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Abstract 

By using connections between superdiffusions and partial differential equations (established 
recently by Dynkin, 1991), we study the structure of the set of all positive (bounded or un- 
bounded) solutions for a class of nonlinear elliptic equations. We obtain a complete classification 
of all bounded solutions. Under more restrictive assumptions, we prove the uniqueness property 
of unbounded solutions, which was observed earlier by Cheng and Ni (1992). 
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1. Introduction 

Throughout this paper we consider positive solutions of  the following nonlinear 

differential equation : 

Lu(x) = k(x)u~(x), x E •d, (1) 

where 1 < ct~<2, k is a bounded strictly positive continuous function on R d satisfying 
condition (6) below, and L is a differential operator in R d of  the form 

d O ~ 

L = E a,J ~xi Oxj + ~i bi OX i (2) 
i,j=l 

such that it satisfies the following: 

(1.a) The functions aij = aji and bi are bounded smooth functions in R d. 
(1.b) There exists a constant c > 0 such that 

d 

i j= 1 

for all x E ~" and all Ul,U2 . . . . .  u d. 

* Email: sheu@math.nctu.edu.tw. 

0304-4149/95/$9.50 (~ 1995 Elsevier Science B.V. All rights reserved 
SSD1 0 3 0 4 - 4 1 4 9 ( 9 5 ) 0 0 0 3 0 - 5  



44 Y.-C. SheulStochastic Processes and their Applications 59 (1995) 43-53 

If  k - 0, then Eq. (1) becomes a linear equation and it can be studied probabilis- 
tically by using paths of  a diffusion ~ = (~t,l-Ix) with the generator L. By using the 
superdiffusion X = (Xt,X~, Pu) with parameters (L, ~b), where ~k(x, z) = k(x)z  ~, we shall 
investigate the structure of  the set of  all positive solutions of  Eq. (1). 

I f  L corresponds to a recurrent diffusion, then there is no nontrivial bounded position 
solution to (1). ( The following argument is provided by an anonymous referee. Assume 

u is such a solution and choose x0 E R d and a ball B such that u(xo) > SUpyeBU(y). 

By Ito's formula, IIxou(~t^~B)>~u(xo), where zB --- inf{t~>0, ~t E B}. By recurrence, 

Ilxo[ZB < c~] ---- 1. Thus letting t ~ o¢ gives u(xo) > HxoU(~B)>>.u(xo), a contradic- 
tion.) Therefore, we assume further that L corresponds to a transient diffusion. 

The superdiffusion X = (Xt ,X~,P, )  is a branching measure-valued Markov process 
describing the evolution of a random cloud. It can be obtained as a limit of  branching 

particle systems by speeding up the branching rate, decreasing the mass of  particles, 

and increasing the number of  particles. For every t > 0, the random measure Xt is 
a limit of  mass distribution of branching particle systems X # at time t, as fl ~ 0. 
For every z, the first exit time of ~ from a domain D C ~d, the corresponding random 
measure X~ can be obtained as a limit, as fl ~ 0, of  the mass distribution of the 
particle systems X p at the first exit time from D (see Section 2 for more detail). Let 

zn be the first exit time of  ~ from the Euclidean ball of  radius n, centered at 0 and 
let H stand for the set of  all bounded positive functions h on R d with Lh(x)  = 0 for 
all x E R d. Denote by (f,/~) the integral of  f with respect to p. We write P Y  for the 

expected value of  a random variable Y on a probability space ( f2 ,~- ,~) .  We obtain 
the following in Section 3. 

Theorem I. (a) I f  h E H, then Zh = limn--.oo(h,X~,) exists a.s. (which means Pu-a.s. 

f o r  all #)  and the funct ion 

vh(x) = - l o g &  exp{--Zh} 

is the unique positive solution o f  (1) with u = h at oc. ( I f  u and v are two funct ions 

on R d, we write u = v at c~ i f  u(x ) - v(x ) --~ 0 as Ilxll ~ ~ . )  

(b) I f  u is a bounded solution o f ( I ) ,  then u = vh fo r  some h E H. 

Therefore we characterize all bounded solutions of  (1). (A similar result was estab- 
lished earlier by Cheng and Ni (1992) under more restrictive assumptions.) 

