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Abstract-A self-tuning fuzzy PI controller (STFPIC) is
designed elsewhere, using parallelly operated two rule-bases;
one control rule-base, and the other gain rule-base, each having
49 rules. The output scaling factor (SF) of STFPIC is modified
online by a gain updating factor following an operator's
strategy. STFPIC is found to provide significantly improved
performance for a wide range of processes. This study is an
attempt for neuro-fuzzy implementations of STFPIC with
considerably lesser number of rules, which are complete and
capable of realizing almost similar performance as that of
STFPIC. We consider two different structures of the proposed
neuro-fuzzy PI controller (NFPIC); called NFPIC-1 and
NFPIC-2, having only 50 and 49 rules respectively against 98
original rules of STFPIC. NFPIC-1 is similar in structure to that
of STFPIC with two parallel rule-bases, each having 25 rules,
whereas, the structure of NFPIC-2 is same as that of a
conventional fuzzy controller with a single rule-base.
Effectiveness of the developed neuro-fuzzy controllers
(NFPIC-1 and NFPIC-2) is demonstrated using second-order
linear as well as nonlinear processes.

I. INTRODUCTION

Fuzzy logic controllers (FLCs) are capable to provide
satisfactory performances for both linear and nonlinear
complex systems [1, 2]. Both fuzzy logic and neural

networks are proved to be universal approximators. But in
general fuzzy systems do not possess learning capability. On
the other hand, neural networks (NN) can learn easily from
environment. Neuro-fuzzy (NF) hybrid systems through the
integration of these two complementary technologies have
been successfully tested for many practical systems [3-6].
To make the conventional FLCs more powerful and robust,

various types of self-tuning features are incorporated with
them [7-10]. Mudi et al. [8] proposed a model independent
scheme for constructing a self-tuning fuzzy PI controller
(STFPIC). It describes a robust self-tuning scheme for FLC's,
which would be applicable irrespective of the nature of the
process and structure of the FLC [7]. In a continuous
production process, a skilled human operator always tries to
manipulate the controller output depending on the current
process states i.e., error (e) and change of error (Ae) to get the
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process optimally controlled. This gain manipulation strategy
is too complex to implement mathematically. An effort has
been made to incorporate the knowledge of a skilled operator
with the help of 49 fuzzy rules [8]. These additional gain
modifying rules are concurrently used with 49 control rules of
STFPIC to make it a self-tuning controller with an overall
improved performance. Attempts have been made through
exploratory data analysis to extract a small set ofnew rules to
realize similar performance as that of STFPIC [11, 12].

Keeping in mind the universal approximation property and
learning power of back-propagation algorithm of neural
networks, in this study, we try to develop NF models of
STFPIC with a reduced number of rules, maintaining the same
level ofperformance. We use the multi-layer feed-forward NN
model and back propagation algorithm for the tuning of
input-output membership functions (MFs) of the proposed
neuro-fuzzy PI controller (NFPIC). We consider two different
control structures with nearly 5000 less rules than STFPIC. In
the first case, NF models for control rule-base and gain
rule-base are separately trained with only 25 rules each, and
they are used in parallel like in STFPIC; we denote this
controller as NFPIC-1. In the second case, NF model for the
resultant control surface of STFPIC is realized by only 49
rules in place of the original 98 rules; we call it NFPIC-2. For
performance comparison between developed controllers (i.e.,
NFPIC-1 and NFPIC-2) and STFPIC different linear and
nonlinear processes are tested under set point change and load
variation with varying dead time. Simulation results show that
NFPIC-1 and NFPIC-2 are capable of providing almost the
same level of performance as that of STFPIC. Since, the
present study is based on STFPIC, next we provide its brief
description.

II. THE STFPIC [8]
The simplified block diagram of the STFPIC is shown in

Fig. 1 a. The output SF of the controller is modified by a gain
updating factor 'd, shown by the dotted boundary. Details of
STFPIC are available in [8]. However, to make this study
self-contained, various design aspects of STFPIC are briefly
mentioned below.

