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Control Design for Vehicle's Lateral Dynamics
Der-Cheng Liaw and Wen-Ching Chung

Abstract-issues of controllability and stabilization design for
vehicle's lateral dynamics are presented. Based on the
assumption of constant driving speed, a second-order nonlinear
lateral dynamical model is obtained. It is observed that saddle
node bifurcation will appear in vehicle dynamics with respect to
the variation of the front wheel steering angle, which might
result in spin and/or system instability. In order to possibly
prevent the occurrence of such an instability, the controllability
of vehicle dynamics at the saddle node bifurcation point is
discussed. This leads to the design of a direct state feedback
control law for system stabilization. Two-Parameter bifurcation
analysis of system behavior is also obtained to classify the
regime of the effective control gains for system stabilization.
Numerical simulations for an example model demonstrate the
effectiveness of analytical results.

I. INTRODUCTION

ecently, the study of the vehicle's dynamics has attracted
onsiderable attention [1]-[6]. One of the major goals of

those studies is to enhance the driving safety since there have
huge amount of traffic accidents occurring in daily life. It is
known that those traffic accidents are highly related with the
nonlinear behavior ofvehicle dynamics. The linkage between
the nonlinear phenomena ofvehicle dynamics and the applied
front wheel steering angle hence becomes a very important
issue. Among those existing studies, sliding mode approach
has been used to design robust control laws for providing
system stability with respect to the large variation of system
parameters such as axial velocity, mass of the vehicle and the
contact force between tire and road surface [2]. A five
degree-of-freedom vehicle model was used in [6] to design an
extended Kalman filter (EKF) for estimating the historic data
of vehicle's motion and corresponding tire forces. Based on a
linear model ofvehicle's lateral dynamics, linear control laws
have been proposed in [3, 4]. Saddle-node bifurcation was
observed in vehicle dynamics [5] to link with system
instability via a numerical example. Such a bifurcation
phenomenon might result in spin of the vehicle.

Bifurcation theory and its applications have been recently
well exploited [7]-[1 1]. By applying the bifurcation theory, a
theoretical analysis of vehicle dynamics has been obtained by
Liaw et al [12], which revealed that the uncontrolled model of
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vehicle's lateral dynamics might undergo stationary saddle
node bifurcation.

In this paper, we continue the study of vehicle's lateral
dynamics as that in [12] but focus on the control issue. Here,
we consider the nonlinear model ofvehicle's lateral dynamics
by assuming constant velocity in motion equations of steering
dynamics without considering roll motion. In order to find the
existence conditions of stabilization controller, system
controllability at saddle node bifurcation point will be first
discussed. Feedback control design will then be studied for
preventing or delaying the appearance of saddle node
bifurcation.

The paper is organized as follows. Mathematical models of
vehicle system are recalled in Section II. It is followed by the
analysis of existence and stability conditions for system
equilibrium. The study of controllability at the saddle node
bifurcation point and direct state feedback control design is
given in Section IV. Finally, numerical studies for an example
car model are given in Section V to demonstrate the analytical
results.

II. VEHICLE DYNAMICS

In the following, we recall the mathematical model for
vehicle's steering dynamics from [1], which will be employed
in the paper.

Consider the vehicle's steering dynamics as depicted in Fig.
1 (e.g., [1], [12]). Let both sideslip angle ,dand yaw rate y be
system outputs for the steering characteristics and the
front-wheel angle Sf be only system input. In addition, Lf
denote the length between the center of gravity (CG) and
front-wheel axes and Lr denote the length between CG and
rear-wheel axes, respectively. Moreover, Fyfl and Fyri (resp.
Fyfr and Fyrr) are the left-side (resp. right-side) comering force
of front tires and rear tires, and both Fxfl and FXfr (resp. FXfr and
Fxrr) are the left-side (resp. right-side) traction force of front
and rear tires. For simplicity and without loss of generality,
here, we assume the vehicle body is symmetric about the
longitudinal plane. Let Fyf = Fyfl + Fyjr, Fyr = Fyrl + Fyrr, FXj =
Ffl + Fxfr and Fxr = Flri + Fxrr. The basic motion equations for
steering dynamics with roll motion neglected was derived in
[1] as given by

m(v v,3r) = F \,+ Fy, sin S1,' (1)

mv (,B+ r) = Fyf + Fyr + f sin 'if , (2)

