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Abstract—In this paper, an self-organizing
neural-network-based adaptive control (SONNAC) system is
developed. The SONNAC system is comprised of a neural
controller and a compensation controller. The neural controller
utilizes a self-organizing neural network (SONN) to mimic an
ideal controller, and the compensation controller is designed to
compensate for the approximation error between the neural
controller and the ideal controller. When the approximation
performance of the SONN is not good enough, the SONN can
create new neurons in the hidden layer to decrease the
approximation error. Moreover, the adaptive laws of controller
parameters are derived in the sense of Lyapunov, so that the
stability of the system can be guaranteed. Finally, to investigate
the effectiveness of the proposed SONNAC system, the design
methodology is applied to control a linear ultrasonic motor.

I. INTRODUCTION

HE computed torque or inverse dynamics technique is a

special application of feedback nonlinear systems. These
design methods are based on a good understanding of the
controlled system dynamics and its environment; however, it
is unpractical to precisely model a complex nonlinear system.
To tackle this problem, the neural-network-based control
techniques have presented the alternative design approaches
for the uncertain nonlinear systems [1-5]. The successful key
element is the approximation theory, where the parameterized
neural network can approximate the unknown system
dynamics or the ideal controller after learning. Some of these
learning algorithms are based on the backpropagation
algorithm. However, these approaches are difficult to
guarantee the stability and robustness of closed-loop system.
To overcome this difficulty, some of the learning algorithms
are based on the Lyapunov stability theorem. The tuning laws
of the neural network have been designed to guarantee the
system stability in the Lyapunov sense.

Although the control performances are acceptable in
[1-5], the learning algorithm only includes the parameter
learning, and they have not considered the structure learning
of the neural network. If the number of neurons in the hidden
layer is chosen too large, the computation loading is heavy so
that they are not suitable for practical applications. If the
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number of neurons in the hidden layer is chosen too small, the
learning performance may be not good enough to achieve
desired control performance. To tackle this problem, several
self-constructing neural networks, consisting of structure and
parameter learning phases, have been proposed [6-8]. These
two-phase learning algorithms not only decide the structure
of neural network but also adjust the parameters of neural
network. Recently, some self-constructing neural networks
have been applied to solve several control problems.
However, some of them can not guarantee the system
stability; and some of them require too complex design
procedure to achieve satisfactory performance.

Modern mechanical systems, such as machine tools and
automatic inspection machines, often require high-speed
high-accuracy linear motions. These linear motions are
usually realized using the rotary motors with a mechanical
transmission, such as reduction gears and lead screw. These
transmission mechanisms not only significantly reduce the
linear motion speed and dynamic response, but also introduce
the backlash and large friction. To tackle this problem, a
linear ultrasonic motor (LUSM) is introduced to apply the
linear motion without using any mechanical transmission.
The LUSM has much merit, such as high precision, fast
control dynamics, large driving force, smaller dimension,
high holding force, silence and more minimum step size than
the class electromagnetic motors, so that it can be used in
many different applications [9]. However, the driving
principle of the LUSM is based on the ultrasonic vibration
force of piezoelectric ceramic elements and mechanical
frictional force. Therefore, its mathematical model is
complex, and the motor parameters are time-varying because
of increasing temperature and changes in motor drive
operating conditions. For control system designs, the
conventional control technologies are always based on a good
understanding of the controlled system; however, the LUSM
dynamic model is difficult to obtain. Therefore, it is very
difficult to control the LUSM using the conventional control
theory. To tackle this problem, some design techniques have
been adopted for the LUSM control [10-12]; however, these
design procedures are overly complex or may cause large
chattering in the control efforts which will wear the bearing
mechanism and excite unmodelled dynamics.

The motivation of this paper is to design a self-organizing
neural-network-based adaptive control (SONNAC) system
for the LUSM. The SONNAC system is comprised of a neural
controller and a compensation controller. The neural
controller uses a self-organizing neural network (SONN) to
approximate an ideal controller. The compensation controller
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is designed to recover the residual of the approximation error.
The learning phase of SONNAC includes a structure learning
and a parameter learning. In the structure learning phase, the
developed SONN can on-line create new neurons in the
hidden layer as the approximation performance is not good
enough, thus the learning capability and flexibility can be
upgraded. In the parameter learning phase, the controller
parameters can be on-line tuned based on the Lyapunov
function, so that the stability of the closed-loop system can be
guaranteed. Finally, the experiment results are performed to
demonstrate the effectiveness of the proposed SONNAC
design method for LUSM.

