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Abstract— In this paper, convolutional codes are studied for
puncturing with irregular puncturing periods. Irregular punc-
turing can generate punctured codes with more available rates
and better bit-error-rate performance compared with the conven-
tional scheme with a single puncturing period. For the application
to unequal error protection, a new multiplexing scheme is also
proposed for rate-compatible punctured convolutional (RCPC)
codes which can guarantee smooth transition between rates
without extra overheads. Finally, families of good RCPC codes
with irregular puncturing tables are given by a computer search.

I. INTRODUCTION

Punctured convolutional codes were first introduced in [1]
by periodically deleting some coded bits of ordinary convolu-
tional codes. Later in [2], the puncturing process was further
regulated by a rate-compatible criterion to guarantee smooth
transition between different rates. Owing to flexible choices
of code rates and ease for decoding all children∗ codes by a
single decoder of their parent code, rate-compatible punctured
convolutional (RCPC) codes have been extensively employed
in various applications. However, literatures on puncturing
were based on the scenario with a single puncturing period for
all output streams of convolutional encoders. Although good
RCPC codes have been searched in [1]–[5], only a few of
rates are available for the code families with small puncturing
periods, and not all of them can achieve the optimal free
distances as the general convolutional codes with the same
memories and code rates.

To improve the puncturing performance, in this study, we
generalize the conventional scenario by choosing irregular
puncturing periods for different encoder outputs. Given a
parent code with a maximum period for puncturing, irregular
puncturing can generate children codes with rates and free
distances which are unobtainable by the conventional punc-
turing. Combining both of the puncturing schemes, we can
hence construct code families with more flexible choices of
code rate and more powerful error-correcting capability. In
addition, irregular puncturing with small periods can be shown
to achieve similar puncturing effect as the conventional scheme
with large periods. Our design thus provides a low-complexity
alternative for searching good high-rate punctured convolu-
tional codes which are originally obtainable by conventional
puncturing with extremely large periods.

∗For convenience, the original convolutional code to be punctured is called
the parent code and the resulting punctured code is called the child code.

For the application to unequal error protection (UEP), irreg-
ular puncturing is further combined with the rate-compatibility
to guarantee smooth transition between different children
codes. A new multiplexing scheme is then presented for RCPC
codes which can achieve similar UEP performance as the
conventional one in [2] but requires no additional zero-padding
for packet termination. Finally, families of good RCPC codes
with irregular puncturing tables are given by a computer
search.

The rest of this paper is organized as follows. Puncturing
with irregular periods is described in Section II. In Section III,
we study irregular puncturing with the rate-compatibility and
its application to UEP. Remarks are then given in Section IV
to conclude this work.

II. PUNCTURING WITH IRREGULAR PERIODS

Consider an (n, k) parent code C with ci,t denoting the
coded bit of the ith output stream of encoder at time t, ∀ 0 ≤
i < n. Conventionally, a puncturing table A with puncturing
period p is defined to be an n × p matrix with the (u, v)th
entry au,v taking value from {0, 1}. Suppose C is said to be
punctured by A. It follows that ci,t is allowed for transmission
if ai,t mod p = 1; otherwise, ci,t is deleted from the output
stream. Accordingly, children codes with the following code
rates can be obtained:

kp/(kp + l), ∀ 1 ≤ l ≤ (n − k)p. (1)

If a small p is used for puncturing, only a few of rates
are available by (1). However, suppose c i,t’s are allowed
for puncturing with irregular periods as described below;
more choices of code rate can be provided even with small
puncturing periods.

Let p0, p1, · · · , pn−1 be the puncturing periods corre-
sponding to n output streams of the encoder. The irregular
puncturing table A is defined in a similar way as above except
that its ith row now consists of pi columns, ∀ 0 ≤ i < n, and
hence ci,t is transmitted only if ai,t mod pi = 1. Let φ0, φ1,
· · · , φn−1 be the numbers of non-zero entries in rows of A.
In general, the child code generated by A has code rate

k/

n−1∑
i=0

φi

pi
. (2)

For example, consider a (2,1) parent code C with the following
codeword matrix:(

c0,0 c0,1 c0,2 c0,3 c0,4 c0,5 c0,6 c0,7 c0,8 c0,9 c0,10 c0,11 . . .
c1,0 c1,1 c1,2 c1,3 c1,4 c1,5 c1,6 c1,7 c1,8 c1,9 c1,10 c1,11 . . .

