
2006 IEEE International Conference on
Systems, Man, and Cybernetics
October 8-11, 2006, Taipei, Taiwan

Smart Pantries for Homes

C. F. Hsu, H. Y. M. Liao, P. C. Hsiu, Y. S. Lin, C. S. Shih, Member, IEEE
T. W. Kuo, Senior Member, IEEE and Jane W. S. Liu, Fellow, IEEE

Abstract-A smart pantry holds non-perishable household
supplies and automates the purchasing and delivery of their
replenishments. By relieving its user from the chore of keeping
the home stocked of essentials, it provides convenience and
peace of mind not only to elderly individuals but also busy
people of all ages. This paper describes two alternative smart
pantry designs and tradeoffs. Underlying methods and
technologies used for their implementation are also described.

I. INTRODUCTION

In recent years, population of developed and developing
countries is aging at a rapid rate [1, 2]. There is a growing
need for low-cost, easy-to-use, and dependable devices and
services designed to help the elderly live independently,
improve their quality of life and reduce the cost of their care.
Examples of these devices include object locators for finding
misplaced household and personal objects and automatic and
robotic helpers for enhancing physical dexterity and
accessibility [3, 4]. Given the fact that the average percentage
of population 65 or older will soon exceed the percentage of
population under 15 in these countries, one expects that such
devices may someday be as demanded as iPod, game
consoles and robotic toys.

Another example of consumer electronics for the elderly is
smart pantries for storage of nonperishable supplies. Such a
pantry monitors its contents and automates the just-in-time
replenishment of objects in it. Thus, it relieves of its user from
the chore of keeping objects such as shampoo and detergent
on hand. Smart pantries are for convenience of elderly
individuals, as well as busy people of all ages who have no
time or interest to shop (or place order) for boring but
essential household supplies.

This paper describes two alternative smart pantry designs
and implementations: the picture-id version and the bar-code
version. The difference between the versions arises from
differences in the technologies used for content capture and
object identification. The picture-id version, called PID
pantry, uses an overhead camera to capture its contents. In
purchase orders sent by a PID pantry to the suppliers, each

C. F. Hsu is with Department of Computer Science and Information
Engineering, National Chiao-Tung University, Hsinchu, Taiwan (e-mail:
aldarishsu(Zyahoo.com.tw)

H. Y. M. Liao and J. W. S. Liu are with Institute of Information Science,
Academia Sinica, Nankang, Taipei, Taiwan (e-mail: {liao,
janeliu}@ iis.sinica.edu.tw)

P. C. Hsiu, C. S. Shih and T. W. Kuo are with Department of Computer
Science and Information Engineering, National Taiwan University, Taiwan
(e-mail: {r91004, cshih, ktw} @csie.ntu.edu.tw)

Y. S. Lin is with Department of Computer Science, National Tsing Hua
University, Taiwan (e-mail: yeushian@csie.nthu.edu.tw)

object to be delivered is specified by a picture captured by the
camera prior to the removal ofthe object from the pantry. The
supplier must process the photo image, either manually or
automatically, in order to identify the brand and size of the
object. For this reason, the usability ofPID pantry is not ideal
from the supplier's point of view. It is easy to use from
owner's point of view, however. Other than making sure that
nothing blocks the view of the camera, the user can treat a
PID pantry just like a dumb pantry. The bar-code version,
called BAC pantry, identifies objects in it by their bar codes.
Because every object in every purchase order is
unambiguously identified by a bar code, BAC pantries are
easy to use from the supplier's point of view. On the other
hand, the user must scan the bar code of every kind of objects
in the pantry. Unless given a bar code before the supply ofthe
kind runs out, the pantry will not be able to order
replenishment automatically.

A natural question is why not RF identifiers (RFID). If
every household object were to come with a smart tag, a
pantry equipped with a RFID reader can easily maintain
inventory as the user moves objects in and out of the pantry.
This version would have the advantages of both PID and
BAC versions and none of their disadvantages. In fact, this is
how smart cabinets used in hospitals for storage of medical
supplies work. Unfortunately, the RFID-version of smart
pantries for home use is still not economically feasible and is
likely to remain so for some time to come [5]. A cost of tens
of cents per tag is low enough for tagging expensive medical
supplies but is orders of magnitude too high for tagging
ordinary household items individually.

