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Abstract—The fault diagnosis has become an increasing
portion of today’s IC-design cycle and significantly determines
product’s time-to-market. However, the failure behaviors from
the defective chips may not be fully represented by the
single fault model. In this paper, we propose a fault-diagnosis
framework targeting multiple stuck-at faults. This framework
first reports a minimal suspect region, in which all real faults
are topologically covered. Next, a proposed ranking method
is applied to sieve out the real faults from the candidates
within the suspect region. The experimental results show that
the proposed diagnosis framework can effectively locate the
multiple stuck-at faults within a neighborhood, which may
generate erroneous signals cancelling one another and are
difficult to be diagnosed based on a single-fault-model method.

I. INTRODUCTION

Due to the high complexity, high variation, and incomplete
characterization of advanced process technologies, the first couple
silicons of today’s ICs usually fail or suffer an unacceptable low
yield. Based on the collected responses of failed chips, the failure
analysis is applied to identify the root causes of the failure, which
are then used to correct the design, improve the process, or enhance
the yield for the next silicon. However, the nonstop increase
of today’s design complexity and process complexity has made
the failure analysis more and more difficult and time-consuming.
Therefore, the time, cost, and effectiveness of the failure analysis
significantly affects IC’s time-to-market and total cost [1].

In the failure analysis, a process called fault diagnosis is used
to find out the possible candidates of real defects represented
by a given fault model. Based on the reported fault candidates,
the designers could infer the locations of real defects and then
physically examine those possibly defective locations through the
focused-ion-beam (FIB) or decapsulation techniques [2]. Those
physical-examination techniques are still slow and expensive in
current industry. Thus, a robust fault-diagnosis framework with
high accuracy and efficiency is highly desired to speedup and cost
down the entire process of the failure analysis.

The simplest method for fault diagnosis is to build a fault
dictionary, in which the faulty response generated by each fault is
stored. Then we try to match the collected responses of the failed
chips with the faulty responses stored in the fault dictionary. The
size of the fault dictionary is directly proportional to the number
of modeled faults in a design, which can easily reach to millions
today. Most recent researches in the dictionary-based diagnosis
focus on the compression techniques reducing the size of the fault
dictionary [3]–[7]. Thus, the application of this dictionary-based
method is limited to a single-fault model. The dictionary size for a
multiple-fault model would be prohibitively huge [8]. However, one
defect in a chip may affect multiple transistors and multiple defects

may simultaneously exist in a chip. The behavior of failed chips
may not be fully represented by a single-fault model [4][5][7].

Several methods for multiple-fault diagnosis have been pub-
lished in the past. One type of multiple-fault-diagnosis methods are
region-based methods [9] [10] [11], in which all real defects are
assumed to locate within a neighborhood. The region-based meth-
ods utilize the X (unknown) model to approximately represent the
possible faulty behaviors of a defective region in the simulation and
then rank the defective regions based on how their X-simulation
results can match the failing responses. However, these region-
based methods assume that the size of defective region is fixed, but
this size may not be known before the diagnosis. In addition, their
computation complexity increases exponentially with the increase
of region’s radius. The experimental results reported in [9] [10] [11]
are limited to a small radius (such as 1).

[12] proposes the concept of SLAT (single-location-at-a-time)
patterns, which can generate a faulty response fully explained by
a single stuck-at fault. With the SLAT patterns, individual stuck-
at faults can be identified and then used to derive the possible
combinations of the real multiple faults (also called as multiplets).
[13], [14] and [15] utilize the concept of SLAT patterns to diagnose
complex faults, such as Byzantine faults or bridging faults. [8]
can further handle some non-SLAT patterns by dividing the faulty
outputs into independent fanout regions. However, all above SLAT-
based methods depend on the existence of enough SLAT patterns,
which may not be always true in reality. Moreover, it is also
difficult for SLAT-based methods to diagnose defects generating
erroneous signals masking or interacting one another [8][12][13].
In this case, the number of reported multiplets would be large [12].

