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ABSTRACT

Histogram Equalization (HE) and its variations have been
widely used in image enhancement. Even though these
approaches may enhance image contrast in an effective and
efficient way, they usually face some undesired drawbacks,
like loss of image details, noise amplification and over-
enhancement. In this paper, we propose a generalized
histogram equalization technique based on localized image
analysis. Starting from designing two measures fi and f2 to
measure local characteristics around each pixel, the global
statistics of these two local measures are then recorded into
an extended histogram. Based on this extended histogram,
we develop a procedure to generate suitable intensity
transfer functions for various applications, like contrast
enhancement and shadow enhancement. Experimental
results show that the proposed algorithm provides a flexible
and efficient way for image enhancement.

Index Terms- Image enhancement

1. INTRODUCTION
Histogram Equalization (HE) has been widely used for
image enhancement [1]. In HE, the cumulative density
function (cdf) of the histogram is used as the intensity
transfer function for intensity value mapping. This approach
enhances the contrast of an image by expanding dynamic
range of the original image to all available dynamic range.
Since the HE approach considers only global statistics of the
image, some image details may get lost while some portions
of the image may get over-enhanced. Moreover, image
noise may also get enhanced during the contrast
enhancement process.
To overcome the over-enhancement problem, [2] and [3]
proposed similar solutions that preserve the intensity mean
of the image data by using sub-histogram information.
However, under some circumstances, the improvement of
the image quality may be restricted due to the mean-
preserving criterion. On the other hand, [4] and [5]
performed contrast enhancement based on adaptive
histogram equalization (AHE). The operation of AHE is
basically the same as HE, except that the histogram is now
formed from localized data. However, computational

complexity can be a major concern and the enhanced results
may look unnatural.
In this paper, we propose an extension of histogram
equalization for image enhancement. By taking local
characteristics into account, a more general approach is
developed. This approach can be applied to various image
enhancement applications, like contrast enhancement and
shadow enhancement. In this paper, the concept of the
proposed approach is first introduced in Section 2. Its
applications to contrast enhancement and shadow
enhancement are then demonstrated in Section 3. Finally,
conclusions are given in Section 4.

2. GENERALIZED HISTOGRAM EQUALIZATION
2.1 Generation of Histogram in HE
In histogram equalization, the first step is to generate the
histogram of the image. Then the intensity transfer function
for contrast enhancement is obtained as

(1)
h(x)dx

T(g) = gj-n + (gax - gminm ,Fa -)
hmxin

where g denotes the intensity value, g .11 and gmax denote the
lower bound and upper bound of g, h(x) denotes the
histogram of the image, and T(g) denotes the intensity
transfer function for contrast enhancement. Intuitively, a
large peak in the histogram causes a steep increase in the
cdf function. Hence, this approach allocates more gray
levels for frequent intensity values, while assigns less gray
levels for infrequent intensity values.
Actually, this histogram equalization process can also be
explained from a different viewpoint. Here, we may imagine
h(x) as an expansion function, which describes how likely
the intensity value x needs to be expanded for image
enhancement. In HE, if an intensity value X occurs more
frequently, then we tend to expand more these intensity
values around X. Hence, Equation (1) can also be explained
as the reallocation of intensity values based on the
distribution of an expansion function h(x).
On the other hand, the generation of the histogram h(x) can
be viewed as a masking-and-accumulating operation.
Imagine we use a 1 x 1 mask to scan through the image to
measure the intensity data at each pixel. These intensity
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values are then accumulatively added into h(x). By
repeating the masking-and-accumulating operation over the
whole image, the histogram function h(x) is obtained. In
Figure 1, we illustrate such a masking-and-accumulating
operation. Due to the limited size of the 1xl mask, the HE
method doesn't consider the neighboring information
around each pixel. Hence, the histogram function h(x)
contains only global statistics of the image.
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Figure 2 (a) Illustration of I(x,y) and N(x,y).
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2.2 Proposed Algorithm
2.2.1 Extended Histogram
In our approach, we first extend the scanning mask size
from 1 x 1 to nxn. When the center of the mask is placed at
(x,y), we define I(x, y) as the intensity value at the center
pixel, while define N(x, y) as the set of intensity values
within the nxn neighborhood of (x,y). The definitions of
I(x,y) and N(x,y) are illustrated in Figure 2(a). Besides, we
propose the use of two measures f1(I(x,y),N(x,y)) and
f2(I(x,y),N(x,y)) to estimate some local characteristics
within the mask window. Here, we define f1 and f2 to
measure the local average and local variations within the
mask, respectively. For example, ifwe choose the mask size
to be 3x3, we may define f1 and f2 to be