Smart pantry is one of a family of appliances that are the
research focus of the SISARL project [6, 7]. SISARL devices
and appliances are consumer electronics of convenience,
personal safety and health maintenance. Targeted users are
elderly individuals who may have some functional
limitations, but are still in relative good health, live
independently and, most likely, in homes of their younger
years. Like assistive devices and home care equipments,
SISARL devices must be easy to use and highly dependable.
However, assistive devices (e.g., [8 - 15]) typically assume a
smart operating environment equipped with computer(s),
Internet and, often, a variety of smart sensors; their targeted
users, being in need of help in daily living, subscribe to
assistive services, and so on. These assumptions are
unrealistic for SISARL devices. To keep the costs ofSISARL
devices to a small fraction of the costs of typical assistive
devices is another challenge.

1-4244-0100-3/06/$20.00 C2006 IEEE 4276

Following this introduction, Section II discusses
assumptions and constraints common to both versions of
smart pantry. Section III describes of their architectures and
implementations. Section IV describes the techniques used by
PID pantries for object identification purpose and
summarizes preliminary experimental results. Section V
describes wireless sensing schemes for BAC pantry. Section
VI summarizes the paper and discusses future work.

II. COMMONALITIES AND DIFFERENCES

As stated earlier, a smart pantry is used to hold
non-perishable household supplies. The pantry knows its
contents and can automate their replenishments. For example,
each pantry in Fig. 1 knows that a bag of paper towels is on
the top shelf. When the last roll is removed, the pantry
contacts a supplier of user's choice and requests the store to
deliver a replacement bag.

(a) (b)
Fig. 1 Smart Pantries

An underlying assumption is that one or more grocery and
discount stores have agreed to receive and process purchase
orders sent by the pantry on the user's behalf and deliver each
order by a specified date. (Alternatively, the panty may be
provided to the user by a supplier.) The information required
for contacting suppliers, placing orders and arranging
payments and deliveries were entered into the pantry at
initialization time, together with information on user
preferences. By default, purchase orders are sent via
messages over a dial-up connection, but a user with
broadband internet access can configure the pantry to place
orders via Internet.

Both versions are designed to accommodate concurrent
insertions and retrievals of objects by multiple users. They
use a keypad, a microphone, a speaker and a recorder to
support user-pantry interaction. The microphone, speaker,
and recorder form an audio interface that records voice
segments of the user and plays back user voice interleaved
with pre-recorded pantry voice. By allowing the pantry to
interact with the user, the audio interface makes the pantry
friendlier and more tolerant to misuse.

Like ordinary dumb pantries, the storage space in a smart
pantry is divided into compartments. Figure 1 shows two
configurations. The picture-id version is constrained to use

the one in Fig. 1(a). The fact that each compartment is clearly
defined by a rectangular boundary simplifies the extraction of
pictures of individual compartments from a picture of the
entire pantry. The bar-code version is constrained to use the
configuration in Fig. 1(b). In this configuration, shelves are
not necessarily divided vertically. Rather, each compartment
on a shelf corresponds to a switch that is in the front of the
shelf and a spring-loaded plate that moves perpendicular to
the shelf. (This construction is similar to the ones used in
many drug and grocery store shelves.) When a plate is at the
front of the shelf, as illustrated by the plate on the bottom
shelf in the figure, it presses the switch closed, indicating that
the corresponding compartment is empty. The compartment
is nonempty when the plate is pushed towards the back of the
shelf by an object, leaving the switch open. By sensing the
states of the switches, a BAC pantry can distinguish empty
compartments from non-empty ones.

Both versions require that objects in each compartment are
identical. As we will see in the next section, a PID pantry
cannot tell whether objects in two or more compartments are
identical. By default, it will order replenishment when the last
of the objects in any compartment is removed, even when
some other compartments may contain more of the same
objects. Moreover, it is constrained to order all objects from
the same default supplier with the same replenishment time
(i.e. the length of time-to-delivery interval). The bar-code
version does not have these limitations.