Denote by E the set of  all unbounded solutions u(x) of  (1) with u(x) ~ oo as 

IIxll ~ e~. The following theorem implies that E is not empty. 

Theorem II. (a) The funct ion 

l ( x )  --- - log Prx[Xr, = 0 f o r  n sufficiently large ], 

is the largest element o f  E. 
(b) The funct ion 

J ( x ) - - - - l o g P a x [ X ~ ,  ~ O a s n ~ o o  ], x E ~ d  

x E  R d 

is the smallest element o f  E. 
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We will prove Theorem II in Section 4, and give equivalence conditions in Theorem 

4.2, for the uniqueness of unbounded solutions u of  (1) with u ( x ) ~  oo as Ilxll ~ o~. 
As an application of Theorem 4.2, we give an alternative probabilistic proof of Cheng 
and Ni's result (el. Cheng and Ni, 1992, Theorem II): 

Theorem III. I f  L = A, where A = ~a=l O~ Ox---7, and k(x)  ,- Ilxll - t ,  l > 2,  a s  Ilxll ~ o~,  

then there is only one unbounded solution u o f ( I )  with u(x) ~ oo, as IIxH ~ o~. 
(Writing u ~ v as Ilxll ~ oo means there exist two constants cl,c2 > 0 such that 

cl v(x ) <<, u(x ) <<. c2v(x ) for  x sufficiently large. ) 

In Section 5, as an application of Theorem III, we evaluate the probability for the 
range 9t of X to be compact. 

In this paper c always denotes a constant and it may have different values in different 
lines. The notation Bn stands for the open ball with radius n, centered at 0. 

2. Preliminaries 

2.1 Let L be a differential operator in R d of  the form (2) satisfying conditions (1.a) 
and (1.b). Then there exists a Markov process ~ = (~t, l lx)  in R d with continuous 
paths such that for every bounded continuous function f on R d, 

ut(x) = Hx f (~ t )  

is the unique solution of the equation 

~u 
- -  ---- L u  

~t 

with the property ut(x) ~ f ( x )  as t ~ 0 (see, e.g. Stroock and Varadhan, 1979). 
We call ~ the diffusion with the generator L. 

2.2 Denote by 9~ the Borel a-algebra in •d and by M the set of all finite measures on 
~ .  Write ~¢ for the a-algebra in M generated by the functions fs(/~) = I~(B),B E ~ .  
For every positive bounded Borel function k(x) in R d and 1 < ~<2 ,  there exists 
a Markov process X = (Xt,Pu) in (M,~t') such that the following conditions are 
satisfied. 

(2.2.a) If f is a bounded continuous function, then ( f ,  Xt) is right continuous in t 
on ~+. 

(2.2.b) For every # C M and for every positive bounded Borel function f ,  

P~ e x p { - ( f ,  Xt)} = exp{-(vt ,#)},  

where v is the unique solution of  the integral equation 

vt(x) + llx [fotk(~s)Vt_s(~s)ds] = / / ~ f ( , , ) .  
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Moreover, to every D E 9~, there corresponds a random measure X~ on (~d, 9~) asso- 
ciated with the first exit time z = inf{t, it ¢~ D} from D by the formula 

Pu exp{-(f,X~)} = exp{-(v, p), } (3) 

where v satisfies the integral equation 

[/0 ] v(x) + IIx k(¢s)V~(~s)ds = H x f ( ~ ) .  (4) 

(See Dawson (1993) or Dynkin (1994).) Note that for every p E M with supp(p)C D, 
X~ concentrates on dD, P~,-a.s. 

We call X = (Xt,X~,P~) the superdiffusion with parameters (L,~), where ~ ( x , z ) =  
k(x)z c'. We explain the heuristic meaning of Xt and X~ in terms of branching particle 
systems. Consider a system of particles which undergo random motion and branching 
on R a according to the following rules. 

a. Particles are distributed at time 0 according to the Poisson point process with 
intensity # E M. 