11 11

r(x, Y)= -LY I(x+i,y+ j)(29 i=-j=-l

f2(x) Max{I(x+i,y+j);-l<i<1,1< j<1} (3)
Min{I(x+i,y+ j);-l <i<1,-l < j<1}

In fact, many other functions, like a weighted mean and the
local variance, can also be used to define f1 and f2.
With the definitions of f1 and f2, we can calculate
f1(I(x,y),N(x,y)) and f2(I(x,y),N(x,y)) at each pixel (x,y). As
the mask scans through the image, we count the occurrence
frequency of (f1,f2) and generate a so-called "extended
histogram". Figure 2(b) illustrates the generation of this
extended histogram. This operation is similar to the
operation illustrated in Figure 1, except that the mask size is
now nxn and the intensity value I(x,y) is replaced by two
local measures f1 and f2.
After the generation of the extended histogram, we perform
normalization over the extended histogram to get the 2-D
probability density function p(f1,f2). In theory, p(f1,f2)
records the global statistics of the local characteristics. For
example, if p(c,4) = k, it means there exists some pixels in
the image with local features being fi = oc and f2 =3.
Moreover, the occurrence rate of these pixels is k.
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Figure 3 (a)Synthesized image.

(b) Histogram.
(c) p(f1,f2) of (a).
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In Figure 3(a), we show a synthesized image, which
contains 4 smooth regions, A, B, C, and D. The histogram
of this image is shown in Figure 3(b). Due to the fact that C
and D occupy only a small portion of the image, it is
expected that the contrast between C and D cannot be
adequately enhanced by the HE algorithm. In Figure 3(c),
we show an illustration of the 2-D pdf function p(f1,f2) of
Figure 3(a). Here, PI, P2, P3, and P4 correspond to the
smooth parts of A, B, C, and D, respectively. On the other
hand, P5, P6, P7 and P8 correspond to the boundary regions
between A and B; B and C; B and D; and C and D. Here,
we use a brighter color to represent a larger value of p(f1, f2)
while use a darker color to represent a smaller value. It can
be easily seen that this 2-D pdf function p(ft,f2) offers much
more useful information than the 1-D histogram. It records
not only the distribution of intensity values but also the
distribution of local variations. Based on p(f1,f2), we can
easily distinguish pixels in smooth regions from pixels at
boundary regions. This capability enables more complicated
manipulations for image enhancement.

2.2.2 Expansion Function
Based on p(f1,f2), we aim to develop a suitable intensity
mapping function that can satisfactorily enhance image
contents. In this paper, we propose the use of a "conditional
expansion function" to generate the intensity transfer
function. This conditional expansion function
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S[g (f1 f2) = (a, ,6)] is defined as a function of intensity
value g, given fi = oc and f2 = 3. That is, this function
describes how likely we want the intensity values around g
to expand ifwe are given the condition that fi = oc and f2 = 3.
For example, if we want to enhance the image contrast in
Figure 3(a) without enhancing image noise over smooth
regions, we may simply set a threshold over f2 to screen out
PI, P2, P3, and p4 first. On the other hand, for P5, P6, P7, and
P8, which correspond to edge regions in the image, we may
define the conditional expansion function to be something
like

S[g (fi1f2) = (a,)] = f(ga)

where HI(x) is the rectangular function expressed as
{I -0.5<x<0.5

H (X) - otherwise

= 6(g-f1), then S(g) degenerates to the normalized form of
the 1-D histogram h(x).

c + s(g)

Intensity Value

(a) (b)
T(g)

(4)

(5)

This means once we have observed a set of local statistics
with fi = oc and f2= 3, then we expect the intensity values
within the range [uc-0.5f3,c+O.5f3] are more likely to be
expanded. Of course, there are many other choices of
S[g1f1,f2], depending on how we want the image to be
enhanced. Moreover, since the value of p(f1,f2) reflects the
occurrence frequency of (f1,f2), we may further take p(f1,f2)
into account and calculate the averaged expansion function:

s(g) gmax SI(S[gf(fl,f2)]p(fl,f2)dfldf2 (6)
,imin rnin

This S(g) function indicates which intensity values are more
likely to be stretched in the image enhancement process.
Then, based on S(g), we can deduce the intensity transfer
function T(g), which is defined as

[c + S(r)]dr-
T(g) = gj. + (gmax -gmin) in

mm [c + S(r)]d
(7)

An illustration of S(g) and T(g) for the example of Figure
3(c) is shown in Figure 4. Here, we set a threshold over f2 to
ignore pi, P2, P3 and p4. S[g f1,f2] is defined as Equation (4)
and Figure 4(a) shows the S[gJf1,f2]p(f1,f2) profiles
corresponding to P5, P6, P7, and P8. Based on Equations (6)
and (7), c+S(g) and T(g) can be easily computed, as shown
in Figure 4(b) and Figure 4(c).
It can be easily imagined that if (c+S(g)) has a larger value
at g, then T(g) has a larger slope at g. This means the
intensity values around g tend to be stretched more. Hence,
after having obtained the expansion function S(g), we can
deduce the intensity transfer function T(g) to assign
intensity values based on the prominence of local statistics.
Moreover, note that in Equation (7) we add one extra
parameter c. This parameter provides flexible control over
the degree of image enhancement. A smaller value of c
causes a more apparent adjustment, and vice versa.
Moreover, it is worth mentioning that ifwe choose S[glfl,f2]

Intensity Value
(c)

Figure 4 Example of S[gJf1,f2]p(f1,f2), c+S(g), and T(g).