II. MODELING OF LINEAR ULTRASONIC MOTOR

The structure of the LUSM is a large face of a relatively
thin rectangular piezoelectric ceramic device. The driving
principles of the LUSM are based on the ultrasonic vibration
force of piezoelectric ceramic element and mechanical
frictional force. Figure 1 shows the principal structure of the
LUSM considered in this study [9]. The stator vibrator is
fitted with bending and longitudinal piezoelectric actuators.
They are driven by two electrical sources of identical
frequency, but with a phase difference that is carefully
controlled. At the vibration tip, an elliptical motion is thus
created, resultant of the elliptical and longitudinal motion.
The bending actuators convert a large electrical power to
mechanical output and the longitudinal actuator dynamically
changes the force along the pre-load direction to adjust the
frictional force between the stator and the rotor. Friction is
inevitable in the LUSM. It is a highly complicated process to
attempt to build an explicit mathematical friction model for
the LUSM because friction plays a dual role: it does not
simply contribute to the nonlinear dynamics (e.g., dead zone)
of the LUSM, but it also serves as the driving force for the
moving part. Therefore, the LUSM dynamic equation is very
complicated and the parameters of the elements are not easy
to know.

For developing the control law, the LUSM can be
described as a second-order nonlinear dynamic equation by
the Newton’s Law as

[M+m]x =F(x)+G(x)u (1)
where M is the mass of the moving table; m is the mass of
the payload; x =[x x]" represents the position and velocity
of the moving table; F(x) is the nonlinear dynamic function

including friction, ripple force and external disturbance;
G(x) is the gain of the LUSM resonant inverter; and # is the
input force to the LUSM. Rewriting (1), the dynamic equation
of the LUSM can be obtained as

F(x) = G(x)

B M+m i M+m !

=f(x)+gX)u (2)

F(x) G(x)
M+m

nonlinear dynamic functions can not be exactly obtained, the

Since these

where f(x)= and g(x) =

LUSM poses an interesting and challenging dilemma to the
control problem.
payload

==
y

moving table

J
vibration tip
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piezoelectric
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le—— bending
piezoelectric
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Fig. 1 Structure of the piezoelectric-type linear ultrasonic
motor.

III. IDEAL CONTROL

The tracking control problem of the LUSM system is to
find a control law so that the state trajectory x can track a

reference command x, . The tracking error is defined as

e=x,—x 3)
and a sliding surface is defined as
s=é+ke+k, J::e(r)dz’ 4)

where k and k, are non-zero positive constants. If the
system dynamics are exactly known, an ideal controller can
be designed as
u'=u, +u, (%)
where the equivalent controller u, isrepresented as
u, = —1—(—f(x)+)'é(_ +ke+k,e) (6)
g(x)
and the hitting controller u,, is designed as
1
g(x)
where 77 is a positive constant and sgn(-) is the sign
function. Substituting (5), (6) and (7) into (2), yields
s =-nsgn(s) . (8)
In order to drive the s — 0, consider the Lyapunov function
candidate in the following form

V,(s)z%sl. 9)

7 sgn(s) (7

e

Differentiating (9) with respect to time and using (8), yields
Vi(s)=ss =-n|s| <0. (10)
In summary, the ideal control system presented in (5) can
guarantee the system stability in the sense of the Lyapunov.
However, if the system dynamics f(x) and g(x) are
unknown or perturbed, the ideal control cannot be
implemented. Thus, a model-free control technology, which
is termed as self-organizing neural-network-based adaptive
control (SONNAC), is proposed in the following section to

achieve desired tracking performance.
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IV. SELF-ORGANIZING NEURAL-NETWORK-BASED
ADAPTIVE CONTROL

The proposed SONNAC system is comprised of a neural
controller and a compensation controller. The neural
controller uses a SONN, in which the neurons in the hidden
layer can on-line split up as the approximation performance is
not good enough, to mimic an ideal controller. The
compensation controller is designed to compensate for the
approximation error between the neural controller and the
ideal controller.

A. Description of Self-Organizing Neural Network

A single-hidden-layer SONN is shown in Fig. 2. The

output of this SONN takes the form

y=w 00,5 (1n

where s and y are the input and output of the SONN,
respectively, o represents the hidden-layer activation
function, v, is the interconnection weight between the input
and hidden layers, and w, is the interconnection weight

between the hidden and output layers. These weights will be
on-line adjusted in the following derivation. The activation
function in this paper is considered as a sigmoid function

1
(+e?)’ (12

By collecting all the weights of the SONN, equation (11) can
be expressed in a vector form as

y=W"o(Vs) (13)

where V =[v,v,,..,v, 1€ R" and W =[w,w,,...,w, ]e R".

o(z)=

A main property of neural network regarding feedback
control purpose is the universal function approximation
property. In general, the approximation error decreases as the
net size m increases. In general, the number of neurons in
hidden layer should be determined by trial-and-error to
achieve favorable approximation.

