a robust background modeling and a self-adaptive ap-
pearance based tracking algorithm which efficiently and effectively
take the advantage of multi-spectral system setups. We use a hierar-
chical probabilistic model to fuse and update the image information
in different spectrums and in different processing levels. Moreover,
object tracking with merge and split are shown to be better man-
aged by our multi-spectral method. Object occlusion can also be
better resolved and recovered later when occluded objects appear
again. Quantitative analysis also shows that our proposed method
outperforms traditional systems especially in the low contrast im-
age environment which is inevitable in real-world surveillance.

In this work, Although we successfully improve the performance
of background modeling and appearance-based tracking by apply-
ing two spectral signals, there are still limitations for single sensor
setup in the fully unconstrained environment, such as permanent
occlusions and appearance changes. Currently, we are working on
collaborating multiple overlapped multi-spectral sensors. We hope
to conquer more challenging real-world surveillance problems with
a multi-spectral multi-sensory system. In that system setup, we are
going to fuse the signal one level up from the frame level to the net-
work level. Furthermore, LWIR is mainly advantageous for human
tracking. For many other non thermal-emitting objects, a multi-
band infrared fusion is more desirable. This will further increase
the difficulties of signal fusion and need further research efforts.
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