)
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in which the (u, v)th entry indicates the coded bit of the uth
encoder output at time v. Puncturing C with a single period
p = 4 can only generate children codes of code rate

4/5, 2/3, 4/7, and 1/2 (3)

by (1). However, suppose C is now punctured by

A =
(

1 0 1
0 1 1 1

)
(4)

with (p0, p1) = (3, 4) and (φ0, φ1) = (2, 3). The codeword
matrix after puncturing by A turns to be(

c0,0 × c0,2 c0,3 × c0,5 c0,6 × c0,8 c0,9 × c0,11 . . .
× c1,1 c1,2 c1,3 × c1,5 c1,6 c1,7 × c1,9 c1,10 c1,11 . . .

)
(5)

where coded bits marked by × are deleted from transmission.
The resulting child code has code rate 12/17 by (2). Moreover,
for all possible irregular puncturing tables with (p0, p1) =
(3, 4), the available rates of children codes are

12/13∗, 6/7∗, 4/5, 3/4∗, 12/17∗, 2/3, 3/5∗, 4/7, and 1/2

where the rates marked by ∗ are unavailable in (3). (12/13,
6/7, and 12/17 are even unattainable by (1) for all p ≤ 4.)
Note that we have max(p0, p1) = p in this case. Compared
with the conventional puncturing, it thus requires no extra
hardware/computation overheads to implement the puncturing
process with irregular periods.

In addition, as shown in Example 1, irregular puncturing
may generate children codes with the optimal free distances
as general convolutional codes which are unobtainable by the
conventional puncturing with the same puncturing complexity.
Combining both of the puncturing schemes, we can hence
construct code families with more flexible choices of code
rate and more powerful error-correcting capability even for
the case of small puncturing periods.

Example 1: Consider a parent code C with generator
matrix

[
D4+D+1 D4+D3+D2+1

]
(i.e., [23 35] in octal).

Based on the conventional puncturing with p = 6, the optimal
rate-3/4 child code of free distance 3 is obtained by puncturing
C with [3]

A1 =
(

1 0 1 1 1 1
1 1 0 1 0 0

)
.

However, suppose C is punctured by

A2 =
(

1 1 1 1 0 1
1 0 0 1

)

with irregular periods (p0, p1) = (6, 4), which requires the
same puncturing complexity as A1 since max(p0, p1) = p. The
resulting child code also has code rate 3/4 but surprisingly
achieves a larger free distance 4, which is the same as the
optimal free distance that general (4, 3) convolutional codes
with memory 4 can provide [6].

Recall the irregular puncturing table in (4). Repeating its
first row four times and the second row three times, we obtain
the following puncturing table with p = 12:(

1 0 1
0 1 1 1

)
⇒

(
1 0 1 1 0 1 1 0 1 1 0 1
0 1 1 1 0 1 1 1 0 1 1 1

)
. (6)

Suppose a (2,1) parent code is punctured by the above punc-
turing table; the consequent child code is equivalent to the
punctured code with the codeword matrix in (5). In general,
it can be shown that an irregular puncturing table A with
periods (p0, p1, · · · , pn−1) is equivalent to the conventional
puncturing table with a period of the least common multiple
of p0, p1, · · · , pn−1 (denoted by lcm(p0, p1, · · · , pn−1))
whose rows comprise copies of the corresponding rows of
A as in (6). Therefore, puncturing a parent code with small
irregular periods can achieve the same puncturing effect as the
conventional scheme with large periods, which also explains
why our design may perform better under the condition of
max(p0, p1, · · · , pn−1) ≤ p.

