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Addition polymerization in a nematic medium:
Effects of an anisotropic solvent in a kinetic gelation model
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A kinetic gelation model with rodlike anisotropic solvent is used to study the addition polymer-
ization in a nematic medium. The structure of the polymer network is extended in the direction of
the director of anisotropic solvent, since the order parameter of the anisotropic solvent is not zero.
Finite-size scalings show that there is no change in the universal behavior of the sol-gel transition

in the presence of the anisotropic solvent.

PACS number(s): 82.35.+t, 82.70.Gg, 61.30.—v

Polymerization in nematic liquid crystals has received
considerable attention. For fundamental scientific rea-
sons, polymerization in an anisotropic solvent is an inter-
esting subject [1]. For great practical applications, the
materials of polymer dispersed liquid crystals have been
used in many types of displays, switchable windows, and
other light shutters [2]. The materials can be formed by
addition polymerization in liquid crystals with free rad-
ical initiators. For studying the radical addition poly-
merization, a kinetic gelation model taking into account
kinetic aspects of the polymerization process has been
used [3]. The model first proposed by Manneville and
de Séze [4] has been studied and modified by various re-
searchers over the course of the past decade. The modifi-
cations to the kinetic gelation model include the addition
of a solvent [5], the movement of monomers [6], directed
growth [7], various initiation mechanisms [8], and the
crank-shaft-type motion of monomers and polymers [9].
However, the kinetic gelation model with anisotropic sol-
vent has never been studied. Here we introduce a rodlike
anisotropic solvent to the kinetic gelation model to sim-
ulate the addition polymerization in a nematic medium.
The purpose of this study is to investigate the effects of
the anisotropic solvent on the universal behavior of the
sol-gel transition and the conformation of polymers in
the kinetic gelation model.

The model is essentially the same as that studied
by others, except for the addition of the quenched
anisotropic solvent. We assume that each anisotropic sol-
vent is represented by a rod and the rod direction is only
allowed to be parallel to one of the three principal axes of
coordinate. Rod length and order parameter of the rods
are used to characterize the rodlike anisotropic solvent.
The rod length ! is defined as the number of connected
sites which belong to a single solvent molecule, and the
order parameter @ is defined as
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where N is the number of rods which are parallel to the
director 77 of the anisotropic medium, and N is the total
number of rods. To place each rod for a specific order
parameter, we determine the rod direction by choosing a
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random number 7 uniformly distributed over the range
O0<r<l. Ifr< %(Q + %), the rod direction is parallel
to 7i; otherwise, the rod direction is perpendicular to 7.

Initially, the zero functional rodlike anisotropic solvent
and bifunctional and tetrafunctional monomers are ran-
domly placed on a three-dimensional cubic lattice of size
L with periodic boundary conditions, and a fraction C;
of initiators are placed on randomly selected monomers.
The functionality of the monomer gives the maximum
number of bonds that can be formed. The monomer con-
nected to an initiator reduces one bond and acts as the
active center for growth. The concentration C, of the
rodlike anisotropic solvent and the concentration C} of
bifunctional and C; of tetrafunctional monomers are re-
lated through C, + Cy + C; = 1. The total number N of
the anisotropic solvent obeys the relation N = L3C,/l.
Polymerization growth begins with a randomly chosen
available active center and a nearest neighbor. If the
nearest neighbor is a monomer and not fully bonded, a
bond is formed between the two sites and the active cen-
ter is transferred to the nearest neighbor. If the nearest
neighbor is an active center, the two active centers bond
together and annihilate. As all of the nearest neighbors
of an active center are fully bonded, the active center
is trapped. Growth stops when all of the active centers
are annihilated or trapped. In this study, the number of
samples used are 2000, 1000, 500, and 250 for lattice size
L = 32, 48, 64, and 128, respectively.

To examine the universal behavior of the sol-gel tran-
sition in this model, we calculate the chemical conversion
factor p which specifies the degree of polymerization, the
average molecular weight or susceptibility x, and the gel
fraction G. The chemical conversion factor p is defined
as the number of bonds grown divided by the maximum
possible number of bonds 3L3, and the gel fraction G and
susceptibility x are, respectively, defined as

G=1-) sn,, (2)
x =Y s, 3)

where n, is the number of clusters of size s and the sum
excludes the largest cluster. As p approaches the gel
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FIG. 1. Finite-size scaling of G for I = 3 and (a) Q@ = 0.5
with p. = 0.1350, 8 = 0.40, and v = 0.90. (b) Q = 1.0 with
pe = 0.1350, B = 0.40, and v = 0.90.

point p., the gel fraction G and the susceptibility x be-
have as

G~ PIB P > P, (4)

P~ p<pe

~o —_— 5

X {7” 7 p>pe, )

respectively, where P = (p. — p)/p and P’ = (p — p¢)/Pe-

Because of strong finite-size effects, finite-size scaling

is used to extract the infinite lattice critical behavior

[3,5,10]. For the gel fraction G, the scaling form is given
by

G = LP*G(z), (6)

where G(z) is a scaling function and the scaling variable
x = PLY”. For the susceptibility x, the scaling form is
given by

x =L X (x), (7

where X(z) is a scaling function, and the scaling variable
xz = PLY" for p < p. and « = P'LY" for p > p..