To tackle this problem, this paper proposed a simple
disjunction algorithm such that the k-th neuron in the hidden
layer splits up at the N-th sampling time, if the following
condition is satisfied

pARIA

2 (o] + )

i=1
where @ denotes a disjunction threshold value. When the
approximated nonlinear functions are too complex, the

disjunction threshold value should be chosen as a small value
so that the neurons can be easily created. The tuning laws v,

20, k=12,..m (14)

and w, will be derived in the next subsection. The proposed

disjunction algorithm is derived from the observation that if
the left hand side of (14) is larger than the disjunction
threshold value, which implies the precise approximation is
hard to capture because the updating of the weight values is
relatively large. For that reason, if condition (14) is satisfied,
then a new neuron is created to spread the relatively large

variation of the weights. As shown in Fig. 3, the k-th neuron
satisfying (14) is divided into two neurons, and the newly
created neuron is denoted by k”-th neuron. The new weights
connected to the k’-th neuron are decided as follows
v.(N+1)=v,(N) (15)
w.(N+D)=aw,/(N) (16)
where o is a positive constant. The weights connected to the
k-th neuron are determined as follows
v, (N +1)=v,(N) (17)
wN+D)=(1-a)w,(N). (18)
This method is induced from the facts that the weights

connected to the newly created neuron will share the large
variations of the weights.

Fig. 3. Schematic illustration of the disjunction algorithm.

B. Design of SONNAC

The developed SONNAC system is shown in Fig. 4; the
controller is comprised of a neural controller and a
compensation controller

u=u,+u,. (19)
The neural controller u,, is utilized to approximate the ideal
controller and the compensation controller u,, is designed to
compensate for the approximation error between the neural
controller and the ideal controller. Substituting (19) into (1),
yields

x=f(x+eg® @, +u,). (20)
Using (5) and (20), the error dynamic equation is obtained
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§=g(x)w —u, —u, —nsgn(s)). 2
By the universal approximation theorem, an optimal
approximator can be designed to approximate the ideal
controller, such that

u =u +A=W'o(Vs)+A=W'6 +A (22)
where V' and W' are the optimal vectors of SONN and A
is the approximation error. Let the number of optimal neurons
be n" and the neurons be divided into two parts. The first part
contains » neurons which are the activated part and the
secondary part contains »n" —n neurons which do not exist
yet. Thus, the optimal weights of NN V' and W' are
classified in two parts such as

A
v =[v, v/]and W ={ }
W,

(23)

where V: € R" and W: € R" are activated parts, and

V;eR"™ and W eR"™ are
respectively. Since the optimal NN weights that are needed to
best approximate the ideal controller are unobtainable, an
estimation of u, is given by

u, =W/o(V,s) =W'6,

nn

inactivated  parts,

(24)
where V, and \’AVa are the estimated values of the optimal

weights V. and W, , respectively. Define the estimated error

a

u as
u=u -u,
=W'6 + W76 -W'6, +A
=W'6, +W'6, +W'G, + W0 +A (25)
where o . =0(V)x) , o =o(V,x) , & =6.-8, ,

W, =W -W, and V, =V, -V, . The Taylor series
expansion of ¢, with respect to V,s can be derived as
(26)

where o, is the Jacobian and h is a vector of higher-order

6,=6,+06,V s+h

terms. Therefore,

6, =6 V/s+h. (27)
Substituting (27) into (25), yields
i=W'6,+W6.Vs+e (28)

where £=W/G, + W 6, + W'h+A is assumed to be
bounded by IelSE where E is a positive constant.

However, the bound of approximation error E is difficult to
measure in practical applications. Thus, using the
approximation error equation (28), equation (29) can be

rewritten as
$() = g()(W]8, +5V] 6] W, +&—-u, -7sgn(s)). (29)
In this derivation, W6V, s =[W'o.V,s]" is used since it is

a scale. Therefore, the following theorem can be stated and
proved.

