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Vision-Based Front Vehicle Detection and Its Distance Estimation
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Abstract Vision-based driver assistant systems are very
promising in Intelligent Transportation System (ITS). This
paper will propose a system that can detect front vehicles and
estimate the nearest car distance from the host car. In a
companion paper 11, we have developed a scene analysis
module that deals with scene segmentation and natural object
labeling of forward-looking images by the use of fuzzy Adaptive
Resonance Theory (ART) and fuzzy inference techniques. Based
on this technique, the proposed system can detect the front
vehicles and then estimate the distance of the nearest car from
us. The validity of our proposed scheme in car detection and the
distance estimation was verified to be very successful by
field-test experiments.

I. INTRODUCTION

IT is the most important issue to resolve the safety problems
encountered in the research of Intelligent Transportation
System (ITS). Vehicle detection and its distance estimation

play a vital role in driver safety assistance. Vision-based
systems take several hints of vehicles as criteria to distinguish
vehicles from other objects. Broggi et al. [2] used the
characteristics of symmetry, bounding box shape, and road
region constraints to distinguish vehicles from other road
scene object. Kato and Ninomiya [3] reported their learning
algorithm using a template matching method with modified
quadratic discriminant functions. They exploited binocular
vision images to remove the perspective effect from incoming
images and to remap each pixel of these images toward new
position. Sun et al. [4] utilized a Gabor filter bank for feature
extraction in vehicle detection. To improve detection
performance, they optimized these Gabor filters by genetic
algorithms. Suzuki and Kanade [5] constructed a vehicle
dynamics model and calculated the optical flow from
sequential images. They further used extended Kalman filter
to estimate the motion and orientation of vehicles. Tokoro
discussed the advantages and disadvantages of laser and
microwave radars in gauging the distance of automobile [6].
He also showed the application of radars in intelligent cruise
control system. Recently, the combination of radar and vision
in detecting obstacles was also implemented and reported. As
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proposed by Kato et al. [7], the role of the vision sensor was
to detect the boundaries of objects, whereas the distances to
obstacles were measured by the radar. A stereo image based
obstacle detection and distance measurement approach was
adopted in Ruichek's study [8]. In stead of matrix cameras,
the algorithm used two linear cameras to capture a pair of
stereo images and then performed an edge matching.

In this paper, we will propose a framework to provide a
practical solution to the detection of preceding vehicles and
then the estimation of the distance. The reliability of vehicle
detection is enhanced due to the use of road region
segmentation. In addition, we evaluate the proposed distance
estimation algorithm by comparing with the measurement
from a radar sensor.

II. THE FUZZY ART BASED SCENE ANALYSIS

In a companion paper [1], we have developed a scene
segmentation system capable ofautomatically classifying and
labeling the objects in images via image pixel features. We
first construct a fuzzy rule base to analyze the scene and then
utilize this rule base to classify pixels of the given traffic
scene images. Fuzzy approach is adopted so that the module
can be better tolerant of uncertainty, ambiguity, irregularity,
and noise existent in the image. To obtain suitable fuzzy sets
of features, we use fuzzy Adaptive Resonance Theory (fuzzy
ART) to summarize the grouping nature among pixel features.
Unlike other clustering approach, such as fuzzy c-means,
fuzzy ART can produce appropriate number of clusters
subject to the specified setting of vigilance value.

A. Fuzzy ART Clustering to Construct Membershipfunctions
Three inherent features, including hue, intensity, and

height of image pixels, are extracted from a given
M x N image in the proposed scene analysis module. For
fuzzy ART requirement, we encode the feature vector of the
i-th pixel using the complement coding form as I,

1 2 3 IC 2c 1 2
(at, a2, a1, a, , a, , a,c), where a1, a1, and a' are the

piexel's hue, intensity, and height, respectively Furthermore,
al , a2c , and a'c represent their corresponding complements.
It is noted that a,', a,2, and a' should be normalized in

advance. We use fuzzy ART to cluster MN li's. After the
fuzzy clustering, the pixels of the image can be divided into
several clusters.
We choose the Gaussian type membership function to

represent the features because the Gaussian type membership
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function can reflect the first order and second order statistics
of clusters and is differentiable. As stated earlier, after the
fuzzy ART clustering, the image pixels are assigned into
different clusters. The corresponding mean and standard
deviation of each cluster can be computed. Therefore, we can
obtain associated Gaussian type membership functions and
linguistic labels can be used to describe the features'
characteristics.

B. Fuzzy Rule Base Extractionfor Scene Analysis
Fuzzy rules can be generated by learning from examples. A

training pattern with feature vector (a', a2, a3) is associated
with the desired output of corresponding natural elements.
Such image pixel constitutes an input-output pair. The rules
generated are a series of associations of the form

"IF antecedent conditions hold, THEN consequent
conditions hold."