h. Each particle survives with probability exp{ - fo  k(~s)ds} at time t. 
e. At the end of its lifetime, a dying particle gives birth to n offsprings at its own 

site, with probability Pn, where if 1 < c¢ < 2, 

{ i  ( ( : )  i f n = l  , 
Pn = -1)n  i f n ¢  1, 

1 and i f ~ - - 2 ,  P 2 = p 0 = i .  
d. During its lifetime, the motion of each particle is governed by the process 4. 
e. All particle lifetimes, motions, and branching are independent of one another. 
The historical path Hf  of a particle consists of its own trajectory and the trajectories 

of all its ancestors. If  each particle has mass r ,  then 

Xt~(B) = fl E 1B(Hta) 
a 

is the mass distribution at time t. (The sum is taken over all particles which are alive 
at time t.) Set 

X~(B) : fl E IB(H~.), 
a 

where za = inf{t, Hf  ¢~ D}. (Here we identify particles a and b if Z a = T b and H a = H b 
for all s ~ Za.) If k# = ~ and p/~ = ~, then Xt ~ and Xfl converge weakly to Xt and 

X~ as fl ~ 0. Let z be the first exit time of ~ from a domain D C Na. A boundary 
point y of D is called regular if lly[z = 0] = 1. We quote two theorems from Dynkin 
(1991). 

Theorem 2.1. Let D be a bounded domain in R a. For every positive bounded Borel 
function f on dD, the function 

v(x) = - l o g  P~, exp{-(f,X~)} 
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satisfies the equation 

Lv(x ) = k(x )v~(x ) (5) 

for x • D. Moreover i f  D is reoular and i f  f is continuous, then v = f on dD. (We 
write v = f on K C OD if  for every y • K, limx~O,x-.y V(x) = f ( y ) .  ) 

Theorem 2.2. Let D be an arbitrary domain in R a. Choose a sequence of bounded 
regular domains {Dn}n with Dn T D and let Zn be the first exit time of ~ from D,. 
I f  u is a solution of (5) in D, then Z~ = l i m , ~ ( u , X ~ . )  exists a.s. and u(x) = 
- log Pax exp{-Zu} for all x • D. 

3. Bounded solutions of L u  = k u  ~ 

Throughout this paper we consider a strictly positive bounded continuous function 
k(x) on R a satisfying the condition : 

l i m r - ~  SUpx~Ra f 9(x, y )k (y )  dy = 0, (6) 
JII yJl>r 

where 9(x, y)  is the Green function of the operator L on R a. 

Example 1. If k(x)<~h(llxll) for x sufficiently large, and f o~ sh(s)ds < e~ for some 
a > 0, then k satisfies condition (6) for L = A and d = 3. 

Proof. It follows from Eq. (13.74) in Dynkin (1965) that g(x,y)<~cllx-yl[ 2-d for all 
x ,y  • R d. Our conclusion follows from Zhao (1993, Propositions 1 and 2). [] 

As before, Zn stands for the first exit time of the diffusion ~ from the domain Bn and 
X = (Xt,X~,Pu) is the superdiffusion with parameters (L, qJ), where ~k(x,z) = k(x)z ~. 
Put Zh,, = (h,X~,) if  h • H. 

Lemma 3.1. For every ~ • M and h • H, P~-a.s., Zh = lim,~o~ Zh,, exists and 
Zh < 00. 

Proof. Let ~ ,  
and Eqs. (3) and (4), 

Pu[exp{-Zh,.}l~m] = Px,. exp{-Zh, n} = exp{-(wn,Xr.)  }, 

where Wn satisfies the equation 

w.(x) + nx  w~(G)k(G)ds  = h(x), x • 8 . .  

Clearly wn(x)<~h(x) and we have, by (7), 

= a{X, k, 1 <<.k<<.n}. If m < n, then, by the strong Markov property 

(7) 

P~[exp{--Zh,.}l~m] >1 exp{--Zh, m}. 
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Therefore, (exp{-Zh, n} ,~n,Pu) is a bounded submartingale and Zh = l i m n ~ Z h ,  n 
exists Pu-a.s. 

It follows from (3) and (4) that PuZh,~ = l I ,  h ( ~ , ) =  (h,l~). By Fatou's  lemma, 

PuZ <~ liminf,~o~P~Zh, n = (h,t~) < cx~, 

which implies that Zh < c~,Pu-a.s. [] 

We will write Z for Zh i f  h(x) = 1 for all x E •d. 

