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Abstract— In this work, we analyze the performance of a
wireless sensor network with distributed classification codes,
where independence across sensors, including local observations,
local classifications and sensor-fusion link noises, is assumed. In
terms of large deviations technique, we establish the necessary
and sufficient condition under which the minimum Hamming
distance fusion error vanishes as the number of sensors tends to
infinity. With the necessary and sufficient condition and the upper
performance bounds, the relation between the fault-tolerance
capability of a distributed classification code and its pair-wise
Hamming distances is characterized.

I. INTRODUCTION

Consider a wireless sensor network (WSN) that consists of
N sensors, N wireless and hence noisy one-way communica-
tion links, and a fusion center as shown in Fig. 1. The WSN
is tasked with the solution of a M -ary hypothesis testing or
classification problem. Compression on the local observation
is assumed to be performed at each sensor before information
is sent to the fusion center. In this work, we are specifically
concerned with the case where the sensor nodes only send out
binary decisions to the fusion center at which they are fused
to produce the final M -ary decision.

An issue that may be encountered in the WSNs considered
is that the wireless binary-output sensor that is supposed
to be manufactured by a simple and low-cost technology
may suffer from hardware as well as software malfunctions
after deployment over a harsh environment [1]. Therefore, the
fault-tolerance capability to protect against unexpected sensor
failures is of great importance in such cases to maintain an
acceptable level of performance in a WSN.

To achieve the desired robustness against sensor faults, a
distributed classification code has been proposed to be used in
the wireless sensor network to provide a good fault-tolerance
capability under feasible system complexity [3]. It was shown
in [3] that with adequately high probability, the decision made
by the minimum Hamming distance fusion rule can fall into
the correct acceptance region even if several sensor faults that
are unknown to the fusion center are present.

In [2], we had characterized the asymptotic performance
of the minimum Hamming distance fusion rule under some
restrictive assumptions. In this work, we extend our analysis
in [2] by relaxing the assumptions of common distribution for

all local observations and identical local classification rule for
all sensors. Also, only independence across sensors is assumed
for the additive noises over the wireless links. Contrary to
the requirement of sufficiently large number of sensors in [2],
the probability bounds obtained in this work are now valid
for any finite number of sensors. In particular, the necessary
and sufficient condition under which the minimum Hamming
distance fusion error vanishes as the number of sensors tends
to infinity is established. With the necessary and sufficient
condition and the upper bounds on the error probability, the
relation between the fault-tolerance capability of a distributed
classification code and its pair-wise Hamming distances is
characterized.

II. SYSTEM MODEL

As depicted in Fig. 1, the distributed M -ary classification
system assumes that the local observations {yj}N

j=1 are con-
ditionally independent given each hypothesis, and each local
sensor classifies its own observation, independent of all others,
to one of the M hypotheses using its own decision rule. Denote
by h

(j)
�|i the probability of classifying H� given that Hi is

the true hypothesis at sensor j. Also assume that the prior
probability of each hypothesis is equal, and the event of link
error, i.e, [uj �= u∗

j ], is not only independent across sensors
but independent of the local observation as well as the true
hypothesis Hi.

Based on the assumed statistics, an M × N code matrix
C is then designed in advance, of which element c�,j lies
in {0, 1} for � = 0, . . . , M − 1 and j = 1, . . . , N . In the
code matrix, each hypothesis is associated with a row, and
each column stands for the local binary outputs corresponding
to the classified hypotheses at the respective sensor. Thus,
sensor j transmits c�,j , if H� is declared locally. For notational
convenience, c� � (c�,1, c�,2, . . ., c�,N ) is used to denote the
row of C corresponding to the hypothesis H�.

After the observation is locally processed, the local output
code bit u∗

j is transmitted to the fusion center. The fusion
center receives the word u = (u1, u2, . . . , uN ), where uj and
u∗

j form a binary symmetric channel (BSC) with crossover
probability εj . The minimum Hamming distance fusion rule,
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A distributed classification code C

sensor 1 · · · sensor N
H0 c0,1 · · · c0,N

H1 c1,1 · · · c1,N

...
... · · ·

...
HM−1 cM−1,1 · · · cM−1,N

Fig. 1. System model for a WSN with distributed classification code.

or specifically, ω = arg min0≤�≤M−1d(u, c�), is then em-
ployed to obtain the multiclass decision ω, where d(·, ·) is the
Hamming distance.