The number of antecedent conditions equals the number of
features. Note that antecedent conditions are connected by
"AND." For illustrative purpose, assume now we have three
linguistic labels, HIGH, MIDDLE, and LOW to describe the
pixel's hue; three labels, BRIGHT, GRAY, and DARK to
describe the pixel's intensity; and three labels, UP, MIDDLE,
and DOWN to describe the pixel's height. For example, a
pixel, its hue, intensity, height, and belonging categories
being concatenated as vector format, is given by:

[al, a2, a3; D ] = (0.80,0.75,0.93; SKY) (1)

where al, a2, and a3 denote the normalized hue, intensity,
and height of the pixel, respectively, and D is the

corresponding belonging object category of the pixel. Let a',

a2, and a3 map their maximal membership functions, HIGH,
BRIGHT, and UP to values 0.90, 0.72, and 0.56, respectively.
Hence, this pixel supports the rule of

"IF the pixel's hue is HIGH AND its intensity is BRIGHT
AND its height is UP, THEN the pixel is SKY," (2)

with firing strength 0.56.

Due to a large number of training pixels, some conflicting
rules may be generated. The conflicting rules have the same
antecedent conditions but lead to different consequent
conditions (for example, the pixel is ROAD or the pixel is
TREE). For a set of antecedent conditions, we can have only
one rule to reflect it. Therefore, we have to choose one from
the two or more conflicting rules from each qualified cluster.
To this end, we choose the rule that is supported by a
maximum number of examples. Furthermore, to prune
redundant or inefficient fuzzy rules, if the supporting pixels
of a rule are less than a small fraction, 5% being used in our
study, of the total pixels of the image, the rule is excluded
from defining an IF-THEN rule. After the fuzzy rule base is

established, we use the max-min inference to classify the
elements of images. Although fuzzy inference using fuzzy
rule base is very promising in scene image segmentation,
there are still erroneously classified pixels existing after our
rule-base classification. These wrongly classified pixels
occur most frequently across the boundary of two natural
element categories. To reduce these mis-classified pixels, we
adopt the modified fuzzy K-Nearest Neighbor (K-NN)
algorithm [9] to correct the erroneous pixels.

III. CAR DETECTION AND DISTANCE ESTIMATION S

In the above section, we have summarized a scheme [1] to
analyze and segment a forward-looking traffic scene.
Accordingly, an important application of scene analysis to
obstacle detection and collision avoidance for safety driving
can be easily facilitated with a vision-based distance
measurement scheme as described below.

A. Car Detection

Vehicles, which can have various colors, are difficult to
detect using only color features, but they often can be better
detected by some ground-truth cues described below.

1) Vehicles must be on the road.
2) Vehicles have shadows under the car bodies.
3) The height-width ratios of vehicles vary in a certain

range, and are suitably represented by circumscribing
rectangles.

For illustration purpose, as shown in Fig. 1(a), a
forward-looking traffic scene image with some vehicles on
the road. The road region in gray color is shown in Fig. 1(b).
For car detection in a faster and reliable manner, we can limit
the searching region of interest to a smaller area, i.e., the road,
rather than the whole image. The shadow of a vehicle is
shown in Fig. l(c). Finally, as shown in Fig. l(d), the
preceding car is circumscribed with a rectangle. In the above,
Cues 1) and 2) can be helpful to assure the car edges by some
edge finding routines. Cue 3) is useful for car region
refinement.

B. Camera Model
The camera model with front image plane [10] is illustrated

in Fig. 2. The camera is represented by a lens together with an
image plane lying a distance offbeyond the lens. The image
vp of a point v in the three-dimensional space is determined by
the intersection of the image plane with the projecting ray
defined by v and the lens center. Also we have aligned the Y
axis with the optical axis of the camera, which is the ray from
the lens perpendicular to the image plane. It is noted that the
center of coordinates is the intersection of the principal ray
with the image plane. Clearly, if we let v = (x, y, z) and vp
= (xp, yp, zp), we have

2064



ff.x

yp 0f + Y

Yp = o

and

zp f- (3)

C. Camera Alignment
The camera should be first calibrated before the proposed

system starts to estimate the distance from the hosting vehicle
to the preceding one. As inspired by Wang and Tsai [11], a
camera can be calibrated by the concept of vanishing lines. In
our application, we can further simplify the alignment process
as described below. We consider three angular parameters of
the camera, i.e., the pan, tilt, and swing angles; three shift
parameters: the depth, horizontal, vertical offsets; and finally
the focal length.
1) Alignment of the Pan, Tilt, and Swing Angles of the
Camera

Consider a three-dimensional straight line L expressed as
the intersection of two planes

alx + Iy + clz d1

a2x+ b2y + c2z d2 (4)

where a1, bi, c1, d1, a2, b2, c2, and d2 are constants. From (3)
and (4), it follows that, ify approaches infinite, the vanishing
point will be

bi b2
lim (xp,Yp, zp) (f,0, f). (5)
Y---900 al a2

In addition, for any straight line parallel to the optical axes,
(4) can be reduced to

x = d

z = d2. (6)
And, hence, the vanishing point can be also reduced to

angles of the camera until the projection on the image plane
satisfies (7).