2.2.3 Prevention ofOver-Enhancement
As mentioned above, once we have gotten the expansion
function S(g), we can generate the intensity transfer
function based on Equation (7). In practice, the magnitude
of S(g) has significant influence on the enhanced result. If
there are some dominant peaks in S(g), overly enhanced
images may be produced. To avoid this problem, we
proposed the use of a magnitude mapping function MO ) to
compress the dynamic range of S(g). This magnitude
mapping function is a monotonically increasing function,
with its slope monotonically decreasing to zero. An example
ofMO is

Y = M(X) = X1XM° (8)
where X is the original expansion function, Y is the
adjusted expansion function, and Mo is a control parameter.
In summary, Equation (7) is further modified to be

,[c + M(S(-r))]d-c
T(g)= gmin + (gmax -gmin) L[in (9)

[c + M(S(r))]drc
With the use of M( ), the expansion function with large
magnitudes will be properly constrained to an extent so that
the processed image looks more natural.

3. APPLICATIONS
3.1 Contrast Enhancement
In our simulations, an RGB-formated color image is first
converted to the HSI color space and we apply our
algorithm to the I component only. Besides, f1 and f2 are
defined as Equations (2) and (3). To perform contrast
enhancement, we define S[glfl,f2] as
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In Figure 5, we show some simulations and the comparisons
with HE, AHE and the method proposed by [3]. We can
find that the proposed algorithm provides robust and more
natural enhancement results. Besides, it is worth mentioning
that the image quality in Figure 5(d) is with little
improvement due to the mean-preserving constraint used in
[3], Moreover, even though there exists strong image noise
in Figure 6(a), we may still properly enhance the image
contrast without overly enhance the image noise.

(a)

(d) (e)
Figure 5. (a) Original image. (b) HE. (c) AHE. (d) Processed
result of [3]. (e) Proposed method (C=0, Mo=2).

(a) (b) (c)
Figure 6. (a) Original image contaminates with Gaussian noise.
(b) HE. (c) Proposed method (C=0, Mo=2).

3.2 Shadow Enhancement
The luminance variation within a scene often has a very
wide dynamic range. Due to the narrower dynamic range of
the capturing devices, some portions of the reproduced
image may look too dark or too bright. In this section, we
demonstrate how the proposed method can be used to deal
with the shadow enhancement problem.
For shadow enhancement, we may enhance areas with
smaller gradients while suppress areas with larger gradients.
This concept was proposed by [6] for dynamic range
compression. To achieve the same goal, here we may
redefine the conditional expansion function to be

S[g (fl,f2) = (a,)] - k(8)( a) (11)

where k(f) is large for small f, and vice versa. To suppress
image noise, we may also set k(f) to be zero if f is smaller
than a pre-determined threshold. Some experimental results

of shadow enhancement are shown in Figure 7. It can be
seen that dark regions are effectively enhanced.

4. CONCLUSIONS
In this paper, we propose a new approach for image
enhancement. In this approach, we extend the concept of
histogram equalization to record the global statistics of
some local characteristics. A complete procedure for the
generation of the intensity transfer function is developed.
Experimental results demonstrate that the proposed
approach can provide a reliable and flexible scheme for
various image enhancement applications.

(a) (b)

(c) (d)
Figure 7. (a) (c): Original images.(b)(d): Images enhanced by the
proposed method.(c=0, MO=2)

ACKNOWLEDGEMENT
This research was supported by National Science Council of
the Republic of China under Grant Number NSC-93-2219-
E-009-017.

4. REFERENCES
[1] R.C. Gonzalez and R. E. Woods, Digital image processing,

Addison-Wesley, 2002.
[2] Y.T. Kim, "Contrast enhancement using brightness- preserving

bi-histogram equalization," IEEE Trans. on Consumer
Electronics, Vol. 43, No. 1, pp.1-8, Feb. 1997.

[3] Soong-Der Chen, Abd. Rahman Ramli, "Minimum mean
brightness error Bi-histogram equalization in contrast
enhancement," IEEE Trans. on Consumer Electronics, Vol. 49,
No. 4, pp.1310-1319, Nov. 2003.

[4] J.Y. Kim, L.S. Kim and S.H. Hwang, "An advanced contrast
enhancement using partially overlapped sub-block histogram
equalization," IEEE Trans. on Circuits and Systems for Video
Technology, Vol. 11, Issue 4, pp.475-484, Apr. 2001.

[5] T.K. Kim, J.K. Paik and B.S. Kang, "Contrast enhancement
system using spatially adaptive histogram equalization with
temporal filtering," IEEE Trans. on Consumer Electronics, Vol.
44, Issue 1, pp.82-87, Feb. 1998.

[6]R. Fattal, D. Lischinski and M. Werman, "Gradient domain high
dynamic range compression", Proc. ACMSIGGRAPH'02

2880

I

lyg-a )S[g (fl,f2) = (a,,g)] =- 18
0