III. PERFORMANCE ANALYSIS

Lemma 1: Let {Zj}∞j=1 be independent binary variables
with Pr[Zj = 1] = qj and Pr[Zj = −1] = 1 − qj . Then,
if λm � E[Z1 + · · · + Zm]/m < 0,

Pr {Z1 + · · · + Zm ≥ 0} ≤ e−m·Im(0), (1)

where

Im(x) � sup
θ≥0

[θx − ϕm(θ)]

and

ϕm(θ) � 1
m

log E
[
eθ(Z1+···+Zm)

]
.

Proof: The lemma can be proved by following the funda-
mental large deviations argument. It is omitted due to page
limitations. �

The probability bound in (1) does not exhibit any apparent
relation with λm, namely the average of the means of {Zi}m

i=1.
This can be amended by the next lemma.

Lemma 2: If λm � E[Z1 + · · · + Zm]/m < 0, then

Pr {Z1 + · · · + Zm ≥ 0} ≤ (1 − λ2
m)m/2.

Proof: Let q̄m = (1/m)
∑m

i=1 qj , and note that λm = 2q̄m−1.
So, the assumption of the lemma is equivalent to q̄m < 1/2.

The validity of the lemma for 0 < q̄m < 1/2 can be proved
by Jensen’s inequality in terms of the upper bound in (1) as

follows.

e−m·Im(0) = inf
θ≥0

exp

⎧⎨
⎩

m∑
j=1

log
(
qje

θ + (1 − qj)e−θ
)⎫⎬⎭

= inf
θ≥0

exp

⎧⎨
⎩m

⎛
⎝ m∑

j=1

1
m

log
(
qje

θ + (1 − qj)e−θ
)⎞⎠

⎫⎬
⎭

≤ inf
θ≥0

exp

{
m · log

(
m∑

k=1

1
m

(
qje

θ + (1 − qj)e−θ
))}

= inf
θ≥0

exp
{
m · log

(
q̄meθ + (1 − q̄m)e−θ

)}
= (4q̄m(1 − q̄m))m/2

,

where the last equality takes the optimizer

θ∗ = log
√

(1 − q̄m)/q̄m > 0

for 0 < q̄m < 1/2.
In case q̄m = 0, we have (4q̄m(1 − q̄m))m/2 = 0, and

inf
θ≥0

exp

⎧⎨
⎩

m∑
j=1

log
(
qje

θ + (1 − qj)e−θ
)⎫⎬⎭

≤ inf
θ≥0

exp
{
m log

(
q̄meθ + (1 − q̄m)e−θ

)}
= inf

θ≥0
exp {−mθ} = 0.

�
Based on the probability bounds obtained in Lemmas 1 and

2, we can upper-bound the minimum Hamming distance fusion
error for a WSN with distributed classification codes by the
following theorem.

Theorem 1: If
λmax < 0, (2)

then the minimum Hamming distance fusion error satisfies:

Pe ≤ (M − 1)(1 − λ2
max)

dmin/2, (3)

where

Pe � 1
M

M−1∑
i=0

Pr(fusion decision �= Hi|Hi),
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dmin � min
0≤�,i≤M−1,� �=i

d(c�, ci),

qi,j � εj + (1 − 2εj)
M−1∑
k=0

(ci,j ⊕ ck,j)h
(j)
k|i , (4)

and

λmax � max
0≤�,i≤M−1,

� �=i

1
d(c�, ci)

N∑
j=1

(c�,j ⊕ ci,j)(2qi,j − 1). (5)

Proof:

Pr(fusion decision �= Hi|Hi)

≤ Pr
(

d(u, ci) ≥ min
0≤�≤M−1,� �=i

d(u, c�)
∣∣∣∣Hi

)
≤

∑
0≤�≤M−1,� �=i

Pr (d(u, ci) ≥ d(u, c�)|Hi)

=
∑

0≤�≤M−1,
� �=i

Pr

⎛
⎜⎝ ∑

{j∈[1,··· ,N]:
c�,j �=ci,j}

(zi,j − z̄i,j) ≥ 0

∣∣∣∣∣∣∣Hi

⎞
⎟⎠ ,

where zi,j � uj ⊕ci,j and z̄ represents the complement of the
binary 0-1 variable z. Observe that