III. ARCHITECTURES AND IMPLEMENTATIONS

In our discussions, we refer to compartments by 2-tuples of
rows and columns. As an example, (3, 4) refers to the fourth
compartment from the left on the third shelf from the top. We
use rows and columns to mean numbers of rows and columns
of compartments in the pantry.

A. PID Pantry Design

Fig. 2 and Fig. 3(a) show the physical components of a PID
pantry. It consists of a base unit and a remote unit. The base
unit contains a digital camera, together with the processing
and storage modules that do most of the work. The base unit
is mounted overhead so that the camera can capture a front
view of the pantry shelves. The remote unit contains all the
I/O devices and is within an easy reach of the user. It also
provides access to the supplier(s). The units are connected
wirelessly.

Fig. 4 describes the operations of the pantry. The pantry is
empty during initialization. After capturing currentpicture
of the pantry, the pantry controller processes it to determine
the boundaries of the compartments and values of rows and
columns and captures and stores EMPTY, a picture of an
empty compartment (For the sake of simplicity, our
discussion assumes that all compartments look alike when
empty. This restriction can be easily removed.) It then
allocates an array, called picture[rows, columns], to store
pictures of individual compartments and initializes every
element to EMPTY

4277

cordless phone, respectively.) On the other hand, because the
pantry cannot distinguish objects from each other, it has the
limitations mentioned in Section IL.

i11E1137 o Purchase .lEIEllSO r ~~~order - 040044000040
*n-o X 8~~~~~~~~~~generator o o
00X0~~~a=>to o Keypad &u *-1 E O : C ^ ~~~~~~~~~~~~printer
1|111--1E1 O X ~ ~~~~~~~~~~Picture & E E Audio

*0111|11|1~uppie _DBO Interface

Compartments Base unit Remote unit

Fig. 2 Components of a PID pantry

rows

(a)
Fig. 3 Arrangement and Contents

Paper
Towels;-

.......

2 columns
I

picture[rows, columns]

(b)

During normal operation, the controller examines the
contents of the pantry periodically (e.g., every 200
milliseconds) by having the camera take a snapshot of the
pantry at the start of the period. When the controller finds that
the new snapshot (current_picture) is essentially identical to
the previous one (previouspicture), it does nothing.
Otherwise, it extracts the picture current content of every
compartment (i, k) from currentpicture and compares it with
the one stored at picture[i, k]. Thus it determines whether the
compartment has changed from being empty to non-empty
and vice versa. In the former case, it stores the new picture of
the compartment in picture[i, k] for use later. In the latter
case, the compartment has just been emptied. The pantry
inserts the picture stored at picture[i, k] into the list of objects
to be ordered and then sets the element to EMPTY. The list
thus generated can be printed and used as a shopping list ifthe
user chooses to shop personally, rather than relying on the
pantry, or sent by the pantry to a supplier as a purchase order.
Fig. 3(b) shows what picture may contain at some time. The
solid colored boxes indicate EMPTY. To ease the task of
automatic object identification, the pantry also sends EMPTY
in every purchase order.
We note that a basic PID pantry such as one described here

merely extracts pictures of the objects in compartments. It
cannot identify the objects. As we will see in Section IV, the
object identification function for determining the brands and
sizes of objects from their pictures requires significantly more
processing power than what is needed to segment a big
picture into smaller pictures. The function also requires a

database of high quality pictures of objects to be identified.
By off-loading this function to servers at the supplier side, the
pantry is kept as simple as possible. (The base and remote
units can be built from commodity digital camera and

Fig. 4 Operations of PID pantry

B. BAC Pantry Design
Again, objects in a BAC pantry are identified by their bar

codes. With user's help, the pantry acquires incrementally the
bar codes and voice descriptions of all objects ever stored in
the pantry

2

rows

1 2 columns

IL
state = EMPTY;
object id = NULL;

Fig. 5 Compartment and object descriptions

Some of the date structures maintained by the pantry are

shown in Fig. 5. Each element of the compartment array on

the left contains the state of a compartment and a pointer to
the description of the object in it. The right half of the figure
depicts the information on each object, which includes the bar
code and a recorded voice description of the object. The user

may choose to keep some kind of objects in multiple
compartments and have the pantry order replenishment only
when all the compartments holding them become empty. In
that case, the compartments field gives pointers to structures
ofcompartments holding the same kind of object. The user of
a BAC pantry has the flexibility of ordering different kinds of
objects from different suppliers and specifying different
replenishment times. This is why the pantry maintains

