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Abstract 

A method for preclassification of handwritten Chinese characters is presented. A set of basic stroke substructures is 
defined using the consistent stroke connection relations. A knowledge guided recognition process is employed to identify the 
types of the extracted basic stroke substructures found in a handwritten character. Then a 1-D character coding scheme is 
given to represent the character and the code can be also used for character preclassification. 
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1. Introduction 

Handwritten Chinese character recognition is a 
difficult task. There are two major problems: (1) the 
large character set and (2) the handwriting variation. 
For the first problem, one may take advantage of the 
fact that a complex Chinese character is generally 
composed of subcharacters. A careful use of a set of 
subcharacters can lead to the partition of the entire 
character set into classes that contain only a small 
number of characters each. This process is often 
referred to as preclassification (or, coarse classifica- 
tion) of the characters (Lin and Fan, 1994; Cheng 
and Wang, 1993; Jeng et al., 1987). A new preclassi- 
fication method will be proposed to take the follow- 
ing major issues of the preclassification problem into 
consideration. 

* Corresponding author. Email: zchen@csie.nctu.edu.tw 

(a) Ease in the extraction of subcharacters from a 
handwritten Chinese character. It is quite well known 
that a set of subcharacters, often called radicals, is 
used in an ordinary Chinese dictionary. However, 
these radicals are considered too complicated for the 
machine to extract from a character, especially when 
a radical contains disconnected subparts. On the 
other hand, any stringent constraints imposed on 
handwriting, such as strictly preserving the T-type 
connection in the character will hamper the writing 
freedom and will slow down the writing speed. We 
shall define a set of simple but reliable subcharacters 
that are connected and easy to extract. 

(b) Recognition rate and speed of the extracted 
subcharacters. After a subcharacter is extracted, it 
must be identified. The stroke structures of the sub- 
characters become simpler, but the handwriting vari- 
ation is still a problem. Recognition rate and speed 
are two major concerns. We shall use a fast knowl- 
edge guided approach for recognizing a predefined 
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set of subcharacters with a high recognition rate. 
(c) Performance measure of the preclassification 

result. The number of preclassification classes (or 
dusters) should better be large and the expected 
class size better be small. These two factors are the 
measure of performance of the preclassification 
method. Generally, statistical methods based on the 
peripheral feature (Umeda, 1982; Maeda et al., 1982), 
background feature (Oka, 1982), complexity measure 
(Zhang et al., 1990), stroke center (Jeng et al., 1987), 
or structural feature vector (Gan and Lua, 1992) will 
preclassify the set of some thousands of commonly 
used Chinese character into at most a few hundreds 
of clusters. The number of clusters obtained by these 
results is considered insufficient. Our method will 
produce a very good preclassification result in terms 
of the above two factors. 

(d) Usefulness of the preclassification features in 
the ensuing final (or detailed) classification (Li and 
Zhao, 1986). If the paradigms for the preclassifica- 
tion and the final classifications are quite different, it 
takes more effort and time to accomplish the whole 
job. The proposed preclassification method can be 
extended easily to the final classification (Cheng et 
al., 1994). 

For the second problem, i.e., the influence of 
handwriting variation on the preclassification, the 
statistical recognition method is generally not effec- 
tive to deal with the handwriting variation (Lu et al., 
1991). A structural method based on the stroke 
information is considered better. Lu et al. (1991) 
proposed a method to decompose a character into 
branches and used spatial relations of character 
branches to classify an inputted unknown character. 
The method could tolerate some variations in the 
stroke slope and stroke connection relations. How- 
ever, when the character contains the scattering sin- 
gle-segment strokes, the presumed T-connection rela- 
tions or parallel relations of these strokes are not 
quite consistent at all. This may result in misclassifi- 
cation. On the other hand, Cheng and Wang (1993) 
used only the peripheral shape information to avoid 
the effect of the variations of the inner strokes and 
they achieved good preclassification results. Never- 
theless, when there are scattering single-segment 
strokes in the peripheral area, they used the T-con- 
nection relation, stroke slope and stroke length of 
these strokes to derive the peripheral shape informa- 

tion. Obviously, these data are not very reliable and 
may cause misclassification. 