Pr(zi,j = 1|Hi)
= Pr(uj ⊕ ci,j = 1|Hi)
= Pr(uj = u∗

j and uj ⊕ ci,j = 1|Hi)
+ Pr(uj �= u∗

j and uj ⊕ ci,j = 1|Hi)
= Pr(uj = u∗

j and u∗
j ⊕ ci,j = 1|Hi)

+ Pr(uj �= u∗
j and u∗

j ⊕ ci,j = 0|Hi)
= Pr(uj = u∗

j ) Pr(u∗
j ⊕ ci,j = 1|Hi)

+ Pr(uj �= u∗
j ) Pr(u∗

j ⊕ ci,j = 0|Hi)
= εj + (1 − 2εj) Pr(u∗

j ⊕ ci,j = 1|Hi)

= εj + (1 − 2εj)
M−1∑
k=0

(ci,j ⊕ ck,j)h
(j)
k|i = qi,j ,

and {zi,j}N
j=1 is independent across sensors given Hi is true.

Therefore, (3) can be obtained by applying the upper bound
in Lemma 2. �

With the above theorem, we figure that if for some δ > 0,
λmax < −δ for all sufficiently large N , the decoding error
vanishes exponentially fast as dmin approaches infinity. Since
under a fixed number of hypotheses, dmin can be made to
grow linearly with the number of sensors N , we conclude
that the average error probability for a WSN with distributed
classification code and minimum Hamming distance fusion
can be made zero asymptotically as N goes to infinity, and
the error exponent is bounded below by

lim inf
N→∞

− 1
N

log Pe ≥ lim inf
N→∞

−dmin

2N
log(1 − λ2

max)

as long as lim supN→∞ λmax < 0. Next, we will show that
the assumption that lim supN→∞ λmax > 0 leads to a non-
vanishing Pe, and hence, establish the necessary and sufficient
condition under which Pe vanishes.

Theorem 2: Pe is bounded away from zero infinitely often,
if lim supN→∞ λmax > 0.
Proof: The assumption that lim supN→∞ λmax > 0 implies
the existence of δ > 0 such that λmax > δ for infinitely
many N . Hence, for any N validating λmax > δ, there exists
� = �(N) and i = i(N) such that

N∑
j=1

(c�,j ⊕ ci,j)(2qi,j − 1) > δ · d(c�, ci). (6)

By defining zi,j and z̄i,j the same as in the proof of Theorem
1, we obtain:

µ�,i � E

⎡
⎣ ∑
{j∈[1,··· ,N ] : c�,j �=ci,j}

(zi,j − z̄i,j)

⎤
⎦

=
N∑

j=1

(c�,j ⊕ ci,j)(2qi,j − 1) > δ · d(c�, ci).

As a result,

Pr(fusion decision �= Hi|Hi)

≥ Pr
(

d(u, ci) > min
0≤�≤M−1,� �=i

d(u, c�)
∣∣∣∣Hi

)
≥ Pr (d(u, ci) > d(u, c�)|Hi)

= Pr

⎛
⎝ ∑

{j∈[1,··· ,N ] : c�,j �=ci,j}
(zi,j − z̄i,j) > 0

∣∣∣∣∣∣Hi

⎞
⎠

≥ Pr

⎛
⎝ ∑

{j∈[1,··· ,N ] : c�,j �=ci,j}
(zi,j − z̄i,j) − µ�,i > 0

∣∣∣∣∣∣Hi

⎞
⎠

→ 1
2
, if d(c�, ci) approaches infinity,

where the last step follows the central limit theorem for the
sum of independent bounded variables. Thus, the claim of the
theorem holds for the case that d(c�, ci) tends to infinity.

In situations when d(c�, ci) is bounded as N approaches
infinity in which case a bad code design results, the theorem
is trivially valid. �

IV. ANALYSIS OF PESSIMISTIC FAULT-TOLERANCE

CAPABILITY

As mentioned earlier, the wireless sensor network consid-
ered in this paper is likely to contain faulty sensors. Faults
may include all misbehaviors, ranging from stuck-at faults
to sensors that behave arbitrarily. Observe that when sensor
faults (SF) occur, qi,j is no longer given by (4), but becomes
a function of the new statistics of u∗

j owing to sensor faults.
For example, when stuck-at-one fault occurs at sensor j,
Pr{u∗

j = 1|Hi} = 1 for 0 ≤ i ≤ M − 1. Hence,

q
(SF)
i,j = εj + (1 − 2εj) Pr(u∗

j ⊕ ci,j = 1|Hi)
= εjci,j + (1 − εj)(1 − ci,j).