4278

Initialization:
Initialize supplier information and user preferences;
Command the camera to take current picture of the pantry;
previouspicture = current picture;
Process current picture to identify compartment boundaries,
Determine numbers of rows (rows) and columns (columns);
Allocate array picture[rows, columns];
Initialize elements of picture to EMPTY;

while pantry runs, periodically do {
Command the camera to take current picture of the pantry;
if (currentpicture != previous picture)

for every compartment (i, k), do {
Get current content of (i, k) from current picture;
if (current content != picture[i, k])

if (current_content == EMPTY)
Insert picture[i, k] to items to order list;
picture[i, k] = EMPTY;

else {
picture[i, k] = current content;

Generate a purchase order for objects in items to-order;

1

supplier and user preference information on each kind of
object individually.

The architecture ofBAC version is similar to that of PIC
version. A difference is, obviously, that the remote unit of a
BAC pantry includes a bar code scanner. Another difference
is that BAC version uses an array of switches to monitor the
states (i.e., empty or non-empty) of the compartments.
Whenever the state of a compartment (i, k) changes from
empty to non-empty, the pantry controller acquires, with the
user's help, the bar code and a voice description of the object
just placed in the compartment. When the state of (i, k)
changes from non-empty to empty, the controller puts the bar
code of the object that was in the compartment in the
items_to_order list, sends a purchase order to the supplier of
the user's choice and then marks the compartment empty.
Details on the architecture, operations and implementation of
an interrupt-driven BAC pantry controller can be found in [4].
That implementation assumes that switches used to monitor
compartment states are wired to the pantry controller
interface. We will return in Section V to describe a ways to
configure an existing dumb pantry into a smart one using
wireless sensors.

Like the PIC version, multiple users of a BAC pantry can
place objects and remove them in any order. Scenarios of
user-pantry interactions putting objects in pantry and
removing them can also be found in [4].

Errors during placements and removals are inevitable.
When the user does not follow the normal sequence of scan
and placement, some objects in the pantry may have no bar
codes and some objects may have wrong bar codes. These
errors are recoverable. An error of the former type is known
to the pantry. It handles the error by asking the user to scan
the object at the time of the removal. When an object has a
wrong bar, the voice confirmation from the pantry during the
removal process provides the user with an opportunity to
discover the error and initiate a corrective action. An error is
unrecoverable when it causes the pantry to fail in ordering
correct replenishment in time. Unfortunately, unrecoverable
errors can occur when the user ignores the voice from the
pantry verifying with the help of the user the accuracy its
knowledge about on the contents of the compartments.

IV. OBJECT IDENTIFICATION MODULE

To make PID pantries easy to use, a supplier add to its
order processing server an object identification module
(OIM) that processes pictures contained in purchase orders
from smart pantries and returns as results the brands, sizes
and locations of the objects. Roughly speaking, the module
identifies the object in each picture by determining which
image among all images ofknown objects in its database best
matches the image it extracts from the input picture.
The OIM works faster and more accurately when the

number of candidate images to match is small. Hence, the
module maintains for each user a small repository of images
of objects that have identifiers and are known to have been
purchased by the user. When the user orders no new products,

the OIM only needs to search the user's repository when it
tries to identify objects in the input pictures. It searches the
image database of all objects in the supplier's inventory only
on rare occasions when the user orders something new.

A. Approach andAlgorithms

The flow chart in Fig. 6 gives an overview of OIM
operations. The major steps are background subtraction,
low-level image processing, color matching and shape
context-based search.

Query
Input

(picture)

Query Shape
Result <: Context-Based

(object id) Search

Fig. 6 Object identification operations

Background Subtraction (BS) The first step is to extract the
foreground image of the object from the input picture of a
non-empty compartment. For this work, the OIM uses as
background the picture, EMPTY, of empty compartments,
which the pantry sends in the purchase order. Let B(x, y) and
I(x, y) be the values of the background image and the input
image at pixel (x, y), respectively. A way to determine the
valueJ(x, y) of the foreground image at (x, y) is to let it be I(x,
y) if the absolute difference between I(x, y) and B(x, y) is
larger than a preset threshold T; otherwise,J(x, y) is equal to 0.
The module uses this simple way to determine the values of
most foreground pixels. It chooses the threshold T based on
the statistics on past pictures sent by the pantry.