Our method is primarily based on the character 
structural information. We intend to handle the effect 
of handwriting variations. We shall make the follow- 
ing assumptions which we think are fair in the 
ordinary handwriting. 

(a) The different strokes, including linear and 
curved strokes of a character, must be written as 
separate strokes. 

(b) The existence/nonexistence of an intersection 
relation between two strokes must be followed. 

On the other hand, we allow the following writing 
freedom. 

(a) The existence/nonexistence of a T-type con- 
nection between two strokes is not necessarily fol- 
lowed. 

(b) The length, slope and curve shape of a stroke 
can vary to a reasonable degree. 

(c) The stroke writing sequence can be changed. 
(d) The small hook at the tip of certain strokes 

may or may not be present. 
In the experiments reported, the learning phase of 

our method finds 4112 reference classes for a given 
set of 5401 commonly used Chinese characters, and 
the expected class size is 2.13 characters. In the 
testing phase of our method, we achieve a high 
preclassification rate of 98.85% for a test set of 5940 
character samples. 

The remainder of this paper is organized as fol- 
lows. Section 2 defines the basic stroke substructures 
used in our preclassification method. The extraction 
and recognition of basic stroke substructures are also 
given. The detail of the proposed 1-D character 
coding and the preclassification method are de- 
scribed in Section 3. Section 4 includes the experi- 
mental results and discussions. Section 5 is the con- 
clusions. 

2. Extraction and recognition of basic stroke sub- 
structures 

2.1. Definition of a basic stroke substructures 

Now we are about to define the basic stroke 
substructures and show how to extract and recognize 
them. First of all, a character is treated as a set of 
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strokes and each stroke is represented by single or 
multiple linear line segments. Any two (linear) line 
segments can have one of the four possible relations: 

(1) being intersected (two meet at a middle point), 
(2) being connected end to end (including L ,  -7, 

[ - ,  and _J), 
(3) being T-type connected (one segment's end 

point meets another segment's middle point), 
(4) none of the above relations. 
Among them, the connection types of [--, _],  

and T-type are not consistent relations, because the 
two segments are normally written in two pen move- 
ments rather than one. In the case of a hook at the tip 
of a stroke, such as the connection in the form of J, 
the hook will be absorbed and can be removed 
during the stroke extraction process. 

A basic stroke substructure is defined to be a set 
of connected line segments such that they are related 
pairwise by (1) being intersected, (2) being L_-type 
or 7 - type  connected (hereafter, these two are called 
the L-type in short). To extract a basic stroke sub- 
structure in a handwritten character, we check the 
connection type between the two connected line 
segments, and select those line segments that are 
intersected or L-type connected. 

Next, given the above definition of basic stroke 
substructures, we can collect all the possible stroke 
substructures that exist in the 5401 character set by 
scanning through the entire set to look for all possi- 
ble basic stroke substructures. In this way, we can 
obtain a set of 64 basic stroke substructures before- 
hand (see Table 1) and then construct a knowledge 
base to describe the stroke organization for all the 
basic stroke substructures. In order to identify the 
basic stroke substructures in a character, the strokes 

Table 1 
The code table of the 64 basic stroke substructures 

l n i n i l  
I m n m l  
n m m n u  
nlBgiL'aim| 
g i o i m g D  
nnymnm 
y n u n e  
a n m n e  
n n i a n e  
a n m i m e  
!1 iL J lel ! 

X 4 ! "1--! 5 "7.- 6 [ LI 
q" lo] X I u q- 12; 

:~ ""I "R-123 :~ 24 "~ 

"~ 34! ~ !35 ~ 36 .E~ 

40! ~ !41 * 42 

S ~I~I 

must be extracted first. The stroke extraction process 
is given below. 