(3)Iz=(LFy -LrFyr) cos/8+LjFIf sin 1f,
where

m: the mass of the vehicle,
I,: the yaw moment around z-axis,
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v: the longitudinal velocity.

Fig. 1. Vehicle's steering dynamics.

In this study, we focus on the characteristic analysis of
lateral dynamics by assuming Ff = 0 and there are no
acceleration or deceleration on the vehicle along longitudinal
direction, i.e., = 0 . Thus, Eq. (1) can be neglected for
analysis. The steering dynamics for constant speed v can then
be reduced to a second-order model as given by

/-4(13,y, j)

-vIF, + Fy,. }-y, (4)

Yf2(A/3V4)

I1 {LfF1§ L,F }cos/, (5)

where both Fyf and Fyr are known functions of /1, r and f.

III. STABILITY ANALYSIS

In this section, we adopt the second-order model as in Eqs.
(4)-(5) to study the local stability for the vehicle's steering
dynamics. Denote x =(,80,y0°)T an equilibrium point of

system (4)-(5) for a given steering wheel angle 3f = fj°. By
the definition of equilibrium point, we then have

Fyf ( ,0y00f)+ (Po, 70,sfa =y°mv (6)

and L Fyf (0, 70, f) - LF,,(,B°0,y0,Sf 0)=0 (7)

or cos,0 = 0. (8)

To check the condition of Eq. (8), we have /30 nir + % for

n=0, 1, 2,... It is clear that a vehicle can not easily achieve
such a condition. Thus, the equilibrium point xo in general
should satisfy the conditions of Eqs. (6) and (7).
Let x=(,B,7)T, x = x - xo and control input u = 5 0- b° .

Taking the linearization of system (4)-(5) at xo and 5f =05f°,
we have

x= Aix+ Bu,
where

A=[, a2 and B K]b,
LA a4 j b2

with

mvK a> 7(o)

a2 =-- y°, )1,__I
mv ayya7 a7 '

a3 (Lf- Lr-) P3° y°, f°)-cosfl,aF aF>0\

a4 -LI ( pYao)-cos30,

Kl=- 0d2 + 0(°/ J)

ns1 as1)i( oyoo)and b2 cs3LfY LrJ(/3 Y0(i0)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

By applying the Routh-Hurwitz stability criterion, we then
have the following stability result.

Lemma 1. The equilibrium point xo of system (4)-(5) is
asymptotically stable if a, + a4 < 0 and aa4- a2a3 > 0
where ai's are given in Eqs. (1I )-(14).

It is known from the so-called "Magic formula" (e.g.,
[5]-[6]) that both values of a, and a4, in general, will be
negative. Therefore, the stability condition of a, + a4 <0 is

always satisfied. An example of ai's will be given in Section
V. Thus, the stability condition in Lemma 1 can then be
reduced to that the equilibrium point x° of system (4)-(5)
will be stable if a1a4 -a2a, > 0 . It is clear from

al + a4 < 0 that the linearization system (4)-(5) at x° will not
have a pair of pure imaginary eigenvalues with respect to the
variation of ,. Instead, the system dynamics might have one
zero eigenvalue. This implies that the lateral dynamics of
vehicle system will not undergo Hopf bifurcation but might
have chance for the appearance of stationary bifurcation at

some Q-f=47f such that a1a4 -a2a3 0O .

The conditions of the appearance of saddle node
bifurcation for system (4)-(5) have been obtained in [12] as
follows.