In order to reduce the number of possible multiplets or fault
candidates, additional test patterns are applied to increase the
diagnosis resolution [14][16]. [16] prunes the false candidates
by generating the SO-SLAT (single-observation SLAT) patterns,
which detect the target fault at a single observation point and
guarantee that the faulty outputs of the target fault cannot be
masked by other faults in the candidate list. In reality, the diagnosis
patterns are usually the same as the test patterns (mostly stuck-at-
fault patterns). Adding additional test patterns may not be always
possible in current diagnosis flows.

In this paper, we propose a diagnosis framework targeting
multiple stuck-at faults. This framework consists of two main
components, the faulty-region identification followed by the fault-
candidate ranking. In the faulty-region identification, we utilize the
X-simulation technique and the bit-flipping technique to gradually
shrink the suspect region covering all real faults based on both
failing and passing patterns. Unlike the region-based methods, our
framework requires no assumption for the radius of the suspect
region and hence is more flexible. In the fault-candidate ranking,
we classify and rank the fault candidates based on the information
collected from the faulty-region identification. The experimental
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results show that the proposed diagnosis framework can efficiently
and effectively minimize the suspect region and sieve out the real
faults from the region even when the failing-pattern percentage and
the number of SLAT patterns are both low for the circuits under
diagnosis (CUDs). Those are the difficult cases to be diagnosed by
the traditional SLAT-based and region-based methods.

II. PROPOSED FAULT-DIAGNOSIS FRAMEWORK

A. Overall Diagnosis Flow
Figure 1 shows the overall flow of the proposed fault-diagnosis

framework. Given the CUD, the test patterns, and the correspond-
ing test responses obtained from the CUD, we apply the procedure,
faulty-region identification, to report a minimal faulty region which
covers all real faults. Then, the procedure, fault-candidate ranking,
ranks the fault candidates within the faulty region based on the
information collected during faulty-region identification. Next, we
use the FIB technique to physically repair the fault candidate
with the highest rank and then apply the same test patterns to
the CUD. If the responses obtained from the repaired CUD is
different from the test responses obtained before the FIB repair, the
repaired fault candidate is a real fault. Then we rerun the faulty-
region identification and fault-candidate ranking based on the new
obtained responses. Otherwise, the repaired fault candidate is not
a real fault. Then we use the FIB technique to physically repair
the next ranked fault candidate until a real fault is detected.

Fig. 1. Overall flow of the proposed diagnosis framework.

B. Key Concepts
In this subsection, we describe three key concepts used in our

diagnosis framework: X-region, not-stuck-at-0 (or not-stuck-at-1)
signals, and value-flipping technique.

1) X-region: An X-region is a set of connected gates, whose
logic values are set to unknown. When simulating failing patterns
along with the unknown values in the X-region, we can determine
whether the X-region covers all the real faults by comparing the
simulated value on each failing output with the collected erroneous
response. If the simulated value on any failing output is opposite
to the value of its erroneous response, it means that the value on
the failing output cannot be corrected no matter how the unknown
values in the X-region are assigned. In such a case, this failing
output must result from a fault outside the X-region and hence
such an X-region does not cover all the real faults.

In our diagnosis framework, we use an X-region to represent a
possible suspect region which covers all real faults. Figure 2 shows
a simple circuit with stuck-at-1 faults at net18 and G1. We use this
faulty circuit as an example throughout the entire paper. Column 1
to Column 4 at Table I list the test patterns, the responses obtained
from the good-circuit simulation, the responses obtained from the
faulty-circuit simulation (or from the actual defective circuit), and
the corresponding failing outputs, respectively, for the exemplary
circuit. If we give an X-region covering the two stuck-at faults as
shown by the shadow background in Figure 2, the simulated value
of all the failing outputs is set to unknown for each failing pattern.

The simulation results associated with the given X-region are listed
in Column 5 at Table I.

Fig. 2. An example of X-region.

Test Pats. Sim. Resp. Test Resp. Failing PO X-Sim. Results

G1 G2 G3 G4 G5 G16 G17 G16 G17 G16 G17
11010 11 01 G16 X1
11001 11 01 G16 X1
11011 11 01 G16 X1
10001 01 01 – X1
01111 00 10 G16 X0
00010 00 00 – X0
10101 11 11 – X1
00110 00 10 G16 X0

TABLE I
Test patterns, simulated good-circuit responses, and collected

responses for the exemplary circuit.