2.2. Stroke extraction 

For an off-line input character, we can get the 
stroke information by using some preprocessing 
techniques such as thinning (Chu and Suen, 1986; 
Chen and Hsu, 1989), and stroke segmentation (Lu 
et al., 1991; Ogawa and Taniguchi, 1982). 

To simplify the problem, we use the on-line input 
stroke data in the current implementation of our 
method. The on-line input stroke data may not be 
8-connected, an interpolation method is applied first 
to make the strokes 8-connected. Then we use the 
following three steps to extract each stroke informa- 
tion. 

(i) A line fitting to the pixel points of each input 
stroke written in a pen movement (see Fig. 1). 

Table 2 
Stroke extraction results of possible curved strokes 

# of line directic~ 
changes 

I 

~e~mtmmmg 
dirccti~ 

Turn right 

1 Turn left 

2 Turn right 

2 Turn I¢/~ 

3 Turn right 

4 Turn right 

Stroke samples 

Z, 

Stroke type T stroke extraction 
,J., results 

L /_ 
± 
½ # '-7 
5 -'+ ? 
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(a) (b) (e) 

Fig. 1. Line fitting: (a) original stroke, (b) the first fitting result, 
and (e) the consecutive fitting results. 

(ii) A count of the line direction changes by 
tracing the fitted line segments of the input stroke 
and classify the stroke into one of the pre-specified 
types. The possible stroke types are shown in Table 
2. Take the curved strokes shown in Fig. 1 as an 
example; the number of extracted line segments may 
be different, but the segment sequence always makes 
a right turn, so the count of line direction changes is 
one. 
Thus the stroke is classified as --] and the stroke is 
refitted with two strokes of the -7 standard stroke. 

(iii) An intersection checking on the pixels of the 
stroke to see if any intersection with other strokes 
exists. The check is done by examining each pixel of 
the input stroke. 

2.3. Recognition of basic stroke substructure 

After the process of stroke extraction described 
above, a stroke substructure consisting of stroke 
segments, that are connected through one of the three 
relations: (i) --7-connectedness, (ii) L-connected- 
ness, and (iii) intersection, can be obtained. A 
knowledge-guided recognition process developed in 
(Cheng et al., 1994) can be used to recognize the 64 
basic stroke substructures. The procedure of this 
method is outlined below. 

Step 1. In the given basic stroke substructure, find 
the stroke which has the maximum number of inter- 
secting strokes and denote it as the salient stroke. If 
there is a tie between two strokes with the same 
maximum number of intersecting strokes, we select 
the one which contains the maximum number of 
-7-shaped or L-shaped intersecting strokes; if a tie 
again, choose the one which contains an intersecting 
stroke with the highest priority according to a stroke 
ordering list; and, finally, select the one according to 
the ordering of the stroke possible positions, if there 
is still a tie. 

Stroke ID number 

1 2+ 

1 

1 

4 

Hypotheses in Knowledge base 

Hypothesis: the number of intersection points on the salient stroke T is one 
Test result: TRUE FALSE 

Hypothesis: The right endpoint of line 2 
is ¢onnected with a new stroke's . . 

upper endpoint 

Test result: TRUE FALSE 

Hypothesis: The boRom endpotnt of line 3 { -t- } 
is connected with a new stroke's 
left endpoint 

Test result: TRUE FALSE 

{-h_} 
{h} 

Co) (a) 

Fig. 2. The  hypothesis  and test steps for recognizing stroke subs t ru~ures  "Jr-, " ~  and ~ organized in a decision tree format. 
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Step 2. Based on the precompiled knowledge base 
of the stroke organization of the 64 basic stroke 
substructures, a hypothesis about the existence of a 
second stroke and its location is proposed (see Fig. 
2), and the hypothesis is actually verified. If the 
second stroke is correctly identified, then check if a 
unique identification of the given basic stroke sub- 
structure is possible. If yes, terminate with success, 
if not, a further hypothesis-and-test process is re- 
peated; if the hypothesis fails, then an alternative 
hypothesis, if available, will be suggested by the 
knowledge base and this hypothesis will be verified. 
The recognition process either terminates with a 
success or stops with failure when all relevant hy- 
potheses about the basic stroke substructure are ex- 
amined. 