Normalized MFs for inputs and output (i.e., eN, AeN, and
AUN) of the controller (Fig. la) are defined on the common
domain [-1, 1], whereas the MFs for a is defined on [0, 1].
Except at the two extreme ends, MFs are symmetric triangles
with equal base and 500o overlap with neighboring MFs. The
relationships between the SFs (Ge, GAe and Gj) and
input-output variables of the STFPIC are as follows:
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eN = Gexe, AeN GAexAe, and Au = (aG,)XAUN. (1)
The operation of a PI-type FLC is described by

u(k) = u(k-J) + Au(k). (2)

In Eqn. (2) k is the sampling instance and Au is the incremental
change in controller output, which is determined by the rules
of the form, Rp: If e isE and Ae is AE then Au is AU. The
rule-base for computing Au is shown in Fig. lb, defined on e
and Ae. The gain updating factor (a) is calculated using fuzzy
rules of the form: Ra: Ife is E and Ae is AE then axis a
The rule-base in Fig. Ic is used for the computation of a This
is designed in conjunction with the controller rule-base in Fig.
lb with a view to mimicking an operator's strategy, while
running a plant. In STFPIC the required nonlinear controller
output (AusTFpIc) is generated by modifying the output of a
simple FLC (AuFpIc) with the updating factor a.

i.e., AUSTFpIC oc a (AUFPIC)
or AUsTFpIC =Ka (AuFp1c), (3)

where K is the proportionality constant. Eqn. (3) indicates that
the STFPIC is equivalent to a PI-type FLC (FPIC) with a
dynamic gain.

III. NEURO-FUZZY IMPLEMENTATION OF STFPIC

The STFPIC uses total 98 rules in the two rule-bases;
control rule-base, and gain rule-base with 49 rules each. Here,
we utilize the universal approximation property of NN
through its learning by back propagation algorithm to generate
the nonlinear gain and control surfaces separately with 25
rules each. The corresponding NF controller, NFPIC-1 is
shown in Fig. 2a. Also, a single NF model with 49 control
rules is considered to realize the same resultant effect of the
two rule-bases (Fig. la). Figure 2b shows its associated
controller, NFPIC-2. These two NF controllers (i.e., NFPIC-1
and NFPIC-2) are expected to provide similar performance as
that of STFPIC.

Figure 2a. Block diagram ofthe NFPIC-1

Figure Ia. Block diagram of the STFPIC

Ae/e NB NM NS ZE PS PM PB
NB NB NB NB NM NS NS ZE
NM NB NM NM NM NS ZE PS
NS NB NM NS NS ZE PS PM
ZE NB NM NS ZE PS PM PB
PS NM NS ZE PS PS PM PB
PM NS ZE PS PM PM PM PB
PB ZE PS PS PM PB PB PB

N=Negative, P=Positive, B=Big, M=Medium, S=Small, ZE=Zero
Figure l b. Fuzzy rules for computation of Au.

Ae/e NB NM NS ZE PS PM PB
NB VB VB VB B SB S ZE
NM VB VB B B MB S VS
NS VB MB B VB VS S VS
ZE S SB MB ZE MB SB S
PS VS S VS VB B MB VB
PM VS S MB B B VB VB
PB ZE S SB B VB VB VB

Figure 2b. Block diagram of the NFPIC-2

A. Data generation

Data set should cover the entire operating range of the
system to be identified. If we generate the data by running a
process in a closed loop then some specific rules will be used
only. If we change the initial operating conditions then a new
set of rules will be fired for the same process. In such cases
identified system will lose its generalization property. To
avoid this problem, we have generated data sets by uniform
sampling of the entire input space. We have generated three
data sets; {e, Ae, Au}, {e, Ae, a}, and {e, Ae, axAu}, each
consists of 676 triplets. Where e and Ae are uniformly
quantized within their normalized domain [-1, 1] as follows:

Vi (O < i < 25) e = -1+ixO.08

and Ae=-l+ixO.08. (4)
The value ofAu or a for each pair of (e, Ae) is determined

by the product inferencing and height method of
defuzzification [13].

5066

N=Negative, P=Positive, V=Very, B=Big, M=Medium, S=Small, ZE=Zero

Figure I c. Fuzzy rules for computation of (x.