Lemma 2. The system (4)-(5) will undergo saddle node
bifurcation for the equilibrium point xo if the following
conditions hold:
(i) a,a4= a2a3 with a1 < 0 and a4 < 0 (17)

(9) (ii) a4b1 . a,b2 , and
2 2

(iii) a4q,1 - a3ql2 +i--q13- a2q2,1 +aq22 --q23 . 0,
a4 a2

(18)

(19)
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where q I = f (xo °) q,2 = aA (Xa)0

q,3 a2= (X2,s10), q 2 (X ,sj)

q22- a (x I ) and q23- aj2 x ,9

IV. DESIGN OF STABILIZATION CONTROL LAWS

As given in Lemma 2 above, system (4)-(5) could undergo
stationary saddle node bifurcation, which might result in spin
of vehicle. In order to prevent the appearance of such an
instability, in this section we will seek for possible control
laws for system stabilization. First, we will discuss the
controllability of system (4)-(5). It is followed by the design
of control laws for preventing and/or delaying the appearance
of saddle node bifurcation. Details are given as follows.

A. Controllability Analysis
First, we check the controllability of system (4)-(5).

Denote C the controllability matrix of the linearized model of
system (4)-(5) as given in (9). We then have

c [B AB] (20)

Fbi ab, + a2b2 (21)
Lb2 a3b,+a4b2

The determinant of the controllability matrix C is
calculated as

system stabilization. Let the control input u = K x, where
K = [-k, -k2 ]. The linearized model (9) can then rewritten

as
(24)

The characteristic equation of system (24) gives

22+A+h2 =0,
where

= klb, + k2b2 -a, - a4,
and h2 = aa4 - a2a3 + (a2b2 -a4b,)k, +(a3b, -a,b2)k2.

(25)

(26)

(27)

By applying the Routh-Hurwitz stability criterion, we then
have the following stabilization result for the equilibrium
point x°.

Theorem 1. The equilibrium point xo of system (4)-(5) is
asymptotically stabilizable if h > 0 and k > 0, where h,
and h2 are given in Eqs. (26) and (27), respectively.

V. CASE STUDY

It is known that there are many mathematical models have
been proposed for cornering forces. In this paper, we adopt
the so-called "Magic formula" from [6] for the models of
nonlinear cornering forces Fyfand Fy], respectively, as given
by

Fyf = Df sin[Cf tan 1{Bf (l- Ef )af + Ef tan '(Bfa)}
det[C] = a3b,2 - a2b22+ (a4 -a,) bb2. (22)

We have the next result.

Lemma 3. The linearized model (9) is controllable at the
equilibrium point xo if a3b a2b2 + (a4 -a) blb, 0, where

ai' s and bi's are given in Eqs. (11)-(16).

Next, we study a special case of which xo is the saddle
node bifurcation point. From [12] and Lemma 2 in Section III,
we have a,a4 - a2a3 = 0 and a4bj #a2b2 when the linearized
model is evaluated at the saddle node bifurcation point. Eq.
(22) can then be rewritten as

det [C] =I(a4b, - a2b2 )(alb, + a2b2 )
a2

(23)

The next result follows readily from Lemma 3.

Corollary 1. The stationary saddle node bifurcation point xo
of system (4)-(5) is controllable if a,b, + a2b2 .0, where ai's
and bi's are given in Eqs. (1 1)-(16).

B. State Feedback Control Design
As discussed above, the saddle node bifurcation point of

system (4)-(5) is controllable if a,bj + a2b2 .0. This leads to
the possibility of a design of state feedback control law for

and

Fy7. =D,sin C, tan {'B,.(1 -Et.)a,.+E,tan-
where

a1f =,+tan-lj f+ y.cos;-J6f

and ar = P-tan j(- cos/8 .