2) Not-stuck-at-0 & not-stuck-at-1: Unlike other dictionary-
based or region-based diagnosis methods, which attempt to identify
a modeled fault or region matching the actual faulty syndrome,
our diagnosis framework attempts to identify the signals which
cannot be a fault, i.e., to identify the not-stuck-at-0 or not-stuck-
at-1 signals. If a candidate signal can be proved that its value on
the defective chip is 0 (1) for any pattern, the candidate signal is
then proved as a not-stuck-at-1 (not-stuck-at-0) signal. A candidate
signal is guaranteed to be fault-free if this signal is proved to be
both not-stuck-at-0 and not-stuck-at-1 [17][18]. For convenience,
we use NSA0 and NSA1 to represent not-stuck-at-0 and not-stuck-
at-1, respectively. We also use NSAv to represent a signal which
can be either not-stuck-at-0 or not-stuck-at-1.

3) Value flipping on X-region’s boundary signals: For
each test pattern, we check whether a target signal on the X-
region’s boundary is NSA0 or NSA1. A signal g is said to be
on the boundary of an X-region if g ∈ X-region and there exists
at least one g’s fan-out signal p, where p /∈ X-region. For example,
G2, net14, and G16 are on the boundary of the X-region shown in
Figure 3. We first calculate the good-circuit value v of the target
signal through simulation. Then, we flip the value on the target
signal to v′ and simulate the pattern again with all other boundary
signals remaining the unknown value. If the simulated value on any
output is different from its collected response, then the target signal
cannot be a stuck-at-v′ fault (or is NSAv′). Otherwise, setting a
value v′ on the target signal contradicts with the collected response.
If the target faulty signal may interact with other faults within the
X-region, the contradicted outputs must have an unknown value
and hence no contradiction can be sustained.

Figure 3 shows an example of the above value-flipping simula-
tion. The X-region is highlighted by the shadow background. The
value of G2 is originally 1 and then flipped to 0. Then a mismatch
is observed on G17. Therefore, the value of G2 must be 1. In other
words, G2 is NSA0.

III. FAULTY-REGION IDENTIFICATION

The following two subsections detail the procedures of the X-
region initialization and the iterative X-region shrinking. We also
use the defective circuit shown in Figure 2 and the test patterns in
Table I as example to illustrate the two procedures.
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Fig. 3. A mismatch occurs on G17 at pattern (G1, G2, G3, G4, G5)
= (11010) when applying the value-flipping on G2.

A. Procedure of X-region Initialization
The inputs of the X-region initialization are the test patterns, the

collected responses from the defective chip, and the CUD’s netlist.
This initial X-region becomes the starting point of the X-region
shrinking to obtain a minimal X-region. Therefore, this identified
initial X-region may be larger than it could necessarily be, but it
has to cover all the real faults.

We first perform the active-path tracing from each failing output
for each failing pattern [19]. Then we use the union of all the
traced signals for all the patterns as the initial X-region, which is
a conservative estimation of the region covering all real faults.

B. Procedure of X-region Shrinking
In X-region shrinking, we use the initial X-region obtained

from the X-region initialization as a starting point. All the signals
within the X-region are set to unknown to represent the potential
implicated values of the real faults during simulation. Based on
the X-region concept (introduced in Section II-B1), we apply the
value-flipping technique (introduced in Section II-B3) to identify
the NSAv signals on X-region’s boundary and then shrink the X-
region by removing the signals which are both NSA0 and NSA1.

In the following discuss, we use the simulated good-circuit
value and simulated value-flipping value to represent a signal’s
logic value computed through a good-circuit simulation and a
simulation with the value-flipping on a target signal (also called
value-flipping simulation), respectively. We also use the response
value to represent the logic value observed at an CUD’s output.
We say that a signal has the good value when its deduced value
obtained from the value-flipping simulation is consistent with the
simulated good-circuit value.