B. Neuro-fuzzy models and training

We use a five-layer NF structure as shown in Fig
is similar to that used in [3]. The two nodes in the
are the input nodes for two input variables e and A
forward pass, two input nodes transmit the value c
Ae) pair to the second layer. Each individual no
second layer acts as a fuzzy set. The fuzzified val
inputs (i.e., e and Ae) or outputs of the second layer
the third layer, which is the rule-node layer. Nodes ir
represent the all possible fuzzy rules for each input p
Ae). Links from this third layer to fourth layer pe
precondition matching of fuzzy rules. Nodes in
layer perform fuzzy AND operation. After rule ma
output of the fourth layer is passed to the fifth layer
node for defuzzification. The defuzzified output is
from the single output node of the fifth layer. Here c
weights between any two nodes of successive layers
During training phase, the node in the fifth laye
output node is used as the input node to feed th
samples as obtained from the relation (4). Detaile'
layer operation of this neuro-fuzzy model is availab]

Initial bell-shaped MFs for NFPIC- 1 are shown i
and 4b, and those for NFPIC-2 are shown in Fig
following relation gives the definition of the me
function:

MF=exp- (X 2)2j

where a, and qi are respectively the initial width and
the ith MF for an input x (x may be any one of e, Ae, i
Initial MFs have more than 5000 overlap with ne
MFs as shown in Figs. 4. While designing NFP
NFPIC-2, parameters of these MFs (i.e., vi and qi)
through back-propagation algorithm similar to [3].

Output r
node L

Output [
fuzzy set
nodes

Rule[
nodes

Input fuzzy [
set nodes

Input r
nodes l

Figure 3. Five-layer neuro-fuzzy model.
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NB: Negative Big
NS: Negative Small

ZE: Zero

PS: Positive Small

PB: Positive Big

Figure 4a. Initial MFs for e, Ae and Au ofNFPIC-1.

ZE VS si B VB ZE: Zero

VVS: Very Small

5: Small

B: Big
VB: Very Big

Figure 4b. Initial MFs for aofNFPIC-I.

NB: Negative Big
NSB NM tSS zc- PS PMi P3. NM: Negative Medium

NS: Negative Small
ZE: Zero
PS: Positive Small
PS: Positive Medium

______________________________ PB: Positive Big
o-1 0f

Figure 4c. Initial MFs for e, Ae and Au ofNFPIC-2.

,.*U. '1 llU To design the NFPIC-1 as shown in Fig. 2a, we train two
unbership sets ofrules separately, each having 25 rules. One set ofrule is

trained to generate the control surface using five MFs {NB,
NS, ZE, PS, PB} for each input-utput variables (i.e., e, Ae and

(5) Au) having same initial width (ua= 0.65) and center positions
[-1.0, -0.5, 0.0, 0.5, 1.0] as shown in Fig. 4a. The other set of
25 rules is trained to realize the gain surface ofSTFPIC. In this

Au1andctr o case, the initial MFs for oa corresponding center positions and
.huand .in width are {ZE, VS, S, B, VB}, [0.0, 0.25, 0.5, 0.75, 1.0], and

igCbIorind 0.35 respectively (Fig. 4b). Figures 5a and 5b depict the
are- 1and control surfaces of STFPIC and NFPIC-1 respectively. It

appears that there is no significant difference between two
surfaces, though NFPIC-1 uses almost 50% less rules than
STFPIC. But, gain surfaces of STFPIC and NFPIC-1 as shown
in Figs. 5c and 5d reveal some noticeable differences (though
not significant) between them, specifically around steady state
(i.e., e 0 and Ae 0) This indicates that highly nonlinear
gain variation mechanism implemented through 49 rules in
STFPIC is difficult to realize with a NF model using only 25
rules. Therefore, the close-loop response of NFPIC-1 is not
expected to be very close to that of STFPIC. Figure 5e shows
that the resultant control surface of STFPIC is smooth without
any abruptness, unlike its gain surface (Fig. 5c). This property
prompted us to develop NFPIC-2. In designing NFPIC-2, only
49 rules are trained to approximate the function of STFPIC
having 98 rules. Here, seven equal width (a - 0.65) MFs {NB,
NM, NS, ZE, PS, PM, PB} with initial center positions [-1.0,
-0.66, -0.33, 0.0 0.33, 0.66, 1.0] are used (Fig. 4c). The

e control surface of NFPIC-2 as shown in Fig. 5f indicates its
close resemblance with that of STFPIC (Fig. 5e), i.e.,
NFPIC-2 will be expected to provide close-loop performance
similar to that of STFPIC.
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-1 -1

Figure 5a. Control surface of STFPIC (uses 49 rules). Figure 5e. Resultant control surface of STFPIC (uses total 98 rules; 49
control rules and 49 gain rules).