(28)

-'(Ba,.a)}], (29)

(30)

(31)

Here, Bi, Ci, Di and E for i = f r are constants. af and ar
denote the slip angle of front tire and rear tire, respectively. It
is clear from Eqs. (28) and (29) that (,8A )T = (0, O)T will

make Fyf = Fyr-0 when 5f = 0 Thus, xO = (0, O)T is an

equilibrium point for system (4)-(5) for 5f = 0. This agrees

with the natural behavior of vehicle dynamics.
In the following, we provide a case study for the lateral

dynamics of vehicle system as given in system (4)-(5). To
adopt the data from [5], we choose m = 1500 kg, Iz 3000
kg.m2, Lf= 1.2 m, Lr- 1.3m and v = 10-40 m/s. The values of
remaining system parameters are chosen as given in Table I.
In this study, the system parameters are chosen to be running
on the low friction roads so that the vehicle might be easier to
go into spin. This also corresponds to the driving condition of
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traveling on a down sloping road at constant velocity with
equivalent braking effect at throttle being off [5].

TABLE I

Symbol High friction road Low friction road

Bf, B,. 6.7651, 9.0051 11.275, 18.631

G,CnC 1.3,1.3 1.56,1.56
DI; D;. -6436.8,-5430 -2574.7,-1749.7
Ef, -1.999,-1.7908 -1.999,-1.7908

In this paper, the computer code AUTO [13] is used to do
the numerical analysis, which can calculate system
eigenvalues of Jacobian matrix at each equilibrium point and
determine the corresponding system stability. Bifurcation
diagram of system (4)-(5) with respect to the variation of t5 is
obtained as shown in Fig. 2. Note that, in the bifurcation
diagram shown in this paper, the square box denotes the
saddle node bifurcation point, the solid-line denotes the stable
equilibrium point and the dashed-line denotes unstable
equilibrium point, respectively. As shown in Fig. 2, all the
system equilibrium points near the origin are found to be
asymptotically stable for different setting value of the driving
speed v, which were bounded by the saddle node bifurcation
points. Location of those bifurcation points for different
setting value of the driving speed v are listed in Table II. It is
also observed from Fig. 2 that the system equilibrium changes
stability at the saddle node bifurcation point and the
magnitude of 5f corresponding to the saddle node bifurcation
becomes smaller as the velocity v increases.

TABLE II

v (m/s) Label 4 (rad) / 0 (rad) y (rad/s)

I10 SNBPO1 -0.0569 0.0120 -0.2275
SNBPO2 0.0569 -0.0120 0.2275
SNBPO3 -0.0260 0.0241 -0.1428

15 SNBPO4 0.0260 -0.0241 0.1428

20 SNBPO5 -0.0158 0.0267 -0.1017
SNBPO6 0.0158 -0.0267 0.1017
SNBPO7 -0.0114 0.0272 -0.0781

25 SNBPO8 0.0114 -0.0272 0.0781

30 SNBPO9 -0.0090 0.0272 -0.0631
SNBP1O 0.0090 -0.0272 0.0631
SNBPI 1 -0.0076 0.0270 -0.0528
SNBP12 0.0076 -0.0270 0.0528
SNBP13 -0.0067 0.0267 -0.0454
SNBP14 0.0067 -0.0267 0.0454

To demonstrate the effectiveness of the proposed designs
in Section IV, we consider to construct the linear control laws
for system stabilization at the two bifurcation points SNBPO1
and SNBP13, respectively. Details are given as follows.

A. Control Designfor the Equilibrium Point SNBPO]
First, we consider to design state feedback controllers for

the low speed driving at v = 10 m/s. To check the
controllability of SNBPO1, we have det[C] =209.211. 0.

Hence, SNBPO1 is controllable. The next result follows
readily from Theorem 1 for system stabilization design at the
point SNBPO1.