Figure 4 shows the X-region shrinking’s algorithm, and the
algorithm attempts to identify the NSAv signals based on both
passing and failing patterns. For each pattern, we first run good-
circuit simulation to obtain the simulated good-circuit value for
each signal (Line2). Second, we replace the value of signals
within the X-region with the unknown value (Line3-6). Then,
the sub-procedure IGV utilizes the value-flipping technique to
check whether each signal on X-region’s boundary is NSAv′ if
the simulated good-circuit value of the signal is v (Line9). During
IGV, some boundary signals are identified to have the good value.
Next, the sub-procedure IUI performs the backward and forward
implication based on the new identified good values to further
derive more good values on the boundary (Line11). We repeatedly
perform IGV and IUI until no more good value can be found for
the given pattern.

The detail steps of the sub-procedure IGV are listed in Figure 5.
For each signal on X-region’s boundary with the unknown value,
we first assign the signal’s value opposite to its simulated good-
circuit value v (Line2), and then obtain the value-flipping value for
each output through the 3-value simulation (Line3). Next, if there
exists a simulated value-flipping value on any output different from
its response value, then the target signal is NSAv′ and guaranteed
to have good value for the given pattern (Line5-7). We also check
if the target signal has been recognized as a NSAv for previous
patterns. If yes, then we remove it from the X-region (Line8-10).
Last, we assign the value of the target boundary signal as the good

Procedure 1 X-region Shrinking
1: for all {p : p ∈ T, T = Test Set} do
2: Good_Circuit_Simulation()
3: for all {g : g ∈ X-region} do
4: Value(g)← X
5: for all {g : g ∈ Boundary} do
6: Value(g)← Good_Circuit_Value(g)
7: repeat
8: //Identify Good Values Using Gate Values
9: IGV(Boundary)

10: //Identify Gate Values Using Input Information
11: IUI(Boundary)
12: until no good value identified in IUI

Fig. 4. Procedure of X-region shrinking.

value v instead of its original unknown value for any later value-
flipping simulation of the current pattern (Line11). This assignment
can help to identify more potential mismatches between output’s
response value and value-flipping value later on.

In addition, this assignment is only valid for the current pattern.
Even though a signal is identified NSAv′ and its good-circuit value
for a later pattern is v, we cannot directly assign v at the signal
since we only know that this signal is not stuck-at-v′ and cannot
prove that its value is v. We have to apply the value-flipping
technique again to check whether the target signal has the good
value for the current pattern, and then we can assign the good
value at the target signal. Therefore, when we perform the X-region
shrinking to the next pattern, the boundary signals of the X-region
are still set to unknown initially.

Sub-procedure 1 IGV //Identify Good Values Using Gate Values
1: for all {g : g ∈ Boundary and Value(g) = X} do
2: Flip(g)
3: 3-Value_Simulation()
4: for all {z : z ∈ PO, PO = Primary Output} do
5: if Mismatch(z) then
6: v ← Good Circuit Value
7: g is NSAv′ and has Good Circuit Value
8: if g is also NSAv then
9: X-region← X-region− {g}

10: update Boundary
11: Value(g)← Good Circuit Value
12: break

Fig. 5. Identify good values using gate values

Figure 6(a) and Figure 6(b) show an example how the signal
net14 is proved as NSA0 and NSA1 at different patterns, respec-
tively. Since being both NSA0 and NSA1, net14 can be proved
fault-free and then removed from the X-region.

Fig. 6. An example of proving a signal NSA0 and NSA1.
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Figure 7 shows the detail steps of the sub-procedure IUI, which
applies the implication technique and the value-flipping technique
on the fanins of the boundary signals to further identify more
boundary signals having the good value. Those new identified good
values can then help the sub-procedure IGV in the next iteration
to find more NSA0 and NSA1 signals.