Low-Level Image Processing (LLIP) Because of shadow
points and noises, the foreground image produced after the
BS step may have fragments that originally belong to the
same component. A goal of the LLIP step is to fix this
problem. In this step, OIM carries out morphological
operations (i.e., dilation followed by erosion) several times
[16]. It then executes a connected-component-labeling
process to label distinct objects in the foreground. It considers
objects that are smaller than a threshold size as noises and
removes them from the foreground image.
Shadow is another problem that must be dealt with. Some

shadows may be of large enough sizes to be retained after the
connected-component-labeling process. The object
identification module applies a shadow removal algorithm
described in [17] to remove them. The algorithm compares
the hue, saturation and intensity values between the
foreground and the background images and distinguish
shadow pixels from the foreground pixels using the equation
given below: In the equation, I (x, y) , I (x, y)

and IH (x, y) represent, respectively, the intensity,
saturation, and hue values of a foreground pixel at (x, y); BkV
Bk, BkH represent these values of a background pixel at (x, y),

4279

respectively; and a, j, us, and TH are thresholds chosen on the
basis of lighting condition and pre-determined statistics.

1 if a < I, () <
Bv~(x,y)

A Ik(x,y)-Bk (x, y)) < T

A|k (,y-k (,)|< 'rH

0 otherwise

SPk(x, y) =1 represents that the pixel under consideration is a
shadow pixel and is to be removed from the foreground
image. Otherwise, the pixel remains in the image.

Color Matching (CM) The foreground object obtained after
the LLIP step is a candidate for object recognition. The OIM
uses a coarse-to-fine matching mechanism. For coarse level
search, it works with two standard descriptors in MPEG-7
[18], dominant color and color layout, to perform object
recognition. In this process, it calculates the dominant colors
from R, G and B channels, quantizes 256 colors into 32 bins,
and then distributes all pixels belonging to an object into
these bins. The top 3 bins of each channel are picked to
represent the channel for comparison. The comparison metric
is Euclidean distance, and the weights assigned to the
channels are identical.

Since the dominant color is a global feature, it does not
carry any relational information. Therefore, the OIM also
includes color layout and uses a quad-tree to express it. This
way, a different object that has the same set of dominant
colors or an identical object that is placed in different
orientations will not be mistakenly chosen in the coarse
search stage.

Shape Context-Based Search (SCBS) In addition to the
dominant color and color layout, a detailed description of the
foreground object to be recognized is required for the fine
search process. For this purpose, the current version of OIM
uses a shape context-based descriptor [19, 20] to characterize
the shape of an object.
To compute the descriptor, the OIM first applies the Canny

edge detector [21] to extract a silhouette of the target object.
(The Canny type detector is one of the best existing edge
detectors but cannot guarantee the full extraction of complete
silhouette.) The OIM then selects r control points from the
detected silhouette. The distance between every consecutive
control point pair is almost equal except for the broken parts
due to incompleteness of the silhouette. Fig. 7 shows an
example. The top row shows the picture of an object. The
picture in the left of the bottom row shows the almost
complete silhouette produced by Canny edge detector. The
picture in the right shows the r selected control points
generated from the silhouette.

Next, the object identification module computes log-polar
histograms corresponding to the r control points for each
object that is to be compared. Each histogram characterizes
the relationship among the r chosen control points of the

object [19, 20]. To derive the histograms, the OIM uses a
circle mask to cover every control point ofthe target object. It
first divides the circle into 12 30-degree bins along the
circular direction and then divides each bin in the radius
direction into 5 bins equally according to the log ofthe radius.
The circle mask after partition is shown in Fig. 8(a). The
log-polar histogram of a control point can then be found by
putting the center of a circle mask on the control point and
calculating its log-polar histogram. Calculation of a log-polar
histogram when a circle mask is placed at a control point is
illustrated in Fig. 8(b).