Theorem 1: Consider a linear ultrasonic motor system
expressed by (1). If the self-organizing neural-network-based
adaptive control system is designed as (19). A self-organizing
neural network splits up the neurons in the hidden layer if
condition (14) is satisfied. The adaptation laws of activated

parts V, and W, are designed as

V. =-V, =7,5 g(x)6"W, (30)
W, =-W. =7,52(x)8, 31

where 77, and 7, are the positive learning-rates. The

compensation controller is designed as
(32

c

u, = l:?sgn(s)

where E is the estimation of the approximation error bound
with the estimation law given as

A

E=-E=n,]sg(x)| (33)
where 77, is a positive learning-rate. Then, the stability of the
adaptive self-structuring neural network control system can
be guaranteed.
Proof:

Define a Lyapunov function candidate in the following
form

B =tes Ly s Lww L. (34)
22, 2n, 21,

where E=E—E. Differentiating (34) with respect to time
and using (29), and (30)-(33), gives
ViV Ww, BE
+ +
, Ty P
=-ng(X)|s|+&sg(x) — Els g(x)|
<—~E-|eplsgx)|<0. (35)
If the system dynamic g(x) is unavailable, the g(x) in the

Vz(s,\Z,Wz,E) =ss+

adaptive algorithms can be reorganized as |g(x)|sgn(g(x))
in practical applications. Therefore, the learning algorithms

for the SONNAC shown in (30), (31) and (33) can be
reconstructed as follows:

A A

V, =75’ s6] W, (36)
W, =756, (37)
E=-E=n, (38)

in which 7, =7,|g(x)|, 7, =7,|g(x)| and 7, =7,|g(x)| .
The 7,, 7, and 7, can be taken as new learning-rates.
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Bound Estimation Law
(38)
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Fig. 4. SONNAC for linear ultrasonic motor system.

V. EXPERIMENTAL RESULTS

The computer control experimental system for the LUSM
is shown in Fig. 5. A servo control card is installed in the
control computer, which included multi-channels of D/A,
A/D, PIO and encoder interface circuits. The position of the
moving table is feedback using a linear scale. The proposed
SONNAC system is realized in the Pentium using the “Turbo
C” language. The control interval of the control system are set
as 2 ms. The control objective is to control the moving table
to follows a 0.035m periodic step command. Moreover, a

second-order transfer function — is chosen as the

s +16s+ 64
reference model for the step command.

inear Piezoelectric Ceramic Motor

Fig. 5 Computer-controlled linear ultrasonic motor system.

To illustrate the effectiveness of the proposed design
method, a comparison between a fixed-structured ncural
network control in [5] and the proposed SONNAC is made.

The experimental results of fixed-structured neural network
control are shown in Fig. 6. The tracking responses arc shown
in Figs. 6(a) and 6(c); and the torque input are shown in Figs.
6(b) and 6(d) for 7 and 20 hidden neurons, respectively.
Experimental results show that the robust tracking
performance has been achieved for different hidden neurons.
[f the number of hidden neurons is chosen too small, the
convergence of the tracking error is slow. On the other hand,
if the number of hidden neurons is chosen too large, the
computation loading is heavy.

3.5¢cm

Trajectory
Command

0 cm :
Fable Pesition

(a)

Control Effort -

(b)

Trajectory
Command

Table

‘0cm- Position

“lsec .

. (.C).

B ‘Control E!‘forlf

W

Isec
(d)
Fig. 6 Experimental results of fixed-structured necural
network control.

Then, the developed SONNAC is applied to control the
LUSM. The parameters in the proposed SONNC system arc
selected as k=2, k,=1, n =50, n,=50, n,=0.1,
a=0.3,and € =0.5. The experimental results of SONNAC
are shown in Fig. 7. The tracking response is shown in Figs.
7(a); the torque input is shown in Figs. 7(b), and the number
of the hidden node is shown in Fig. 7(c). It shows that the
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favorable tracking performance can be achieved for the
proposed SONNAC after the structure and parameter learning
phases. Moreover, the SONNAC can on-line create new
neurons in the hidden layer as the approximation of neural
network is not good enough.

Fig. 7 Experimental results of SONNAC.

VI. CONCLUSIONS

This paper developed a self-organizing
neural-network-based adaptive control (SONNAC) system,
which is comprised of a neural controller and a compensation
controller. In the neural controller design, a self-organizing
neural network is utilized to mimic an ideal controller. In the
compensation controller design, an error estimation
mechanism is investigated to estimate the bound of
approximation error. The major contributions of this paper

are: 1) the successful development of an SONNAC, in which
the Lyapunov stability theorem is used to derive the on-line
learning algorithms. 2) the self-structuring neural network
has been created with easy split-up algorithm of hidden
neurons to achieve favorable learning performance. 3) the
successful application of the SONNAC to control a linear
ultrasonic motor.
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