In Figs. 1 and 2, we show the finite-size-scaling plots
for the gel fraction G and susceptibility x, respectively.
The critical exponents determined from these data are
identical for C; = 3 x 1072, C, = 0.2, C; = 0.4, [ =

FIG. 2. Finite-size scaling of x for I = 3 and (a) Q = 0.5
with p. = 0.1350, v = 1.80, and v = 0.90. (b) Q = 1.0 with
pc = 0.1350, v = 1.80, and v = 0.90.

3, and Q@ = 0.5 and 1.0, individually: v = 1.80 + 0.1,
v = 0.90 £ 0.05, 8 = 0.40 &+ 0.05. The finite-size-scaling
analyses are also performed for [ = 2,4 and @ = 0.5,1.0,
and the critical exponents determined from the analysis
are well in agreement with the above values. These values
for v, v, and (8 obtained in our analysis are consistent
with those found in the kinetic gelation model with or
without the isotropic solvent [5] as well as percolation
values [11]. The results show that the rodlike anisotropic
solvent do not affect the universal behavior of the sol-gel
transition in the kinetic gelation model.

To study the anisotropic effects on the kinetic gelation
model with the rodlike anisotropic solvent, we calculate
the average radii of gyration R, Ry of polymers in the
parallel and perpendicular directions of the director 7
during the course of polymerization. The average radii
of gyration R and R, are, respectively, defined as

Rf | =3 masR |, (8)
8

where R, | are the radii of gyration for a polymer with
size s in the two different directions and the sum excludes
the largest cluster. The definitions of R, , are given by
(12]

2 |75, — 71,112
Ry, =) B ye— (9)
B
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FIG. 3. Rﬁ and R3 plotted as a function of the chemical
conversion factor p for C; = 3 x 1072, C, = 0.4, C; = 0.6,
1l =3, L =64, and Q = 0.0, 0.5, and 1.0.

where ;) | are the position of the ith molecular in the
polymer in the parallel and perpendicular direction of the
director 7i, respectively.

In Fig. 3, we show Rﬁ and R? versus chemical conver-
sion factor p for I = 3 and @Q = 0.0, 0.5, and 1.0 individ-
ually. We find that By > R for Q # 0.0. Since Q # 0.0,
i.e., the rodlike anisotropic solvents are preferred to align
in the parallel direction of the director 7, the growth of
a polymer is more easily confined in the direction. Thus,
it is reasonable that R > R for @ # 0.0. The results
show that the rodlike anisotropic solvent molecules with
nonzero value of order parameter imply anisotropic poly-
mer networks whose extended directions are parallel to
the director 7.

In addition, we are interested to investigate whether
the radii of gyration R, R, have the same universal be-
havior of the sol-gel transition. As p approaches the gel
point p., we assume that R and R, are expected to
diverge as [12]

2 PP, p <pe
Ry, ~ { pr@ni=h) s (10)

Thus, the finite-size-scaling form for R, should be given
by

Rf | =L PRy (1), (11)
where R ,(z),1) are scaling functions and the scal-
ing variables x|, = PLY*I.+ for p < p. and z)L =
P'LY/¥1.L for p > pe.

In Fig. 4, we show the finite-size-scaling plots for the
radii of gyration R and R, for Q@ = 1.0. The best es-
timates for the critical exponents are 1| = 0.90 £ 0.05,
v, = 0.90 £+ 0.05, and B = 0.40 £ 0.05. We find that the
scaling functions R, (z|,1) are different but the criti-
cal exponents v, are essentially identical and well in

FIG. 4. Finite-size scaling of R and R, for C; = 3x107?,
Co =04, C, = 06,1 =3, and Q = 1.0 with p, = 0.1185,
B = 0.40, vy = 0.90, and v, = 0.90.

agreement with the above value v, ie., vy = v, = v.
The results show that the radii of gyration Ry, R, have
the same universal behavior of the sol-gel transition and
further show that the universal behavior of the sol-gel
transition is not changed.

Recently, it has been studied that electro-optical prop-
erties of polymer dispersed liquid crystals strongly de-
pend on the anisotropic structure of polymer networks
[13-15]. To achieve the anisotropic polymer network,
polymerization reaction is in the nematic liquid crystals
which are aligned by rubbing treatment of substrates
[13,14] or applying an external electric field [14]. The
formed polymer network in experimental observation of
scanning electron micrograph is anisotropic and its ori-
entation is parallel to the alignment direction of nematic
liquid crystals. The experimental observation is consis-
tent with our simulation results.

In conclusion, we have used the kinetic gelation model
with a quenched rodlike anisotropic solvent to study the
addition polymerization in a nematic medium. The rod-
like anisotropic solvent led to anisotropic growth of a
polymer and implied the polymer has an anisotropic
structure in which the extended direction is parallel to
the director of the anisotropic solvent. Finite-size scal-
ings for the gel fraction, susceptibility, and radii of gy-
ration show that the rodlike anisotropic solvent does not
affect the universal behavior of the sol-gel transition in
the kinetic gelation model. Although considering the mo-
bility and elastic deformation of the anisotropic solvent
is more general for real systems, this model should be
appropriate for the system in which the time scale for
polymerization growth is short compared to that for the
mobility and elastic deformation of the anisotropic sol-
vent.
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