Fig. 7 Example on context-based descriptor

(a)

4b *

10 -

(b)*

Fig. 8 A circle mask and a log-polar histogram

After computing sets of r log-polar histograms of the
objects in pictures contained in a purchase order, the OIM
puts them and pre-computed sets of r histograms of known
objects contained in the user's repository into a bipartite
graph. As the final step, the module calculates the degrees of
matches according to Hungarian algorithm [22].

B. Preliminary Performance Results
In order to test the efficiency and effectiveness ofthe OIM,

we constructed a database of the forty objects and a small
pantry. The objects are shown in Fig. 9. In an experiment, we
processed a purchase order containing pictures of five objects
in ways described above. The picture on the left in Fig. 10
shows how the pantry looks when empty, and the picture on
the right shows how the five objects looked in the pantry
before they were removed.

4280

ri-u

1aN1r1~~~..~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I
Fig. 9 Objects in database

N..N SE_

I_

43WeltBljl5R*} 13 A.4171, M S 134 3.3i4s

Fig. (a) Results of coarse search

Qw-y llbjet Ttqe -.aes[rbied

t....

s -~~~~~~~~~~~~~~~~~~~~~~~~~~

F
G,-en e e 1G- t.4

FU OFV15 f1

0.ie ikS Z 5

la'

Fig. 10 Empty and loaded pantry

The images extracted by the OIM are in the leftmost
column in Fig. 11(a). The remaining six columns in the figure
give the top six (or fewer) candidate objects retrieved by the
module for each input object after the coarse search (i.e., the
CM step). Obviously, a coarse search does not eliminate
enough candidates. However, the coarse search process is
very fast, allowing the module to quickly screen the database
and obtain a significantly smaller set ofcandidates. In the fine
search process, the module applied the shape context features
on candidate objects and obtained much more accurate
results. Fig. 1 1(b) shows the results of fine search. The speed
of the fine search process is slower than the coarse search
because of the computation of shape context, but the time
consuming process is applied to only a small number of
candidates.

Fig. 11(b) Results of fine search

V. WIRELESS SENSORARRAY

In the BAC version described in Section 3 and [4], switches
for monitoring compartment states are connected by wires to
the sensor interface on the pantry controller 11O bus. This
construction is suitable for pantries specially built to be smart.
However, wiring up an existing dumb pantry to make it smart
would be an unattractive option. A better alternative is to use
wireless sensors, allowing the user to configure a dumb
pantry (or a part of the pantry) into a smart BAC pantry as
easily as a PID pantry.
A wireless binary sensing scheme for this purpose is

described in [4]. That scheme uses passive RFID tags, one per
compartment. The controller contains a reader. The shelves
and spring-loaded boards are constructed so that the tag
corresponding to a compartment is shielded from the reader
when the compartment is empty but is visible to the reader
when the compartment is non-empty. The controller
determines the states of the compartments by reading the tags
periodically. While the scheme works in principle, it is not
ideal. Metal objects in the pantry can shield the reader from
some visible tags. Solutions (e.g., use ofmultiple antennae) to

this problem lead to added cost and installation difficulty.

4281

I'''''''.

f6-

SISARL project is developing an ultra-low-cost wireless
sensor array (WSA) for use in BAC pantries, as well as other
SISARL devices (e.g. medication dispensers [7].) A WSA
contains a coordinator and a number of sensor nodes. When
used in a BAC pantry, the coordinator is a part of the
controller, which is AC powered.

For each compartment, there is a sensor node (SN), which
is battery assisted. Let Nbe the number of sensor nodes in the
WSA, and the id's of the nodes are 1, 2, ..., N.
The WSA resembles a wireless personal-area network (see

http://ww.ieee802.org/ 15) in physical size, but because of
its applications, a WSA has many different characteristics:

1. N is small (say less than 265)
2. The distances between nodes and the coordinator are

small (say less than 5 meters).
3. Each SN contains a sensor that has a small number of

states. (Sensors in BAC pantries have only 2 states.)
4. A SN sends to the coordinator a fixed size frame

containing its id and one byte of data on the new state
whenever the state of its sensor changes.