3. Character coding and preclassification 

The basic stroke substructures in a character can 
be used as the keys to identify the character. The 
strokes without any L-type or intersection relations 
are treated as a special group; they contain only a 
single segment. The preclassification method pro- 
posed in this paper is based on basic stroke substruc- 
tures extracted from an input character and the spa- 
tial relations between the extracted stroke substruc- 
tures. 

3.1. 1-D string representation of a character for 
preclassification 

If we use a graph to represent all the stroke 
substructures of a character (Lu et al., 1991), it 

would be too complex and not very reliable as far as 
the character preclassification is concerned. Instead, 
we use only part of stroke substructures to represent 
a character. In this way we can (i) use fewer spatial 
relations, (ii) ignore spatial relation distortions in the 
unused stroke substructures caused by writing varia- 
tion, and (iii) use less storage space and spend less 
classification time. 

To get the above benefits, we manually sort the 
64 stroke substructures according to their structure 
complexity. We assign a larger numeric code to a 
stroke substructure that contains more strokes and 
has also a stronger spatial relationship. After sorting, 
we use only the first n (in our experiment, n = 4) 
stroke substructures for character representation. 

Next, should we consider all the possible spatial 
relationships between the selected stroke substruc- 
tures or only part of them? We find that the classifi- 
cation powers are almost the same irrespective of 
whether we use all or part of the spatial relations. So, 
we use part of the spatial relations for the benefit of 
less storage and lower computation time. 

3.1.1. 1-D string coding scheme 
Based on the analysis mentioned above, we pre- 

sent a 1-D string coding scheme for each Chinese 
character as follows. Assume a given character con- 
tains n basic stroke substructures. Then the 1-D 
string code of the character is given by 

(a) S#RoSIRIS2R2S 3 . . .  Sn_tRn_lSn, if n~> 1, 

(b) S#, i f n = O .  

Here S t, $2 , . . . ,  Sn are the type names of the n 
basic stroke substructures that are identified from the 

Table 3 
Definition of the spatial relations used in the 1-D character coding 

Spatial String Code Definition 
relation format 

Ro RoS1 No stroke located at the top or to the right of substructure S 1 
There are some strokes located at the top of substructure S 1 and no stroke to the right of substructure SI 
There are some strokes located to the right of substructure S 1 and no stroke at the top of substructure S 1 
There are both some strokes located at the top and to the right of substructure S 1 

Rk SkRkSk + 1 Substructure Sk+ 1 is at the top of substructure S k 
Substructure Sk+ i is at the bottom of substructure S k 
Substructure Sk+ 1 is to the left of substructure S k 
Substructure Sk+ 1 is to the right of substructure S k 
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character strokes. The sequence of S 1, S 2, $3 , . . . ,  S, 
is obtained by sorting the basic stroke substructures 
according to the above-mentioned structure complex- 
ity measure. When two identical stroke substructures 
are found, they are ordered based on their relative 
position; the one at the top or right is arranged first. 
If the number of substructures n exceeds an upper 
bound, say, 4, then those n - 4 substructures of less 
significance can be discarded. Next, R1, R 2 . . . .  , 
Rn_ 1 are the spatial relations between every two 
adjacent substructures; R o is the spatial location of 
the first substructure in the whole character. There 
are totally only four kinds of the spatial location R 0 
and 4 kinds of the spatial relations between any two 
adjacent substructures, as defined in Table 3. 