Besides, most of good RCPC codes in the literature are
provided with small periods (p ≤ 8) since a direct search of
the puncturing tables with large periods usually incurs huge
computational complexity far beyond what a practical system
can afford. However, a specially designed puncturing table
with irregular periods (8,7) can achieve similar puncturing
effect as the conventional scheme with a large period of 56
as observed above. Suppose a length-n parent code is to
be punctured in the conventional way with a large period
p. We can then search the puncturing tables with irregular
periods (p0, p1, · · · , pn−1) under the constraints that pi ≤ p ∀
0 ≤ i < n and lcm(p0, p1, · · · , pn−1) ≥ p instead, to reduce
the search complexity. Irregular puncturing thus provides a
feasible alternative for searching good high-rate punctured
codes which are originally obtainable by the conventional
puncturing with extremely large periods.

III. THE APPLICATION TO UEP

Consider W groups of source data Sl’s, each of the required
bit error rate (BER) Pb,l; assume Pb,1 ≥ Pb,2 ≥ · · · ≥ Pb,W

without loss of generality. To provide UEP for S l’s by irregular
puncturing, we first choose a proper parent code together
with puncturing tables A(l)’s of periods (p0, p1, · · · , pn−1)
to generate a family of children codes Ĉl’s, each of free
distance df (Ĉl) to satisfy Pb,l. (A(l)’s should also be care-
fully selected to avoid generating catastrophic encoders for
Ĉl’s.) A(l) is then switched for puncturing as S l is fed to the
encoder. In this way, Sl could be protected by Ĉl for all l,
thus fulfilling the desire for UEP.

To guarantee smooth transition between different rates, we
further demand A(l)’s to satisfy the following equivalent rate-
compatible criterion for irregular puncturing:

if au,v(i) = 1, then au,v(j) = 1,
∀ 0 ≤ u < n, 0 ≤ v < pu, 1 ≤ i < j ≤ W

(7)

where au,v(i) denotes the (u,v)th entry of A(i). Suppose
A(l) is switched for puncturing during the interval [ t̂l, t̃l]; we
also require cu,t to be processed according to the value of
au,t mod pu(l), instead of au,(t−t̂l) mod pu

(l), for all t̂l ≤ t ≤ t̃l.
Under the above restrictions, it implies that all the coded
bits of high-rate punctured codes are embedded in the lower
rate codes. Consequently, we have df (Ĉi) ≤ df (Ĉi+1) and
all codewords across the switching boundary between A(i)
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and A(j) will have a distance min(df (Ĉi), df (Ĉj)) at least,
∀ 1 ≤ i < j ≤ W . (Please refer to Appendix for the
detailed proofs.) Based on the rate-compatible criterion, some
RCPC codes with irregular puncturing tables which provide
with better performance than conventional punctured codes
are listed in Table I. Besides, the proof in Appendix can
be generalized to show that UEP performance can still be
guaranteed even if puncturing tables with single and irregular
periods are alternatively switched for puncturing. RCPC codes
searched previously [1]–[5] can hence be combined with our
results to provide better performance for UEP.

Moreover, in [2], Sl’s are suggested to be grouped into
super frames before encoding as the conventional multiplexing
scheme depicted in Fig. 1 (a). In this scheme, S l is followed
by Sl+1 to achieve the minimum loss of free distance, i.e.,
df (Ĉl+1) − df (Ĉl), for all 1 ≤ l < W ; extra (all-zero) tail
bits are inserted at the end of every super frame to avoid the
abrupt switching from A(W ) to A(1). However, as revealed
in Appendix, we can show that the distance between any two
codewords will still be lower bounded by df (Ĉl) no matter
the puncturing tables are switched from A(l) to A(l + 1)
or from A(l + 1) to A(l). Suppose Sl’s are multiplexed by
the new proposed scheme in Fig. 1 (b), where no tail bits
are required but Sl’s are multiplexed in a reverse order for
alternate super frames. Accordingly, the puncturing tables are
restricted to switch either from A(l) to A(l + 1) or from
A(l+1) to A(l) for all 1 ≤ l < W ; the same distance loss as
the conventional multiplexing scheme could be obtained even
without additional overheads. To verify the superiority of our
design, we further simulate both of the multiplexing schemes
for additive white Gaussian noise channels with binary phase-
shift keying modulation. As expected, the new scheme is
observed to provide almost the same UEP performance as the
conventional one from the BER curves in Fig. 2.