Theorem 3.2. For every h E H, the function 

vh(x) = - log P~x exp{-Zh} ,  x E ~a, 

is the unique solution o f  (1) with vh = h at e~. Moreover vh satisfies the integral 
equation 

v(x) + fna O(x' Y)k(y)v~(Y) dy = h(x) (8) 

in ~u. 

Proof.  Set Vh,,(x) = -- log P,~x exp{--Zh, n}, x E Bn. It follows from Eqs. (3) and (4) 
that vh,~ satisfies the equation 

Vh, n(X) + ~_ 9n(X, y)k(y)v~m(y)dy =-- h(x), x E Bn, (9) 
d I S  n 

where 9n(X,Y) is the Green 's  function of  L on B,. Set 9n(x,y) = 0 i f x  ~ Bn or y f[ Bn, 
and put vh,~(x) = h(x) i f  x ~/B,.  Then equation (9) becomes 

+ fu~ 9n(X'y)k(y)V~'n(Y)dY = h(x), Vx E R d. (10) Vh, n(X) 

Note that gn(X,y) T g(x ,y )  as n ~ cx~, and, by Lemma 3.1, Vh(X) = lim,~oovh, n(x) 
for all x E ~d. Therefore, for every x E R d, 

gn(x, y)vh,,(y) ~ g(x, y)v~,(y) as n --* cx~. 

Since vh,,(y)~<[Ihll ,  we have vh(y)<~llhll and so 

g~(x, y)v~,~(y)k(y) <~ cg(x, y)k(y).  

For every x E ~a, condition (6) implies that 9(x, y )k(y)  is integrable. Letting n --~ 
in (10), the dominated convergence theorem implies that vh satisfies Eq. (8). 

For n > m, both the functions Vh, n and - log Pa~ exp{--(vh~,XT.)} are solutions of  
(5) in Bin, and they have the same boundary values o n  OB m. The maximum principle 
(see, e.g. Dynkin (1991, Theorem 0.5)) implies that 

vhm(x) = - log P6~ exp{-(Vh,n,X~,)}, x E Bin. 
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Letting n ---, oo, we get oh(x) = -- log P6~ exp{--(vh,X~,)} in Bin. Theorem 2.1 implies 

that vh is a solution o f  (5). To check Vh = h at c~, it suffices, by (8), to show that 

faa g (x , y )k (y )dy  ---, 0 as Ilxll ~ ~ .  w r i t e  

fn~ O(x, y )k (y )  dy = A(x, r) + B(x, r), ( 11 ) 

where 

£ 
A(x,r) = / 9 (x , y )k (y )dy  

JII yll<~r 

and 

/ -  
B(x, r) = ] 9(x, y )k (y )  dy. 

JII yll>~r 

Since k is bounded and g(x,y) --~ 0 as Ilx - y l l  ~ c~ ,  for every r > 0, A(x,r) goes 

to  0 as Ilxll ~ oo. Clearly condition (6) implies that SUPxeR~B(x,r ) ~ 0 as r ---, c~. 

Let t ing  Ilxll ~ ~ and then r ---, c~ in (11), we observe that f g ( x , y ) k ( y ) d y  ~ 0 as 

Let u be a solution o f ( l )  with u = h at c~. Since Z < oo and u = h at oo, 

(u,X~,) ---* Zh. By Theorem 2.2, u(x) = - log P~  exp{-Zh} -- vh(x). [] 

Remark.  (a) I f  L = A and k is radial, then Vc, n is radial for every constant function 

h = c a n d s o  is Vc. 
(b) Under the same assumptions on k(x) as in Example 1, Kawano (1984) and 

Cheng and Ni (1992) obtained similar results for L = A. By using Brownian path 

integration and potential theory, Zhao (1993) studied related problems for L = A. 

Theorem 3.3. I f  u is a bounded solution of  (1), then v = h at co for some h E H 
and v(x) = Vh(X). 