Corollary 2. The saddle node bifurcation point SNBPO1 of
system (4)-(5) is asymptotically stabilizable by the linear
control law if the feedback gains ki and k2 satisfy the
following two conditions:

(i) k2 > -0.2838, (32)

(ii) -2.5276-5.9996k2 <ki <0.0056+2.9267k2. (33)

As depicted in Fig. 2, the front-wheel angle 6f will affect
the existence of equilibrium points. In order to seek for a
better control gains for system stabilization, let k, be treated
as another bifurcation parameter. A two-parameter analysis
of saddle node bifurcation is obtained for k2 0.1 as depicted
in Fig. 3, which indicate the location of saddle node
bifurcation points. The symbol "s" in Fig. 3 denotes the stable
operating zone, while "u" denotes the unstable operating zone.
It is observed from Fig. 3 that the number of saddle node
bifurcation will be different as k, varies. In addition to those
bifurcation scenarios shown in Fig. 3, there are two more
saddle node bifurcation points for 32.8656> k, > -0.99 and
four saddle node bifurcation points for -1.2605 < k, < -0.99.
Moreover, there is no saddle node bifurcation point for k, <
-1.2605.

Figure 4 presents four saddle node bifurcation points when
k1= -1.2 and k2= 0.1, and Figure 5 shows the bifurcation
diagram with respect to the different setting of k, at k2 = 0.1.
The observations from of Fig. 3 are verified by those shown
in Figs. 4 and 5. For k2= 0.1, the equilibrium point SNBPO1
of system (4)-(5) is asymptotically stable when -3.1276 < ki <
0.2982. From Fig. 6, we can observe the stability of SNBPO1
at different value of ki. We found that SNBPO1 is a stable
equilibrium point for k1 =- 1.5, -0.5 and 0 while SNBPO1 is an
unstable equilibrium point for k, = 0.5 and 0.9. Those agree
with the results of Corollary 2.

B. Control Designfor the Equilibrium Point SNBPJ3
Next, we construct the stabilization control laws for the

system (4)-(5) at the saddle node bifurcation point SNBP13.
As observed in Fig. 2(a), the stable region of 3f is very small
for v = 40 m/s. To check the controllability of SNBP13, we
have det[C]= 264.339 . 0 Hence, the linearized model at

the point SNBP1 3 is controllable. Follow the same control
scheme as proposed in Theorem 1, we have the next result.

Corollary 3. The saddle node bifurcation point SNBP13 of
system (4)-(5) is asymptotically stabilizable by the linear
control law if the feedback gains k1 and k2 satisfy the
following two conditions:

(i) k2 > -0.1306, (34)
(ii) -3.2952-23.9914k2 <kI < 0.0004+1.2481k2. (35)

Similarly, let k2 = 0.1. A two-parameter bifurcation
diagram of df and k1 is depicted in Fig. 7, which presents the
location of saddle node bifurcation points. There are two
saddle node bifurcation points for 0.5341>kl > -1. If k1<
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-1.1625, there is no saddle node bifurcation point. For
-1. 1625 < k, < -1, there are four saddle node bifurcation points.
Figure 8 shows four saddle node bifurcation points at v=40
m/s, k1= -1.1 and k2= 0.1, and Fig. 9 shows bifurcation
diagram with respect to the different values of k1 at k2 = 0.1.
When k, = 1, there is no saddle node bifurcation point and all
equilibrium points of system (4)-(5) are unstable. At k2 = 0.1,
the equilibrium point SNBP13 of system (4)-(5) is
asymptotically stable for -5.6943 < kl< 0.1252. The stability
of system (4)-(5) at SNBP13 for different values of k, is
shown in Fig. 10. Those agree with the result of Corollary 3.

VI. CONCLUSIONS

In this paper, we focused on the nonlinear study of the
second-order model of vehicle's lateral dynamics. The
stationary bifurcation phenomenon is predicted and observed
in this system. A direct state feedback design was proposed to
stabilize the system at the bifurcation point. The
two-parameter bifurcation analysis with respect to the setting
of control gains were also obtained, which can provide a
guide for the selection of the applied control efforts for
preventing and/or delaying the occurrence of system
instabilities.
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