-1~~~~~

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0-5

0. 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 5b. Control surface ofNFPIC-1 (trained by 25 rules). Figure 5f. Control surface ofNFPIC-2 (trained by 49 rules).

IV. RESULTS

In order to investigate the close-loop performances of
NFPIC-1 and NFPIC-2 having almost 50% reduced rules
compared to STFPIC, we perform simulation study with
second-order linear and nonlinear processes under set point
change and load variation with varying dead time. We now

present the performance analysis for individual processes.

Ae -o 1 -lA. Second-order linearprocess

y+y+0.2y=u(t-L) (6)
Figure 5c. Gain surface of STFPIC (uses 49 rules).

Response characteristics of this linear system (6) with L =
O.ls and 0.2s under NFPIC-l and STFPIC are shown in Figs.
6a and 6b respectively. Figures 6c and 6d show the responses
of(6) under NFPIC-2 and STFPIC. From the response curves
(Figs. 6a-6d), it is found that both NFPIC-1 and NFPIC-2

1> - < exhibit similar performance as that of STFPIC. Although,

0.5-, NFPIC-2 follows STFPIC more closely compared to
NFPIC-1. This fact can be justified from the comparisons of

0, 1 1 cS S l|lillWoe Fig. 6a with Fig. 6c, and Fig. 6b with Fig. 6d. The reason
behind this difference between NFPIC-1 and NFPIC-2 is the

l; zo 5 e presence of abruptness in the gain surface of STFPIC around
Ae -o 5 > <steady state (Fig. 5c), which has been difficult to accurately

model using only 25 rules (Fig. 5d) instead of 49 rules.

Figure Sd. Gain surface ofNFPIC-1 (trained by 25 rules).
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Figure 6b. Responses of (6) with L = 0.2s [- STFPIC, ---- NFPIC-1].

B. Second-order nonlinearprocess

To establish the effectiveness of the proposed scheme,
now we consider a nonlinear process described by

y+ y +O.25y2 = u(t - L) . (7)

This second order nonlinear process is tested with two
different values of dead time. Figures 7a and 7b respectively
show the response characteristics of (7) for L = 0. Is and 0.3s
under NFPIC-1 and STFPIC. Responses due to NFPIC-2 and
STFPIC are shown in the Figs. 7c and 7d. From results (Figs.
7a-7d), we observe that the overall performance of NFPIC-1

.1]. or NFPIC-2 is similar to that of STFPIC. As expected, like
previous case, it is found that response characteristics of (7)
under NFPIC-2 (Figs. 7c and 7d) more closely track those of
STFPIC compared to NFPIC- 1. For other linear and nonlinear
processes, we have also found the similar results under
different values of dead time.

0

0
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0.2 _

0 10 20 30 40 50 60 71
Timelsec)

Figure 6c Responses of (6) with L = 0. s [- STFPIC, ---- NFPIC-2].
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Figure 6d. Responses of (6) with L = 0.2s [ STFPIC, ---- NFPIC-2].
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V. CONCLUSION

We developed two neuro-fuzzy control structures, NFPIC- 1
and NFPIC-2 with similar performance as that of a previously
designed self-tuning fuzzy controller (STFPIC). NFPIC- I
and NFPIC-2 used almost 50% less rules than STFPIC. All
the 98 rules of STFPIC were not equally important but it was
difficult to identify which rules were to be removed and
which were to be merged. With a view to realizing the similar
performance of STFPIC by NF models with reduced number
of rules, we utilized the learning capability of a multi-layer
NN in designing NFPIC-l and NFPIC-2. Here, widths and
center positions of the input and output MFs were tuned by
back propagation algorithm. Simulation experiments on
different second-order linear and nonlinear processes with
dead time clearly revealed that the overall performance of
NFPIC-1 or NFPIC-2 is close to that of STFPIC, although
NFPIC-2 is found to follow the STFPIC more closely
compared to NFPIC- 1. This study also revealed that it
becomes difficult to accurately approximate a function
having abruptness through a NF model with limited number
ofnodes in the hidden layer.
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