IV. CONCLUSION

In this paper, convolutional codes are studied for punctur-
ing with irregular periods. Compared with the conventional
puncturing, irregular puncturing not only can provide more
choices of code rates but also may attain better BER perfor-
mance under the same puncturing complexity. Since irregular
puncturing with small periods can achieve similar puncturing
effects as the conventional scenario with large periods, our
design also provides a practical alternative for searching
conventional puncturing tables with extra large puncturing
periods to construct good high-rate punctured convolutional
codes. In addition, we devise a new multiplexing scheme for
UEP which can minimize the possible performance loss during
the transition phase between puncturing tables but requires
no extra overheads. Not only for irregular puncturing, the
proposed multiplexing scheme is also applicable to all the
punctured systems with rate-compatibility.

APPENDIX

Consider a parent code C which is punctured by W punc-
turing tables A(l)’s satisfying the rate-compatible criterion

in (7) to generate a family of rate-compatible children codes
Ĉl’s, each of free distance df (Ĉl), ∀ 1 ≤ l ≤ W . In Section
III, the following distance properties of Ĉl’s for UEP are left
unproved:

1) df (Ĉl) ≤ df (Ĉl+1), ∀ 1 ≤ l < W .
2) All codewords across the switching boundaries between

A(l1), A(l2), · · · , A(lφ) with 1 ≤ l1 < l2 < · · · < lφ ≤
W will have a distance min1≤i≤φ df (Ĉli) at least, no
matter C is successively punctured by A(l1), A(l2),
· · · , A(lφ) or by A(lφ), A(lφ−1), · · · , A(l1).

We first give Theorem 1 for the case of W = 2 and then
extend the results to general case.

Theorem 1: † Consider an (n, k) parent code C. Given the
puncturing periods (p0, p1, · · · , pn−1), let A(1) = (au,v(1))
and A(2) = (au,v(2)) be two puncturing tables satisfying the
rate-compatible criterion, i.e., if au,v(1) = 1, then au,v(2) = 1
∀ u, v. Denote by c = (ci,t ∀ i, t) and c̃ = (c̃i,t ∀ i, t) two
codewords of C. Let dA(i)(c, c̃) be the Hamming distance
between c and c̃ after puncturing by A(i) for i=1,2. We have

min
c�=c̃∈C

dA(1)(c, c̃) ≤ min
c�=c̃∈C

dA(2)(c, c̃). (A-1)

Suppose we first puncture C by A(1) and switch the punctur-
ing table to A(2) later. Let dA(1)|A(2)(c, c̃) be the distance
between c and c̃ after puncturing. Then it implies that

min
c�=c̃∈C

dA(1)(c, c̃) ≤ min
c�=c̃∈C

dA(1)|A(2)(c, c̃). (A-2)

Moreover, even the order of puncturing is reversed, we also
have

min
c�=c̃∈C

dA(1)(c, c̃) ≤ min
c�=c̃∈C

dA(2)|A(1)(c, c̃). (A-3)

Proof:

Let e = (ei,t ∀ i, t) be the difference between c and c̃,
where ei,t = ci,t− c̃i,t for all i and t. Suppose C is punctured
by either A(1) or A(2); we have

dA(l)(c, c̃) =
∑

t

∑
i

ai,t mod pi(l) · 1(ei,t), ∀ l = 1, 2 (A-4)

where 1(x) is defined as the function with 1(x) = 1 if
x �= 0 and 1(x) = 0 if x = 0. Owing to the rate-compatible
restriction: au,v(2) − au,v(1) ≥ 0 ∀ u, v, it implies that

dA(2)(c, c̃) − dA(1)(c, c̃) =∑
t

∑
i (ai,t mod pi(2) − ai,t mod pi(1)) · 1(ei,t) ≥ 0

for all possible c and c̃, and hence

min
c�=c̃∈C

dA(1)(c, c̃) ≤ min
c�=c̃∈C

dA(2)(c, c̃).

Next, suppose C is first punctured by A(1) and the punc-
turing table is switched to A(2) at time t0. dA(1)|A(2)(c, c̃)
can then be expressed as∑
t<t0

∑
i

ai,t mod pi(1) ·1(ei,t)+
∑
t≥t0

∑
i

ai,t mod pi(2) ·1(ei,t).