5. The chance that more than a few (e.g., 3) nodes having
frames to send within one second is negligibly small.

6. The chance that a SN has two frames to send within a
second is negligibly small.

7. The response time of sending a frame should be in order
of tens of milliseconds.

The combination of low data rate and small physical size
means that the end-to-end delay between nodes and the
coordinator in a WSA is negligibly small compared to the
time required to send a bit. This fact makes the WSA medium
access control (MAC) scheme illustrated by Fig. 12 possible.

Coordinator

SNI

SN2

SN3

.., ,

....
i..f.i.fg.I.. S....

N clock pulses
,iiLizI

"sS F~~~I _III ... t7 .

,, I'flifitLiTlUllt ..
s60iog ".j

7~~~L~~~~~.LLLLLLL....LL.L...

r I Wait~~~~~~~~lng:fbi.
l si~e4ing data orlbea lramlE

A B, B2 C D E F

Fig. 12 MAC ofWSA

According to the scheme, when no sensor node has frames
to send, the coordinator continuously polls the nodes by
sending a beacon frame followed by a sequence of clock
pulses. (Beacon frames are depicted in Fig. 12 by
light-colored square boxes on the top time line, and the clock
pulses are depicted by narrow dark boxes.) After sending
each clock pulse, the coordinator pauses to listen briefly.
Hearing no data frame, it continues to send clock pulses.

After it has sent the N-th pulse in the sequence, it repeats a
beacon frame followed by clock pulses.

If the coordinator hears a data frame immediately after it
sends a clock pulse, it switches to receive the data frame. At
the end of the data frame, it sends clock pulses, listens in
between pulses, switches to receive if it hears a data frame;
otherwise, it sends a beacon frame after it completes the
sequence ofN clock pulses.
Medium access by the sensor nodes are prioritized

according to their ids: the smaller the id, the higher the
priority. Specifically, when a node with id k has a data frame
to send, it waits until it hears a beacon frame or data frame
and then counts the clock pulses after the end of the frame. If
it hears a data frame before the kth clock pulse, it waits until
the data frame ends and then counts clock pulses again. The
node sends its data frame, whenever it hears the kth clock
pulse in a pulse sequence after a beacon or data frame.

Fig. 12 illustrates the operations of sensor nodes with ids
1, 2, and 3. At the start, both SNI and SN2 have frames ready
to send. They wait until they hear the beacon frame from the
coordinator. At time A, SNI sends its data frame after it hears
the first pulse following the beacon frame. Its transmission
causes SN2 to wait. Since SNI no longer has data frame to
send, SN2 gets to send at time B2 after hearing two clock
pulses following the data frame from SNi. At time C, no node
has data to send, and the coordinator begins to send a
sequence ofN clock pulses. Suppose that SN3 awakes at time
D in the midst of the sequence. It must wait until it hears the
next beacon and then starts to count. In this example, SN3
gets to send at time F after the third clock pulse.
To estimate the worst-case response time in a WSA,

suppose that the time to send a data or clock pulse is 10
microseconds. The coordinator takes 20 microseconds to
send a clock pulse. The array has 250 sensors. Beacon and
data frames are 100 bits and 50 bits long, respectively. The
times the coordinator takes to send a beacon frame and 250
pulses are 2 milliseconds and 5 milliseconds, respectively.
Suppose that three lowest-priority nodes, SN248, SN249 and
SN250, have data frames to send immediately after the
coordinator starts to send clock pulses. The SN250 must wait
for the time required to send 4 sequences of clock pulses, a
beacon frame and two data frames. So, the worst case
response time of SN250 is approximately equal to 25
milliseconds.

VI. SUMMARY

This paper describes the PID and BAC versions of smart
pantry. One can get a PID pantry by adding a digital camera
and pantry electronics to any dumb pantry that has
compartments. The pantry owner can use it much like a dumb
pantry when placing and removing objects. On the supplier's
side, pictures in each purchase order sent by the pantry must
be processed to identify the objects in the order and find their
inventory control codes for locating the objects to be
delivered. The process can be automated by the suppliers. The

4282

jl..., - - - -- 7~:B[1, :E:,, :t

DEI

paper describes an object identification module designed for
this purpose.
From both the technical and usability points of view, the

BAC version represents a reasonable compromise. The
supplier can rely on the bar codes in purchase orders to
identify and locate the objects to be delivered. However, the
users must scan the content of each compartment at least once
before the last object in it is removed. For users who are
willing to follow this rule, a bar-code version is sufficiently
user friendly and reliable.
Much work remains to be done to access the merits of the

OIM and WSA described here. We are refining the
algorithms used in the OIM so that it can accurately identify
objects in low resolution pictures. The WSA is being
prototyped. An assumption is that the transmission is
sufficient error-free as to make error detection and recovery
unnecessary. Some form of ARQ will be added if this
assumption is found invalid in our evaluation.