For each boundary signal with the unknown value, the sub-
procedure IUI attempts to prove that this signal has the good
value v, where v is the simulated good-circuit value for the given
pattern. If the target signal has been proved NSAv′ and its fanins’
good values can propagate to the target signal, then the target signal
has the good value. Two cases are discussed in the sub-procedure
IUI to determine whether the signal’s fanins have the good value
and can propagate to the signal. If the simulated good-circuit value
of any its fanin is the controlling value, then the target signal has
the good value if any of its controlling fanin has the good value
(Line4-8). Otherwise, the target signal has the good value if all of
its non-controlling fanins have the good value (Line10-16).

Sub-procedure 2 IUI //Identify Gate Values Using Input Information
1: for all {g : g ∈ Boundary and Value(g) = X} do
2: if g is NSAv’ then
3: if g has controlling fan-ins then
4: FI ← ControllingFanIn(g)
5: for all {gfi : gfi ∈ FI} do
6: if Is_Input_Good(gfi) = true then
7: g has GoodValue
8: break
9: else

10: FI ← NonControllingFanIn(g)
11: for all {gfi : gfi ∈ FI} do
12: if Is_Input_Good(gfi) = false then
13: break
14: if all gfi ∈ FI are good then
15: g has GoodValue
16: break

Fig. 7. Sub-procedure of IUI .

In the sub-procedure IUI, we use the function
Is_Input_Good(g) to determine whether the fanin g
has the good value. The fanins of the target signal are classified
into three types: on the X-region’s boundary, outside the X-region,
and inside the X-region. The examination rule for each type of
fanins is listed as follows:

1) If the fanin is on the boundary, we already know whether
this fanin has the good value during the sub-procedure IGV
or the earlier stage of the sub-procedure IUI.

2) If the fanin is outside the X-region, the fanin is fault-free.
However, the fanin’s value on the CUD is not necessarily
the same as the simulated good-circuit value if this fanin is
on the error-propagation path of real faults. To obtain this
fanin’s actual value, we apply the value-flipping technique to
check if any output mismatch exists. If the mismatch exists,
the fanin is guaranteed to have the good value. Otherwise,
we recursively check its fanins until a good value can be
found or no good value can be deduced. An example is
shown in Fig.8.

3) If the fanin is inside the X-region, we cannot know its value
since it is set to unknown.

Fig. 8. net18 can be derived as 1 when net18 is NSA0 and G2 is 0.

Figure 9 shows an example that the sub-procedure IGV can

observe more output mismatch after knowing some additional good
values in the sub-procedure IUI. It also means that more NSAv
signals can be found and hence the X-region can be further shrunk.

Fig. 9. The derived value of net18 helps the faulty value of net17
propagating to POs in IGV, and net17 can be proved as NSA1.

IV. FAULT-CANDIDATE RANKING

After a minimal suspect region covering all real faults is reported
by the faulty-region identification, we then rank the fault candidates
within the reported region to specifically identify the real faults.
In our fault-candidate ranking, we utilize two cost functions,
Match Sum(c) and FM Det(c), to evaluate a fault candidate
c by comparing the fault simulation result of c with the CUD’s
response. Only the failing patterns are used in this ranking process.

The notations, for calculating Match Sum(c), EPOfsim(c, p)
denotes the set of erroneous outputs obtained from the fault
simulation of fault c at pattern p. EPOtest(p) denotes the set of
erroneous outputs obtained from the CUD’s response at pattern p.
|EPOfsim(c, p)∩EPOtest(p)| denotes the number of erroneous
outputs in the intersection of EPOfsim(c, p) and EPOtest(p),
meaning the number of erroneous outputs produced by the fault c
and are also in the CUD’s response at pattern p.

Equation 1 shows the definition of Match Sum(c), which
represents the total number of matched erroneous outputs for
the fault c over all failing patterns. Basically, a higher value of
Match Sum(c) means a higher possibility that the candidate c
is a real fault in our ranking method, and equation 2 shows the
definition of FM Det(c).

Match Sum(c) =

|failing pat.|∑
p=1

|EPOfsim(c, p) ∩ EPOtest(p)| (1)

FM Det(c) =

|failing pat.|∑
p=1

isFM(c, p), (2)

where

isFM(c, p) =

{
0 if EPOfsim(c, p) 6= EPOtest(p)

1 if EPOfsim(c, p) = EPOtest(p).