(A-5)

†With a straight-forward extension, (A-1), (A-2), (A-3) can be shown to still
hold no matter whether A(1) and A(2) are with single or irregular puncturing
periods.
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By (A-4), (A-5), and the rate-compatible criterion, we have

d2
A(1)|A(2)(c, c̃) − d2

A(1)(c, c̃) =∑
t≥t0

∑
i (ai,t mod pi(2) − ai,t mod pi(1)) · 1(ei,t) ≥ 0

and thus

min
c�=c̃∈C

dA(1)(c, c̃) ≤ min
c�=c̃∈C

dA(1)|A(2)(c, c̃).

Finally, if we reverse the order of puncturing, i.e., A(2) is
initially employed and A(1) is adopted for puncturing after
t0, dA(2)|A(1)(c, c̃) can be expressed as
∑
t<t0

∑
i

ai,t mod pi(2) · 1(ei,t) +
∑
t≥t0

∑
i

ai,t mod pi(1) · 1(ei,t)

which infers that

dA(2)|A(1)(c, c̃) − dA(1)(c, c̃) =∑
t<t0

∑
i (ai,t mod pi(2) − ai,t mod pi(1)) · 1(ei,t) ≥ 0

and therefore

min
c�=c̃∈C

dA(1)(c, c̃) ≤ min
c�=c̃∈C

dA(2)|A(1)(c, c̃).

By (A-1) and the definition of

dmin(Ĉl) = min
c�=c̃∈C

d2
A(l)(c, c̃)

it implies that df (Ĉl) ≤ df (Ĉl+1), since A(l) and A(l + 1)
both satisfy the rate-compatible restriction for all l. In addition,
suppose C is successively punctured by A(l1), A(l2), · · · ,
A(lφ) with the rate-compatibility and 1 ≤ l1 < l2 < · · · <
lφ ≤ W . For two distinct codewords c and c̃ across the
boundaries between A(li)’s, by (A-2), we have

dA(l1)|A(l2)|···|A(lφ)(c, c̃)

≥ minc�=c̃∈C dA(l1)|A(l2)|···|A(lφ)(c, c̃)

≥ minc�=c̃∈C dA(l1)|A(l2)|···|A(lφ−1)(c, c̃)

≥ · · · ≥ minc�=c̃∈C dA(l1)|A(l2)(c, c̃)

≥ minc�=c̃∈C dA(l1)(c, c̃) = min1≤i≤φ df (Ĉli)

which infers that

dA(l1)|A(l2)|···|A(lφ)(c, c̃) ≥ min
1≤i≤φ

df (Ĉli).

Similarly, by (A-3), we can also obtain

dA(lφ)|A(lφ−1)|···|A(l1)(c, c̃) ≥ min
1≤i≤φ

df (Ĉli)

thereby completing the proof.
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Fig. 1. Multiplexing schemes of RCPC codes for UEP.
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Fig. 2. Average BER of source bits in a super frame for different multiplexing
schemes at signal-to-noise ratio 4.5 dB, where four groups of data S1, S2,
S3, S4 (each containing 8 bits per super frame) are protected by the code
family of parent code [23, 35] with (p0, p1) = (3, 4) in Table I.
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TABLE I

GOOD RATE-COMPATIBLE PUNCTURED CODES WITH IRREGULAR

PUNCTURING PERIODS (G(D), df (C), rp : GENERATOR MATRIX (IN

OCTAL), FREE DISTANCE, AND CODE RATE OF THE PARENT CODE,

(p0, p1): PUNCTURING PERIODS, A: PUNCTURING TABLE, df (Ĉ), rc :

FREE DISTANCE AND CODE RATE OF THE CHILD CODE)

G(D) = [5 7], df (C) = 5, rp = 1/2

(p0, p1) A df (Ĉ) rc

(3, 4)

(
1 1 0
1 1 1 1

)
4 3

5(
1 1 0
1 1 1 0

)
3 12

17(
1 1 0
1 0 1 0

)
2 6

7

(a) Parent code of code rate 1/2 and memory 2

G(D) = [15 17], df (C) = 6, rp = 1/2

(p0, p1) A df (Ĉ) rc

(3, 4)