ACKNOWLEDGEMENT

This work is partially supported by the Taiwan Academia
Sinica thematic project SISARL: Sensor Information Systems
for Active Retirees and Assisted Living. The authors wish to
thank Professor A. C. Pang for her help in the design ofMAC
for WSA.

REFERENCE
[1] Japan Assistive Products Association, http://www.iaspa.gJ.p/, April

2003.
[2] "Global Aging," Business Week, January 31, 2005.
[3] Jane W. S. Liu, et al, "Reference Architecture of Intelligent Appliances

for the Elderly," Proceedings of International Conference on System
Engineering, Las Vegas, NV, August 2005.

[4] Jane W. S. Liu, et al., "User Scenarios and Designs of Smart Pantry,
Object Locator and Walker's Buddy: Consumer Electronics for the
Elderly," Technical Report No. TR-IIS-05-007, Institute of
Information Science, Academia Sinica, Taiwan, July 2005.

[5] R. Glidden, et al. "Design of Ultra-low-cost UHF RFID Tags for
Supply Chain Applications," IEEE Communications, August 2004.

[6] http sisarl.org. SISARL: Sensor Information Systems (and Services)
for Active Retirees and Assisted Living,.

[7] P. H. Tsai, et. al, "Compliance Enforcement of Temporal and Dosage
Constraints," Technical Report No. TR-IIS-06-006, Institute of
Information Science, Academia Sinica, Taiwan, October 2005.

[8] S. Helal W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E.
Jansen, "The Gator Tech Smart House: A Programmable Pervasive
Space," IEEE Computer, March 2005.

[9] E. Dishman, "Inventing Wellness Systems for Aging in Place," IEEE
Computer, May 2004.

[10] A. Pentland, "Healthwear: Medical Technology Become Wearable,"
IEEE Computer, May 2004.

[11] D. A. Ross, "Cyber Crumbs for Successful Aging with Vision Loss,"
IEEE Pervasive Computing, April 2004.

[12] l tX/arcitectuir.mit cdii house, Changing Places Consortium, MIT.
[13] http://www.cc.c,itech.edu/fce/seminar/fa98-iiifo/smart homes.html,

FCE Smart House Research Survey, Georgia Tech.
[14] htt,:/w-\v,.tuturelialth.rochestcr.edu/, Center for Future Health,

University of Rochester.
[15] [ttp./inar..n.d.vii giti.edu projects sathonemonitor.htn Marc

smart home, University of Virginia.
[16] J. C. Russ, The Image Processing Handbook, Fourth Edition, CRC

Press, July 2002.
[17] A. Prati, I. Mikic, C. Crana, M. M. Trivedi, "Shadow Detection

Algorithms for Traffic Flow Analysis: A Comparative Study." IEEE
Conference on Intelligent Transportation System, Oakland, California,
pp.340-345, 2001.

[18] Y. Deng, B. S. Manjunath, C. Kenney, M. S. Moore, H. Shin, "An
Efficient Color Representation for Image Retrieval." IEEE
Transactions on Image Processing, Vol.10, No.1, pp. 140-147, January
2001.

[19] S. Belongie, J. Malik, J. Puzicha, "Shape Matching and Object
Recognition Using Shape Contexts." IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol.24, No.4, April 2002.

[20] G. Mori, S. Belongie, J. Malik, "Efficient Shape Matching Using Shape
Contexts." IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 27, No. 1, pp. 1832-1837 November, 2005.

[21] J. Canny, "A Computational Approach Edge Detection." IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol.8,
No.6, pp.679-698, November 1986.

[22] R. C. Gonzales and R. W. Woods. Digital Image Processing,
Addison-Wesley Publishing Company, 1992.

4283