Proof. Note that if  u satisfies Eq. (8) for some h E H,  our conclusions follow from the 

same arguments as in the proof  o f  Theorem 3.2. Since u(x) = - l o g P ~  x exp{-(u,X~,)}, 
(3) and (4) imply that u satisfies the equation 

u(x) + ~ gn(x,y)k(y)u~(y)dy = hn(x), x E nn, (12) 
n 

w h e r e  hn(x) = IIx[u(~,)]. C l e a r l y  Lhn = 0 and hn(x) =/-/xu(¢~n)~llull for all n. By 
passing n to the limit in (12), h(x) = limn--.~ hn(x) exists for all x E R d. Therefore, 
h is bounded and Lh = 0 in R a. By passing to the limit in (12) again, u satisfies 

Eq. (8). [] 

Remark. The special case o f  Theorem 3.2, where L = A and k satisfies the conditions 
in Example 1, was observed earlier by Cheng and Ni (1992). 
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4. Unbounded solutions of  L u  = k u  ~' 

Lemma 4.1. (a) Let  B = {x; [ I x -  x°ll < R} and 

u(x) = 2(R 2 - r 2) ,-g-' 

where 2 is a positive constant and r = [Ix - xol[. We have 

lim u(x) = c~ 
x---~a, xEB 

f o r  all a E OB, and 

Lu - ku~ ~ O in B 

~ a~  
f o r  some 2 dependin9 only on ~, the dimension d and the upper bounds fo r  aij = --  

k 

and [~i = ~ in B. 

(b) I f  B c D  f o r  some open set D, and v is a solution o f ( 5 )  in D, then v ~ u  in B. 

Proof.  (a) is quoted from Dynkin (1991, Lemma 3.1) and (b) follows easily from the 

maximum principle. [] 

Proof  of  Theorem II .  (a) For x E B n and m > 0, set In, m(X) = - logP6~ exp{-mZI,n}.  

Theorem 2.1 implies that In, m satisfies (5) in Bn and In, m = m on 0Bn. By the maximum 

principle, In, m is increasing in m. Therefore, for every x E Bn, 

In(x) = limm~o~ ln, m(X ) 

exists. Clearly In(x) = - logP6x[Zl ,n  -- 0] and In = ~ on OBn. Let B be an arbitrary 

bounded open ball and let ~ be the first exit time of  ~ from B. I f /~ C Bn for some n, 
Theorem 2.1 and the maximum principle imply that 

~ , m ( X ) = - l o g P 6 ~  exp{-(~,m,X~)},  x E B. (13) 

Note that, by Lemma 4.1, [~ ,m[~c in B, for all m. Leaing m go to c~ in (13), we 

have 

In(x) = - l o g  P~x exp{- ( In ,X~)} .  (14) 

Clearly l ( x )  = limn--.ooln(x) and, letting n ~ c~ in (14), we observe I ( x )  = - 

log Prx exp{-(I ,X~)}.  By Theorem 2.1, I satisfies Eq. (1). 

Assume u is a solution o f  (1). Since In = cx~ on c3B,, the maximum principle implies 

that u ~< In in Bn and so u ~< I.  
(b) Write Vc for vh in Theorem 3.2 if  h is a constant function c. Clearly Vc(X) T J ( x )  

as c T ~ and J ( x )  ~ o0 as IIxll - - '  oo. Since vc(x) -- - log t'61 exp{- (Vc ,X~, )}  in Bn, 
we have J ( x )  = - log Prx exp{-(J ,X~,)}  in Bn. By Lemma 4.1, J is bounded on aBn, 
and so Theorem 2.1 implies that J is a solution o f  (1). 
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Assume u E E. For every c > O, (u,X~.)>~cZl,n for sufficiently large n. For any 

c > O ,  

u(x)  = l i m n ~  - l o g  P~x exp{- (u ,X~, )}  

~> limn~o~ - log P6~ exp{-cZl ,n}  = v~(x). 

Letting e T oo, u (x )>~J(x)  for all x E R a. Therefore J is the minimal element in 
E. [] 

Remark. (a) Assume L = A and k is radial. Then both Into and In are radial. Therefore 
I is radial. Clearly J is radial. 

(b)  Let kl ,k2 be two bounded strictly positive continuous functions on R d which 

both satisfy condition (6). Assume further that kl(x)<<.k2(x) for all x. For s = 1,2, let 

Is, nan,Is, and Js denote In, m,1, and J respectively, with k replaced by ks. For x E Bn, 
we have 

: - ~ >~ - k2I~,n, m" L12,n,m - k2I~,n,m : 0 LIl,n,m klll,n, m ~-Llkn, m 

The Maximum principle implies that Iz, n,m<<.Ii,n,m on Bn. Therefore 12<<.11. Similar 
arguments imply that J2 ~<J1. 