Similarly, for stuck-at-zero fault,

q
(SF)
i,j = εj + (1 − 2εj) Pr(u∗

j ⊕ ci,j = 1|Hi)
= εj(1 − ci,j) + (1 − εj)ci,j .
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· · ·
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u1 u2 · · · uN
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d(u, c�)

)
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� � �
u∗

1 u∗
2 · · · u∗

N

⊕ ⊕ ⊕� � �n1 n2 nN

� � �
u1 u2 · · · uN

minimum Hamming distance decoder[
# of (u∗

j ⊥⊥ cj) < |βmax|(dmin/2)
]

implies vanishing decoding error.

( )

� � �
∅ ∅ ∅

c1 c2 · · · cN

M -ary code encoder
c = (c1, c2, · · · , cN ) ∈ C = {c0, c1, · · · , cM−1}

N uncooperative
bit-by-bit postulate encoders

� � �

Fig. 2. Equivalent serial-connected binary channel model specifically for wireless sensor networks.

In case a random fault occurs, in which Pr{u∗
j = 0|Hi} =

Pr{u∗
j = 1|Hi},

q
(SF)
i,j = εj + (1 − 2εj) Pr(u∗

j ⊕ ci,j = 1|Hi) =
1
2
.

In fact, q
(SF)
i,j ranges from min{εj , 1 − εj} to max{εj , 1 −

εj}. As no prior information on the sensor fault type, as well
as the faulty sensor number, is assumed known at the fusion
center, it is safer to consider the fault-tolerance capability of
the system by the worst case scenario. Then, the next corollary,
which is a straightforward extension of Theorem 1, can be used
to characterize the fault-tolerance capability of a distributed
classification coding system.

Corollary 1: Suppose that the fusion center knows the set
of faulty sensor indices, F , and also knows the respective
q
(SF )
i,j of those j ∈ F . Then, if λmax(F) < 0, we have:

Pe ≤ (M − 1)(1 − λ2
max(F))dmin/2,

where the superscript “c” denotes the set complement opera-
tion and

λmax(F) � max
0≤�,i≤M−1,

� �=i

1
d(c�, ci)

( ∑
j∈Fc

(c�,j ⊕ ci,j)(2qi,j − 1)

+
∑
j∈F

(c�,j ⊕ ci,j)(2q
(SF)
i,j − 1)

)
.

By min{εj , 1 − εj} ≤ q
(SF)
i,j ≤ max{εj , 1 − εj}, we can

verify based on the above corollary that:

λmax(F) − λmax

= max
0≤�,i≤M−1,� �=i

1
d(c�, ci)

⎛
⎝ N∑

j=1

(c�,j ⊕ ci,j)(2qi,j − 1)

+2
∑
j∈F

(c�,j ⊕ ci,j)(q
(SF)
i,j − qi,j)

⎞
⎠− λmax

≤ 2 max
0≤�,i≤M−1,� �=i

1
d(c�, ci)

∑
j∈F

(c�,j ⊕ ci,j)(q
(SF)
i,j − qi,j)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 max
0≤�,i≤M−1,

� �=i

1
d(c�, ci)

∑
j∈F

(c�,j ⊕ ci,j)(1 − 2εj)

M−1∑
k=0

[1 − (ci,j ⊕ ck,j)]h
(j)
k|i , if εj ≤ 1

2

2 max
0≤�,i≤M−1,

� �=i

1
d(c�, ci)

∑
j∈F

(c�,j ⊕ ci,j)(2εj − 1)

M−1∑
k=0

(ci,j ⊕ ck,j)h
(j)
k|i , if εj >

1
2

≤ 2 max
0≤�,i≤M−1,� �=i

1
d(c�, ci)

∑
j∈F

|1 − 2εj |
M−1∑
k=0

h
(j)
k|i

= 2 max
0≤�,i≤M−1,� �=i

1
d(c�, ci)

∑
j∈F

|1 − 2εj |

=
2

dmin

∑
j∈F

|1 − 2εj |. (7)