Finally, it follows from (3) that, without swing angle, the
projection of two points with the same height will also have
the same height in the image plane. We summarize the steps
to align the pan, tilt, and swing angles of the camera as
follows:

i) Set the camera in a flat plane with two parallel lane
markings.

ii) Adjust the pan, tilt angles so that the lane markings
crossing together in the origin in the image plane.

iii) Place two markings with the same height and adjust
the swing angle so that the height of the two markings
are the same on the image plane.

2) Estimation ofthe Required Parameters
Once the pan, tilt, and swing angles of the camera are

aligned, we then estimate the depth, horizontal, vertical
offsets, and finally the focal length. We denote the horizontal,
depth, and vertical offset parameters from the camera
coordinate system to the real world coordinate system by Ax,
Ay, and Az. We then place several markings of different
distance far from the camera and record their vertical
projections in the image plane. Using (3) and replacingy with
y + Ay and z with Az respectively, we can estimate, in the
least square error sense, fAz and f+ Ay accordingly, where
Ay and Az are the depth and vertical offset parameters,
respectively. In fact, we do not need to calculate the depth,
horizontal, and vertical offsets as well as the focal length at all.
OnlyfAz and f+ Ay is indeed needed to calculate the distance
from the camera. To estimate these two parameters, we can
collect our experimental data and solve forfAz and f+ Ay by
the least square regression. Finally, the formulas to estimate
the location of an object from the camera are

fAz - zp(f + Ay)
yp

ZP
(8)

and

xp(f + y + Ay)
X f (9)

lim xp = 0
yi y, =

lim yp = 0

lim zp = v.
y -oo

(7)

We should keep in mind that we intend to align the camera to
reduce the affection ofpan, tilt and swing angle ofthe camera.
That is, we can adjust the pan, tilt, and swing angle of the
camera so that if the car is in a position parallel to the lane
lines, the optical axis will also parallel to these two lane lines.
By (5), it is obvious that, we have to change the pan and tilt

where Ay and Az are the depth and vertical offset parameters,
respectively.

IV. EXPERIMENTAL RESULTS

A. System Installation and Calibration
In Fig. 3 is shown the experimental host car, a Mitsubishi

Savrin equipped with a Sick LMS 291-S05 laser range finder,
which has measurement resolution of 10 mm, measurement
accuracy of+ 35 mm and operating range of30 m, in the front
end of the car and a CCD camera mounted inside the car. The
proposed algorithm, including scene analysis and distance
estimation, was implemented on a Centrino 1.5 GHz

2065



Notebook. The host vehicle was first parked in a flat road
with lane markings, and the image of the road is taken. Next,
the Sobel filter was applied to the image to find out the edges
of the path lines, and then Hough transform was used to
determine the path lines and their interception. By the camera
alignment procedures mentioned earlier, the camera was
aligned with its pan and tilt angle so that the interception of
path lines coincided the center of the image. Afterwards, the
alignment of the camera's swing angle was done by tuning
and checking iftwo markings of the same height projected to
the same height in the image. Finally, a preceding car was
stopped at 20 different places, and the distance and projection
in the image were recorded so that the parametersfAz andjf
+Ay were estimated by the least square regression. Note that
in our experiment, the unit of length was chosen to be cm.
Thuswehadf + Ay = -129.12 and fAz = -43323.

B. Fuzzy ARTBased Traffic Scene Analysis
Twenty 256x 192 color scene images taken on a highway

were used to train the fuzzy rule base for scene analysis. In
the firs step, we construct the membership functions for the
fuzzy rule base by fuzzy ART clustering. The means, standard
deviations, and resultant membership functions of three
features defined for each category were computed
accordingly. For brevity, we only show one examples in Fig. 4.
Fig. 4(a) is one of the traffic scene image. Fig. 4(b) is the
segmented output image by the fuzzy rule base learned. In Fig.
4(c), to further correct the erroneous pixels, the image is
processed by the modified fuzzyK-NN algorithm. In Fig. 4(d),
the detected vehicles are circumscribed by rectangles. As
shown in Fig. 4(e), the pixels inside the rectangles are all
assigned to VEHICLE class, whereas each pixel outside those
rectangles is assigned to the class having the second high
score if it is mis-classified to VEHICLE class through fuzzy
rule inference.