Finally, S# stands for the number of the remain- 
ing strokes after the extraction of all basic stroke 
substructures from a character. Note that for some 
Chinese characters, there is no basic stroke substruc- 
ture at all; instead, there are only disconnected strokes 
whose number is S#. In these cases, the string code 
is S#. In the other cases, after the extraction of all 
basic stroke substructures, a character may have 
some remaining strokes which are separate and have 
a single line segment. The number of these remain- 
ing single-segment strokes is given by S# and this 
count is very reliable. The S# information is useful 
to discriminate two characters when their substruc- 
ture codes in terms of 

R o S 1 R 1 S 2 R 2 S  3 • . . S n _ l R n  - 1 S n  

are the same. 
To take [ ]  as an example, it contains three basic 

stroke substructures S 1 = + (code = 3), S 2 = - - ]  
(code = 2) and S 3 = -7 (code = 2). The number of 
remaining strokes is 9. The 1-D string code for [ ]  is 
therefore 9 R 0 3 R 1 2 R 2 2. Here, according to 
Table 3, the location of + is 4, i.e., R o = 4; and S 2 
( 7 )  is above S 1 (-[-) and to the right of S 1, the 
"top-bottom" relation precedes the "left-right" re- 
lation, so R 1 = 1 ;  S 3 is at the bottom of S 2, so 
R 2 = 2. The final 1-D string for [ ]  is 9 4 3 1 2 2 2. 

3.2. Design consideration of the 1-D string code 

S#, S 1, $2 , . . . ,  S n in the 1-D string code are rather 
consistent under the writing variations. But the spa- 
tial information of R 0, R 1 . . . . .  Rn_ 1 may not be all 
consistent. Generally speaking, the types of spatial 

relationships between two stroke substructures can 
be top-bottom, left-right and diagonal. The diagonal 
relation may confuse with the top-bottom and left- 
right relations, while the top-bottom and left-right 
relations are generally reliable. So, we do not use the 
diagonal relation in our 1-D string code. The prob- 
lem now is how to deal with the diagonal relations in 
order to maintain the consistency of the 1-D preclas- 
sification code. We consider the problem separately 
in the two phases of the preclassification method: the 
learning phase and the testing phase. The 1-D string 
code is also referred to as the 1-D preclassification 
code when it is used for character preclassification. 

The learning phase. For this phase, there are two 
possible ways to handle the diagonal relation. The 
first one is to create two versions of the 1-D preclas- 
sification code for the character to be stored in the 
reference data base: one is to replace the diagonal 
relation by the top-down relation and the other by 
the left-right relation. However, it is not only diffi- 
cult to foresee all possible diagonal relations in each 
character, but it also causes the knowledge base to 
become too large to access efficiently. 

The second approach is to replace each diagonal 
relation by the top-bottom relation or the left-right 
relation (in our experiment we use the top-bottom 
relation). So, each input character is coded by only 
one 1-D preclassification code. (See Table 4.) 

The testing phase. Because there is only one 1-D 
preclassification code for each character stored in the 
database, we will generate all possible preclassifica- 
tion codes during the testing phase so that the "cor- 
rect" one would not be missed. Moreover, the gener- 
ation order should be properly designed such that the 

Table 4 
The reference classes obtained in the learning phase for the 5401 
character set 

Class No. of classes Class No. of classes 
size of given size size of given size 

1 3460 8 8 
2 400 9 5 
3 111 10 5 
4 59 11 2 
5 32 12 1 
6 13 13 3 
7 12 18 1 
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Table 5 
The number of legal preclassification codes generated for 5940 test samples: (a) when multiple versions not included in the database, (b) 
when multiple versions included in database 

(a) Number of legal Number of test (b) Number of legal Number of test 
preclassification samples with the preclassification samples with the 
codes generated given codes codes generated given codes 

0 286 0 54 
1 4575 1 4651 
2 897 2 1035 
3 120 3 134 
4 62 4 66 
Total 5940 Total 5940 

correct code for matching can be produced as soon 
as possible. 

We use the generate-and-test strategy to find the 
correct preclassification codes. Because we have re- 
placed all diagonal relations by the top-bottom rela- 
tion in the learning phase, it is more likely to match 
to the right code stored in the database if we replace 
the diagonal relations by the top-bottom relations in 
the testing phase. So, the candidate preclassification 
codes are generated in the following order: 

(1) Replace all diagonal relations by the top-bot- 
tom relations. 