Denote by IEI the cardinality of  E. By Theorem II, IEI >/1. 

Theorem 4.2. The fo l lowing  three s ta tements  are equivalent. 

(a) IEI-- 1. 
(b) For every measure  p E M with compact  support,  we have 

Pu[Zl,n --* O] = Pu[Z1,n = 0 f o r  sufficiently large n ]. 

(c) There  exis ts  a constant  c such that 

I ( x ) < , c J ( x )  f o r  x sufficiently large, 

where I and  J are func t ions  in Theorem II. 

Proof .  Note that for every # E M with compact support, we have 

Pu[Z = O] = e x p { - ( J , # ) }  

and 

Pu[Zl,n = 0 for sufficiently large n ] =  e x p { -  (/, #) }. 

Therefore (a) and (b)  are equivalent. Clearly (b) implies (c). Assume that (c) holds. 
To prove (a), it suffices to show that I = J .  Fix x E R a. By Theorem 2.2, both 
ZI = limn~o~(/,X~,) and Zj  = limn--.~(I,X~,) exist Px-a.s. Since I ( x )  ~ c~ and 
J ( x )  ~ c~, ZI = J j  = cx~ on {Z > 0}. Combining with Theorem 2.2, we have 

- l o g  P6x[Z = O] = J ( x )  = - l o g  P6, e x p { - Z j }  

= - l o g  P r ~ [ e x p { - Z j } , Z  = 01 
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Therefore Zj = 0 on {Z = 0}Px-a.s. By assumption, we have (I,X~,) <<.c(J,X~,) for n 

sufficiently large, which implies that Zt = 0 on {Z = 0}, Px-a.s. Therefore 

I(x) = - log P6~ e x p { -  ZI} 

= - l o g  P6x[exp{-Zl},Z = 0] 

-- - log P6x[Z = O] = J(x). [] 

I f  L = A and if  k is radial with k(x) = clxl -t ,  l > 2, for large x, then the first part o f  

Theorem 4.3 o f  Cheng and Ni (1992), implies that for every radial solution u o f  (1), 
I - -2  

we have u(x) ~ Ixl 7~-~ as Hxll ~ c~. By using this observation and Theorem 4.2, we 

prove Theorem III. 

P roo f  of  Theorem I IL  By assumption, there exist two constants el, c:  and two radial 

functions k~ and k2 with kl(x) = Ix] - l  = k2(x) for x sufficiently large and 

clkl(x)<~k(x)<~c2kz(x) for all x E R a. 

For s = 1,2, let Is,Js denote I and J respectively with k replaced by Gks. By Remark 

(b) following the proof of  Theorem II, we have, for all x, 

Iz(x) <~I(x) <~II (x) 

and 

J2(x) <~J(x) <~Jl (x). 

/ - -2  --2 

Since Is(x) ~ Ixl ~-'  and J~(x)  ~ Ix ,---~,s = 1 ,2 ,  as  Ilxll ~ c~ ,  we get 

I(x) .< I i (x)  ~<c 
J(x)  "~" J2(x) 

for x sufficiently large. Our result follows from Theorem 4.2. [] 

Remark.  In general we do not know if condition (6) is a sufficient condition for 

l e l - -  1. 

5. A p p l i c a t i o n  

The range ~ o f  the superdiffusion X is the smallest closed subset o f  R d such that 

contains supports of  Xt for all t~>0. For constant k, Iscoe (1986) proved that ~ is 

compact a.s. for L = A and Dynkin (1991) observed this for general L. 

T h e o r e m  5.1. I f  L = A and k(x) ,,~ Ixl -z, l > 2, as Ilxl[ ~ ~ ,  then for every # c M 
with compact support, 

P~[ g8 is compact] = e x p { - ( / , p / } ,  

where 1 is the unique unbounded solution of  (1). 
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Proof. If/~ E M has compact support, we have, P~-a.s., 

{:~ is compact} = U{Z,,n = 0}. 
n = l  

(See Dynkin, 1991). Our statement follows from Theorem II and Theorem III. [] 
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