(
1 1 0
1 1 1 1

)
4 3

5(
1 1 0
1 1 1 0

)
3 12

17(
1 1 0
1 0 1 0

)
2 6

7

(7, 6)

(
1 1 1 1 1 1 1
1 0 1 1 1 1

)
5 6

11(
0 1 1 1 1 1 1
1 0 1 1 1 1

)
4 42

71(
0 1 1 1 1 1 1
1 0 1 0 1 1

)
3 42

65(
0 1 1 1 1 1 1
1 0 1 0 1 0

)
2 42

59(
0 1 0 1 1 1 1
1 0 1 0 1 0

)
2 42

52

(b) Parent code of code rate 1/2 and memory 3

G(D) = [23 35], df (C) = 7, rp = 1/2

(p0, p1) A df (Ĉ) rc

(3, 4)

(
1 1 0
1 1 1 1

)
5 3

5(
1 1 0
1 1 1 0

)
4 12

17(
1 1 0
1 0 1 0

)
3 6

7

(5, 4)

(
0 1 1 1 1
1 1 1 1

)
6 5

9(
0 1 1 1 0
1 1 1 1

)
5 5

8(
0 1 1 0 0
1 1 1 1

)
4 5

7(
0 1 1 0 0
1 0 1 1

)
3 20

23

(6, 7)

(
1 0 1 1 1 1
1 1 1 1 1 1 1

)
6 6

11(
1 0 1 0 1 1
1 1 1 1 1 1 1

)
5 3

5(
1 0 1 0 1 1
0 1 1 1 1 1 1

)
4 21

32(
1 0 1 0 1 1
0 1 0 1 1 1 1

)
3 21

29

(p0, p1) A df (Ĉ) rc

(6, 7)

(
1 0 1 0 1 0
0 1 0 1 1 1 1

)
3 14

17(
1 0 1 0 1 0
0 1 0 0 1 1 1

)
2 14

15

(c) Parent code of code rate 1/2 and memory 4

G(D) = [53 75], df (C) = 8, rp = 1/2

(p0, p1) A df (Ĉ) rc

(4, 5)

(
1 1 1 0
1 1 1 1 1

)
6 4

7(
1 0 1 0
1 1 1 1 1

)
6 2

3(
1 0 0 0
1 1 1 1 1

)
4 4

5(
1 0 0 0
1 1 1 1 0

)
3 20

21

(5, 4)

(
0 1 1 1 1
1 1 1 1

)
7 5

9(
0 1 0 1 1
1 1 1 1

)
6 5

8(
0 0 0 1 1
1 1 1 1

)
5 5

7(
0 0 0 1 1
1 0 1 1

)
3 20

23

(7, 6)

(
1 1 1 1 1 1 1
1 1 1 0 1 1

)
6 6

11(
1 1 1 1 1 1 1
1 0 1 0 1 1

)
6 3

5(
1 1 1 1 1 1 1
1 0 1 0 1 0

)
6 2

3(
0 1 1 1 1 1 1
1 0 1 0 1 0

)
4 3

4(
0 1 0 1 1 1 1
1 0 1 0 1 0

)
3 14

17(
0 1 0 1 0 1 1
1 0 1 0 1 0

)
2 14

15

(d) Parent code of code rate 1/2 and memory 5

G(D) = [133 171], df (C) = 10, rp = 1/2

(p0, p1) A df (Ĉ) rc

(5, 4)

(
1 1 1 1 0
1 1 1 1

)
8 5

9(
0 1 1 1 0
1 1 1 1

)
6 5

8(
0 0 1 1 0
1 1 1 1

)
6 5

7(
0 0 1 1 0
1 1 1 0

)
4 20

23

(7, 6)

(
1 0 1 1 1 1 1
1 1 1 1 1 1

)
8 7

13(
1 0 1 1 1 1 0
1 1 1 1 1 1

)
7 7

12(
1 0 1 1 0 1 0
1 1 1 1 1 1

)
6 7

11(
1 0 1 1 0 0 0
1 1 1 1 1 1

)
5 7

10(
1 0 0 1 0 0 0
1 1 1 1 1 1

)
4 7

9(
1 0 0 0 0 0 0
1 1 1 1 1 1

)
3 7

8

(e) Parent code of code rate 1/2 and memory 6
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