(2) Choose one of the diagonal relations in turn 
and replace it by the left-right relation and the 
remaining diagonal relations by the top-bottom rela- 
tion. 

(3) Choose two out of the diagonal relations in 
turn and replace them by the left-right relation and 
the remaining diagonal relations by the top-bottom 
relation, and so on. (Note there are generally only a 
few diagonal relations in the character.) 

If a preclassification code cannot match to any 
code stored in the database, it would be an illegal 

one. Those matched to a legal code are classified to 
the class found. Now we shall explain that the 
misclassification probability caused by the accidental 
mismatch in our generate-and-test process is low. 
The reason is as follows. In the 1-D preclassification 
code, there is other information such as stroke sub- 
structure ID codes, top-bottom and left-right relation 
in addition to the diagonal relations. The chance that 
two legal codes differ in the positions of diagonal 
relations is low, in particular, when there are many 
basic stroke substructures. Most of the preclassifica- 
tion codes generated by the above generation method 
are illegal. 

To investigate the feasibility of the above code 
generation process, we collect two statistics on (i) 
the number of possible legal class candidates for 
each test character sample (the smaller the better) 
and (ii) the order of the correct preclassification code 
(the one stored in the database) found in the se- 
quence of generated legal preclassification codes (the 
sooner the better). Table 5 indicates that most of the 
test character samples generated only 1 to 2 possible 
preclassification codes. Table 6 shows that more than 

Table 6 
The preclassification results for 5940 test samples: (a) when multiple versions not included 
included in the database 

in the database, (b) when multiple versions 

(a) n The accumulative number of (b) n 
correctly preclassified characters 
using the first n generated 1-D codes 

The accumulative number of 
correctly preclassified characters 
using the first n generated 1-D codes 

1 5424 1 
2 5512 2 
3 5530 3 
4 5532 4 

5787 
5852 
5870 
5872 
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91% of the test character samples would be correctly 
classified when using only the firstly generated pre- 
classification code (more detail in Section 4). In 
other word, the preclassification code generation se- 
quence mentioned above is desired. 

4. Experimental results 

The implementation of the preclassification 
method consists of two phases: learning and testing. 
In the learning phase one handwritten sample for 

each of the 5401 Chinese character set is inputted. 
Then all possible basic stroke substructures embed- 
ded in the character are extracted. At the end, we 
collect manually all the possible basic stroke sub- 
structures and construct a knowledge base to de- 
scribe the stroke organization of these substructures. 
Then we can use this knowledge base to design an 
automatic recognition process for identifying each of 
the substructures. Please refer to the method devel- 
oped by us (Cheng et al., 1994). On the second pass 
of the same samples, the system identifies the types 

~,~ ~ ~k)' / ~  ~ ~ k:~ " I L~ ~ )k~" ' ~ "  ~k2 

Fig. 3. Some test samples used in the testing phase of our experiments. The characters with * are those 
but not by other methods using the T-connection relation. 

correctly classified by our method, 
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Table 7 
Comparisons of different methods according to the stroke information used 

1031 

T-con- Stroke [--, ._] "-1, L_ Inter- Global stroke Use of spatial 
nection slope connection connection sec t ion  information relation 

Cheng and Wang (1993) Y Y Y Y Y N Y 
Lu et al. (1991) Y Y Y Y Y Y Y 
Ours N N N Y Y Y Y 

of basic stroke substructures and sort them according 
to the structure complexity, then finds the spatial 
relations between the pairs of  adjacent substructures. 
Finally, the 1-D numeric code of  the character is 
constructed. The code is compared with the reference 
data base built so far. If  a hit is found, the current 
character is grouped into the found class; if no hit is 
found, a new class is inserted into the reference data 
base. The reference classes of  the 5401 Chinese 
character set obtained in the learning phase are given 
in Table 4. It indicates that the 64 substructures 
shown in Table 1 are able to group the 5401 charac- 
ters into 4112 classes. 