The function isFM(c, p) returns whether the fault c can
full-match the response of the failing pattern p. The function
FM Det(c) represents the total number of the full-matched pat-
terns by the fault c.

Figure 10 summarizes our ranking method. A fault c with at
least one full-matched pattern is more likely to be a real fault than
a fault without any full-matched pattern even if the fault c has
less Match Sum(c) [8][12][13][15][20]. Therefore, our ranking
method generally ranks the faults with a full-matched pattern
higher than the faults without a full-matched pattern. We further
divide the full-matching faults into three types, (1) the faults on
the X-region’s boundary and the fault site is identified as a NSA0
or NSA1 signal during the X-region shrinking, (2) the faults inside
the X-region, and (3) the faults on the X-region’s boundary and
the fault site cannot be identified as a NSA0 or NSA1 signal
during the X-region shrinking. A 1st-type fault ranks higher than
the other two types because (i) a NSAv signal shows the possibility
of generating a mis-match output from the fault site, and (ii) the
existence of the 1st-type fault may be the reason why this fault
site cannot be proved NSAv′. A 3rd-type fault ranks lower than
the other two types because if the 3rd-type fault is the real fault
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which explains a certain failing pattern, there must be propagation
paths to propagate its faulty value to outputs. Then its opposite
faulty value could likely be propagated to outputs through similar
paths. Since its fault site cannot be proved as a NSAv signal, a
reasonable explanation is that the real fault is not on that fault site.

Fig. 10. Illustration of the ranking ordering.

V. EXPERIMENTAL RESULTS

The proposed diagnosis framework is implemented in C++ and
the experiments are conducted on a workstation with a 2.0GHz
CPU and 16G memory. The benchmark circuits are ISCAS’89
benchmark circuits, where all circuits are full-scanned such that
all flip-flops can be directly observed and controlled. For each
benchmark circuit, the test patterns are generated by a PODEM-
based ATPG [21] and the coverage for single stuck-at fault is 100%.

In the following experiment, we inject 3 nearby stuck-at faults at
a time to sample a CUD, and then apply our diagnosis framework.
Table II lists the average results after applying the proposed
method over 100 sampled CUDs. Column 2 shows the number
of test patterns used in the experiments. Column 3 and 4 list the
percentage of failing patterns and the fault diameter associated with
the injected faults, respectively. The definition of the fault diameter
is the maximum length of all the shortest paths on netlist between
any two injected faults, which is used to measure the locality of the
injected faults. Column 5 and 6 list the size of the X-region, that
is the number of signals covered by the X-region, before and after
applying the X-region-shrinking procedure, respectively. Column 7
lists the shrinking percentage from the initial X-region to the final
X-region. Column 8 lists the minimum fault-to-boundary distance
after applying the X-region shrinking, which is defined as the min-
imum netlist distance from an injected fault to the boundary of the
final shrunk X-region. This minimum fault-to-boundary distance
represents how effectively the X-region-shrinking procedure can
reduce the X-region. The lower the distance, the better performance
of the X-region-shrinking procedure. Last, Column 9 lists the
runtime of the X-region shrinking in seconds.

circuit test failing fault size of X-region min. flt. to runtime
pttns. pttn. % diameter initial final shrink % boundary (sec)

s1196 201 40.67 3.45 267.50 91.45 65.81 0.20 0.60
s1423 82 63.90 4.35 270.65 174.25 35.62 0.25 0.32
s713 73 67.05 3.95 224.70 106.55 52.58 0.60 0.19
s5378 317 55.79 4.25 474.15 269.35 43.19 1.50 2.47

s13207 604 55.57 3.50 294.10 170.30 42.09 2.00 6.62
s35932 77 59.74 3.60 392.25 247.55 36.89 0.30 7.91
s38584 889 58.50 3.80 200.75 72.60 63.84 0.25 38.78
s38417 1371 54.03 3.35 622.90 358.15 42.50 2.05 79.58

average 56.91 3.78 47.81 0.89

TABLE II
Experimental results for 100 3-stuck-fault CUDs.