In order to guarantee a vanishing Pe with the maximal
allowable number |F| of faulty sensors, it suffices to have

λmax(F) ≤ λmax +
2

dmin

|F|∑
j=1

|1 − 2εj | < 0. (8)

For an identical sensor system where εj = ε and h
(j)
k|i = hk|i

for 0 ≤ k, i ≤ M − 1 and 1 ≤ j ≤ N , this condition reduces
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to

dmin > −2|1 − 2ε| |F|
λmax

= 2
|F|

|βmax| , (9)

where

βmax � max
0≤�,i≤M−1,� �=i

∑M−1
k=0 hk|i [d(ci, ck) − d(c�, ck)]

d(c�, ci)
.

Since

λmax ≥ min
0≤i≤M−1,1≤j≤N

(2qi,j − 1)

= −(1 − 2ε)

(
1 − 2

M−1∑
k=0

(ci,j ⊕ ck,j)h
(j)
k|i

)

≥ −|1 − 2ε|
for an identical sensor system, we have:

dmin > −2|1 − 2ε| |F|
λmax

= 2
|F|

|βmax| ≥ 2|F|. (10)

Note that the condition of dmin > 2|F| that was formerly
used as a heuristic code search requirement in [3] resembles
the interpretation for conventional coding techniques, which
states that a code with minimum pair-wise Hamming distance
dmin can tolerate around dmin/2 errors. However, inequality
(10) hints that a larger dmin than (2|F|)/|βmax| instead of
2|F| may be necessary for an identical fault-tolerant sensor
network system. By examining those codes that minimize (3)
for M = 8 and N ∈ {50, 100, 150, · · · , 600}, we found
that βmax is around −0.66. In other words, in the worst
case where the fusion center has no information on both the
sensor fault types and faulty sensor indices, the number of
faulty sensors allowable for these codes is only two-third
of dmin/2. Inequality (10) also interestingly indicates that
under an identical sensor system, the worst-case fault-tolerance
requirement has nothing to do with the link noise as we
have anticipated. Inequality (10) will reduce to the heuristic
constraint of dmin > 2|F| when all the misclassification
probabilities become zero (in which case hi|i = 1 for 0 ≤
i ≤ M − 1, and hence βmax = −1 regardless of the codes
adopted).

V. CONCLUDING REMARKS

The coding problem considered in this paper can actually
be transformed into one for the memoryless binary symmetric
channel (BSC) with unreliable bit-by-bit postulate encoders as
shown in Fig. 2, when the link noises have common marginal
distribution. We can further consider the memoryless BSC
channel with unreliable bitwise postulate encoders as a serial
connection of two binary channels, in which the first channel
suffers code-dependent noises that give

Pr(u∗
j |cj) =

∑M−1
i=0

{
(cj ⊕ ci,j)

∑M−1
k=0 1 − (u∗

j ⊕ ck,j)h
(j)
k|i
}

∑M−1
i=0 1 − (cj ⊕ ci,j)

,

where an over bar represents a complement operation, and
the second channel is the memoryless BSC channel. The case
of sensor faults under the equivalent channel model becomes

that u∗
j turns independent of cj (and hence, code-independent)

without notifying the fusion center. Our results then indicate
that the constraint that the number of code-independent bits
in u∗ (i.e., the number of faulty sensors) is less than |βmax|×
(dmin/2) is sufficient to guarantee a vanishing decoding error
for such a serially connected binary channel. This bound is
derived based on the pessimistic view when both faulty sensor
indices and sensor fault types are unknown to the fusion
center, or equivalently, the decoder is aware of neither the
index of every faulty bit u∗

j nor its resultant code-independent
distribution. In the extreme case that u∗ and c are completely
dependent, which should occur when h

(j)
k|i = 1 for every

0 ≤ k = i ≤ M−1, the constraint reduces to the conventional
|F| < dmin/2 for the coding technique since βmax = −1, and
the serially connected binary channel reduces to a memoryless
BSC channel. This observation hints that in a channel suffering
from code-dependent noises, a code that makes u∗ (channel
output) and c (channel input) more “dependent” (and thus, the
channel output has more information about the input) is still
expected to be a better and more robust code, which is exactly
the underlying concept behind the Shannon baptized “channel
capacity”. It would be interesting to conduct research along
this line, and determine the capacity of the postulate code-
dependent channels.
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