In the testing phase, 540 characters are selected 
uniformly from the 5401 character set, one out of  
every ten characters. These characters represent a 
typical spectrum of  character stroke patterns whose 
complexity ranges from simple to complex. Then 11 
samples of  each of  the 540 characters, with a subto- 
tal of  5940 samples, are collected to be the test 
samples. Some test samples are shown in Fig. 3. For 
each test sample, the 1-D numeric character code is 
constructed. The character code is checked against 
the reference data base to see if it finds a hit in the 
data base. Table 6(a) illustrates the preclassification 
result of  this experiment. There are 5424 samples 
which are correctly preclassified using only the firstly 
generated 1-D preclassification code. After we check 

(a) Co) (¢) (d) 

Fig. 4. Some test samples that cause the preclassification errors. 

all legal class candidates for each sample, which are 
at most 4 candidates in our case, there are totally 
5532 characters which could be finally preclassified 
correctly. Table 6(a) shows there are 408 test sam- 
ples which cannot be correctly preclassified. These 
408 test samples can be broken down to two cate- 
gories: 286 of  them find no match and, therefore, are 
rejected (see Table 5(a)) and 122 of  them find an 
incorrect match and, thus, are misclassified (the mis- 
classification rate is about 2%). The above experi- 
ments are implemented on an IBM PC 486-33 and 
the preclassification time takes only 0.064 second 
per character on average (the stroke extraction time 
is excluded). 

The misclassified character samples are due to 
(1) a character with two or more possible writing 

versions (Fig. 4(a)), 
(2) some short strokes are missing (Fig. 4(b)), 
(3) the intersection a n d / o r  L-type relations are 

missing (Fig. 4(c)), or 
(4) a stroke type error occurs (Fig. 4(d)). 
The problem (1) mentioned above could be solved 

by including multiple versions in the database. Ta- 

Table 8 
Classification statistics obtained by various methods 

Character set size No. of classes obtained Max. class s i z e  Expected class size 

Jeng et al. (1987) 5384 
Li and Zhou (1986) 753 
Wang (1976) 7334 
Cheng and Wang (1993) 5401 
Ours 5401 

320 340 > 36.27 
397 - - 

2144 38 ~ 7.5 
2144 84 9.16 
4112 18 2.13 



1032 R.-H. Cheng et al. ~Pattern Recognition Letters 16 (1995) 1023-1032 

bles 5(b) and 6(b) illustrate that the accumulative 
correct preclassification rate using the first 4 candi- 
dates is 98.85% (5872 test samples) after using 
multiple versions. On the other hand, we can allow a 
small change in the value of S# by including more 
preclassification codes to preclassify an unknown 
character in order to tolerate some unimportant miss- 
ing strokes. The ambiguity problem of the intersec- 
tion and L-type relations in Figs. 4(c) and 4(d) may 
be solved by considering all possible combinations 
of the ambiguous relations. 

Comparisons of our method with other methods 
are shown in Tables 7 and 8. Table 7 indicates that 
more writing freedom is allowed in our method. 
Table 8 indicates the classification results of various 
methods. Generally speaking, our method is better. 

5. Conclusions 

We have presented a preclassification method that 
produces a satisfactory preclassification result. The 
proposed method uses the consistent features in 
handwriting to define the reliable stroke substruc- 
tures instead of using inconsistent features such as 
the T-type connection and stroke length, etc. In our 
method, only when determining certain types of 
stroke substructures, we used the quantized stroke 
slope. Therefore, our method allows mild handwrit- 
ing variations in the stroke sequence, stroke slope 
and length, curve shape of the stroke, and T-type 
connection between two strokes. The experimental 
results showed that the correct preclassification rates 
obtained were rather high. In the future we shall 
improve our method by solving the ambiguity prob- 
lem of the stroke intersection and L-type relations 
encountered in the applications. Also, we shall con- 
sider the automatic construction of the knowledge 
bases used in the recognition method. 
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