After vehicles were detected, the distance from the
vehicle's bottom edges to the center of the image could be
computed. Since we had estimated the required two
parameters fAz and f+Ay during calibration procedure, we
then used (8) and (9) to estimate the distances of the
preceding cars from the host car. In addition, the radar also
retumed measurement values per second in different angles
from 0° to 180°. The corresponding distances of the front car
from the host car were calculated accordingly. An
experimental set-up showing the results of our distance
estimation and the measurement values of the radar is shown
in Fig. 5. An image from image sequences is shown in the
upper left part of the figure. The bottom edge of the front car
was detected in the neighborhood of the segmented car
region. To reduce processing time of the distance estimation,
we did not present the segmentation result when running
distance estimation program. The detected bottom edge ofthe
front car is marked in red, and the estimated distance was
shown in the lower left comer. For comparison, the radar read
out plot was drawn in the upper right part of the figure. Also

as shown in Table I, we verified our vision based front vehicle
distance estimation algorithm by comparing with the read out
values of the radar equipment. The experiment was done in a
scenario that the host car followed the front car, driving below
60 km/hr. We ignored the distance values that change
suddenly either from our algorithm or the radar. In this
experiment, when the distance exceeds approximate 27 m,
according to Table 1, the error became larger since the
projection of a farther point tends to converge to the center of
the image plane; and such small deviation from the image
center could induce great error in the distance estimation.
Thus, for car's bottom edge close to the origin of the image,
invisibility caused by image capturing or vibration noise of
the camera would cause more serious error. For front vehicles
whose distances were less than about 27 m from the host car,
the error can be less than 5.46%. Moreover, we have observed
that, when the host car is close (less than about 8 m) the front
vehicle, the error is also larger. This is because that the least
square regression puts more emphasis on larger error terms,
caused from larger distance values, and thus results in a
relatively better estimation in farther distance cases. In
consequence, the proposed vision based distance estimation
has a better accuracy when the front vehicle falls between 8
and 27 m ahead.

V. CONCLUSION

In this paper, we have proposed a framework which can
provide a practical solution to the detection of preceding
vehicles and then the estimation of the distance. In a
companion paper, we have developed a scene analysis
module that deals with scene segmentation and natural object
labeling of forward-looking images by the use of fuzzy
Adaptive Resonance Theory and fuzzy inference techniques.
Based on this technique, the proposed system can detect the
front vehicles and then estimate the distance of the nearest car
from us. We demonstrate our system using road scene images
as a test-bed. We detect cars head and estimate the distances
of the preceding cars. The car detection and the distance
estimation error are tested to be very reliable and promising in
our experiment.
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Fig. 1. (a) A forward-looking traffic scene image. (b) The road
region is in gray color. (c) The shadow of the preceding car is
marked. (d) The preceding car is circumscribed with a rectangle.

Front image plane

VP= (xp, 0,.
Lens center

x

Fig. 2. The camera model.

(a)

(b)

Fig. 3. The experimental set-up including (a) the host vehicle with
the radar mounted on the front end and (b) the camera installed
inside the vehicle.
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(a) (b)

(c) (d)

(e)

Fig. 4. An example selected from 20 test images and its
segmentation results. (a) The original image. (b) The fuzzy ART
based classification output image. (c) The segmentation result after
fuzzy K-NN classification. (d) The detected vehicles. (e) The
segmentation result combining vehicle detection.

TABLE I
COMPARISON OF THE DISTANCE ESTIMATION WITH RADAR

MEASUREMENT

Our Radar
estimate value Error (m) Error (%)

(m) (m)
6.57 6.23 0.34 5.46

7.23 6.88 0.35 5.09

7.86 7.60 0.26 3.42

9.03 9.03 -0.00 0.00

9.17 9.35 -0.18 -1.93
10.13 10.21 -0.08 -0.78

10.92 11.07 -0.15 -1.36

11.61 11.95 -0.34 -2.85

11.61 12.04 -0.43 -3.57

12.69 12.79 -0.10 -0.78

13.33 13.34 -0.01 -0.08

14.03 14.24 -0.21 -1.48
14.83 15.54 -0.71 -4.57

15.73 16.15 -0.42 -2.60

17.95 17.67 0.28 1.585

20.13 19.85 0.28 1.411
21.92 21.86 0.06 0.274

28.37 27.24 1.13 4.148

34.62 31.17 3.45 11.07
37.39 34.48 2.91 8.44

AVG 0.58 3.04

Fig. 5. The preceding car distance estimation program: the original
image (upper left), the bottom edge of the preceding car and the
estimate distance (lower left), and the radar read out plot (upper
right).
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