As the result shows, the average shrinking percentage and mini-
mal fault-to-boundary distance achieved by the X-region shrinking
are 47.81% and 0.89, respectively. This result first demonstrates
that the X-region shrinking can effectively eliminate the false
candidate signals and minimize the suspect region such that the
resulting X-region’s boundary is very close to real faults. Once the
X-region’s boundary is reaching the real faults, it is difficult to
further move the X-region’s boundary inward and the fan-in cones
connecting to the real faults still remain in the X-region. Also, this
result shows the efficiency of the X-region shrinking. The longest

runtime among all benchmark circuits is 79.58 seconds (including
the runtime of fault-candidate ranking).

Table III shows the results of the fault-candidate ranking.
Column 2, 3, and 4 list the number of repair trails required until
the first, second, and third successful repair occurs, respectively.
After a real fault is detected, we run the X-region shrinking again
based on the new CUD, which removes the detected fault already.
The runtime reported in the Column 5 is the sum of the runtime
of each individual X-region shrinking and fault-candidate ranking.
As the result shows, it requires in average 5.11, 9.85, and 15.32
repair trails to hit the first, second, and third successful repair,
respectively. It implies that almost 5 trials are required to hit a
successful repair. Note that the equivalent faults are viewed as
individual ones in our diagnosis framework and hence the reported
results may not look as promising as it could be.

circuit 1st successful 2nd successful 3rd successful runtime
repair repair repair (sec)

s1196 2.20 5.15 7.00 0.84
s1423 2.90 7.80 15.45 0.50
s713 6.80 12.35 15.40 0.24
s5378 6.50 13.10 27.75 3.29
s13207 8.60 11.15 16.40 11.33
s35932 2.50 6.80 8.45 13.99
s38584 4.00 5.85 6.90 57.59
s38417 7.35 16.60 25.25 117.09

average 5.11 9.85 15.32

TABLE III
The number of repair trails required until the first, second, or third

successful repair occurs for 3-stuck-at-fault CUDs.

Table IV shows the average results of the first X-region shrinking
and fault-candidate ranking for 100 5-stuck-at-fault CUDs. A
similar trend can be observed as shown in Table II and III.
The shrinking percentage is 43.97% and the minimal fault-to-
boundary distance is 0.54 in average, which demonstrates that
the X-region shrinking can also effectively shrink the X-region’s
boundary toward real faults when more faults are in the CUD.
The average numbers of repair trials required to hit the first and
fifth successful repair are 4.31 and 23.64, respectively. In average,
less than 5 repair trails are required to hit 1 successful repair.
In addition, the longest runtime among all benchmark circuits is
191.12 seconds, showing that the proposed diagnosis framework is
scalable when the number of real faults increases.

Note that the average fault diameter is 4.35 in Table IV, which is
larger than that of the modeled region used in any published result
of the region-based diagnosis for ISCAS benchmark circuits, such
as [9] [10] [11]. Unlike the region-based diagnosis whose runtime
increases exponentially with the increase of the modeled region’s
size, the proposed diagnosis framework requires no assumption on
the size of the suspect region and its runtime is indifferent to the
fault diameter. This further demonstrates the flexibility as well as
the scalability of proposed diagnosis framework.

Compared with the SLAT-based methods, such as [12] [13] [14]
[15], the advantage of the proposed diagnosis framework is that
its performance does not rely on the number of existing SLAT
patterns. The number of SLAT patterns can be small especially
when the erroneous signals of the multiple faults interact with one
another. In order to create such scenarios, we selectively sample
the injected faults for 3-stuck-at-fault CUDs whose percentage of
the resulting SLAT patterns is low. Table V shows the average
results over 100 such 3-stuck-at-fault CUDs.

In Table V, Column 2 lists the average number of existing SLAT
patterns, which is 7.56. Note that even a pattern is identified as a
SLAT pattern, its erroneous response explained by a single fault
may not result from a single real fault. It could result from multiple
real faults. Also, the percentage of failing patterns is only 9.44% in
Table V, which is almost one sixth of the failing-pattern percentage
shown in Table II (56.91%). The above two numbers show that
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first X-region shrinking fault-candidate ranking total
circuit failing fault size of X-region min. flt. to 1st successful 5th successful runtime

pttn. % diameter initial final shrink % boundary repair repair (sec)

s1196 63.46 4.05 351.10 190.30 45.80 0.10 2.05 10.60 1.47
s1423 74.45 4.25 265.85 159.20 40.12 0.35 3.15 24.80 0.73
s713 78.97 4.90 270.00 150.70 44.19 0.55 6.70 22.05 0.47

s5378 48.60 4.85 491.45 300.20 38.92 0.80 7.85 41.05 4.97
s13207 72.62 4.60 238.60 139.50 41.53 1.00 3.70 19.85 23.22
s35932 75.91 2.95 278.45 159.75 42.63 0.25 2.05 13.00 10.32
s38584 77.04 4.20 409.60 162.60 60.30 0.30 2.75 18.80 94.43
s38417 73.32 5.00 816.45 503.70 38.31 1.00 6.25 38.95 191.12

average 70.55 4.35 43.97 0.54 4.31 23.64

TABLE IV
The experimental results of X-region shrinking and fault-candidate ranking for 5-stuck-at-fault CUDs.

# of first X-region shrinking fault-candidate ranking total
circuit SLAT failing fault size of X-region min. flt. to 1st successful 2nd successful 3rd successful runtime

pttn. pttn.(%) diameter initial final shrink % boundary repair repair repair (sec)

s1196 7.53 3.78 3.51 191.57 37.31 80.52 0.27 2.26 4.33 6.61 0.61
s1423 4.12 5.15 3.14 144.33 74.21 48.58 0.90 5.13 10.31 13.52 0.39
s713 4.37 10.84 3.19 100.74 33.43 66.82 0.52 4.66 8.53 10.56 0.15
s5378 5.70 3.74 3.73 159.27 79.52 50.07 1.74 7.70 13.76 18.13 2.59
s13207 8.59 9.71 3.53 366.70 221.81 39.51 2.64 6.53 14.19 19.28 8.13
s35932 7.92 25.94 3.56 1498.74 979.00 34.68 1.42 2.87 5.83 9.48 9.98
s38584 12.70 7.13 3.54 419.33 196.90 53.04 1.39 5.70 14.24 18.10 35.13
s38417 9.56 9.24 3.64 335.59 148.82 55.65 2.11 6.68 18.65 25.77 76.36

average 7.56 9.44 3.48 53.61 1.37 5.19 11.23 15.18

TABLE V
The experimental results of X-region shrinking and fault-candidate ranking for 3-stuck-at-fault CUDs with a small number of SLAT patterns.

the sampled combinations of the 3 stuck-at faults are hard to be
identified with the SLAT-based methods or any diagnosis method
using only the failing patterns.

As the result shows in Table V, our diagnosis framework can
achieve an average 53.61% shrinking percentage but its average
minimal fault-to-boundary distance is 1.37, which is 0.48 higher
than that shown in Table II. It implies that the faults interacting
with another may prevent the identification of the NSAv signals.
However, the numbers of repair trails required to hit the first,
second, and third successful repair are almost the same as that
in Table II, which demonstrates that our diagnosis framework can
still effectively diagnose those hard-to-identified multiple faults
even though the number of SLAT patterns and the failing-pattern
percentage are both low.

VI. CONCLUSIONS

In this paper, we proposed a diagnosis framework targeting
multiple stuck-at faults. This framework utilizes the faulty-region
identification to obtain a minimal suspect region covering all real
faults, and the proposed ranking method ranks the fault candidates
within the suspect region using the information obtained during the
faulty-region identification. The experimental results demonstrate
that the proposed diagnosis framework can effectively minimize
the suspect region and its runtime is scalable to the circuit and
the number of existing faults. In addition, the proposed framework
requires no assumption on the number of existing faults as well as
the size of the possible faulty region, which greatly increases the
flexibility of its application.
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