

stochastic processes and their applications

Stochastic Processes and their Applications 59 (1995) 43-53

On positive solutions of some nonlinear differential equations – A probabilistic approach

Yuan-Chung Sheu*

Department of Applied Mathematics, National Chiao-Tung University, Hsinchu, Taiwan

Received September 1994; revised March 1995

Abstract

By using connections between superdiffusions and partial differential equations (established recently by Dynkin, 1991), we study the structure of the set of all positive (bounded or unbounded) solutions for a class of nonlinear elliptic equations. We obtain a complete classification of all bounded solutions. Under more restrictive assumptions, we prove the uniqueness property of unbounded solutions, which was observed earlier by Cheng and Ni (1992).

Keywords: Branching particle systems; Measure-valued processes; Nonlinear elliptic equation; Range; Superdiffusions.

1. Introduction

Throughout this paper we consider positive solutions of the following nonlinear differential equation :

$$Lu(x) = k(x)u^{\alpha}(x), \quad x \in \mathbb{R}^d,$$
(1)

where $1 < \alpha \leq 2, k$ is a bounded strictly positive continuous function on \mathbb{R}^d satisfying condition (6) below, and L is a differential operator in \mathbb{R}^d of the form

$$L = \sum_{i,j=1}^{d} a_{ij} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} + \sum_i b_i \frac{\partial}{\partial x_i}$$
(2)

such that it satisfies the following:

(1.a) The functions $a_{ij} = a_{ji}$ and b_i are bounded smooth functions in \mathbb{R}^d .

(1.b) There exists a constant c > 0 such that

$$\sum_{i,j=1}^d a_{ij}(x)u_iu_j \ge c \sum u_i^2$$

for all $x \in \mathbb{R}^n$ and all $u_1, u_2, ..., u_d$.

0304-4149/95/\$9.50 © 1995 Elsevier Science B.V. All rights reserved SSDI 0304-4149(95)00030-5

^{*} Email: sheu@math.nctu.edu.tw.

If $k \equiv 0$, then Eq. (1) becomes a linear equation and it can be studied probabilistically by using paths of a diffusion $\xi = (\xi_t, \Pi_x)$ with the generator L. By using the superdiffusion $X = (X_t, X_\tau, P_\mu)$ with parameters (L, ψ) , where $\psi(x, z) = k(x)z^{\alpha}$, we shall investigate the structure of the set of all positive solutions of Eq. (1).

If L corresponds to a recurrent diffusion, then there is no nontrivial bounded position solution to (1). (The following argument is provided by an anonymous referee. Assume u is such a solution and choose $x_0 \in \mathbb{R}^d$ and a ball B such that $u(x_0) > \sup_{y \in B} u(y)$. By Ito's formula, $\prod_{x_0} u(\xi_{t \wedge \tau_B}) \ge u(x_0)$, where $\tau_B = \inf\{t \ge 0, \xi_t \in B\}$. By recurrence, $\prod_{x_0}[\tau_B < \infty] = 1$. Thus letting $t \to \infty$ gives $u(x_0) > \prod_{x_0} u(\xi_{\tau_B}) \ge u(x_0)$, a contradiction.) Therefore, we assume further that L corresponds to a transient diffusion.

The superdiffusion $X = (X_t, X_\tau, P_\mu)$ is a branching measure-valued Markov process describing the evolution of a random cloud. It can be obtained as a limit of branching particle systems by speeding up the branching rate, decreasing the mass of particles, and increasing the number of particles. For every t > 0, the random measure X_t is a limit of mass distribution of branching particle systems X^β at time t, as $\beta \to 0$. For every τ , the first exit time of ξ from a domain $D \subset \mathbb{R}^d$, the corresponding random measure X_τ can be obtained as a limit, as $\beta \to 0$, of the mass distribution of the particle systems X^β at the first exit time from D (see Section 2 for more detail). Let τ_n be the first exit time of ξ from the Euclidean ball of radius n, centered at 0 and let H stand for the set of all bounded positive functions h on \mathbb{R}^d with Lh(x) = 0 for all $x \in \mathbb{R}^d$. Denote by $\langle f, \mu \rangle$ the integral of f with respect to μ . We write PY for the expected value of a random variable Y on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$. We obtain the following in Section 3.

Theorem I. (a) If $h \in H$, then $Z_h = \lim_{n \to \infty} \langle h, X_{\tau_n} \rangle$ exists a.s. (which means P_{μ} -a.s. for all μ) and the function

$$v_h(x) = -\log P_{\delta_x} \exp\{-Z_h\}$$

is the unique positive solution of (1) with u = h at ∞ . (If u and v are two functions on \mathbb{R}^d , we write u = v at ∞ if $u(x) - v(x) \to 0$ as $||x|| \to \infty$.)

(b) If u is a bounded solution of (1), then $u = v_h$ for some $h \in H$.

Therefore we characterize all bounded solutions of (1). (A similar result was established earlier by Cheng and Ni (1992) under more restrictive assumptions.)

Denote by E the set of all unbounded solutions u(x) of (1) with $u(x) \to \infty$ as $||x|| \to \infty$. The following theorem implies that E is not empty.

Theorem II. (a) The function

 $I(x) = -\log P_{\delta_x}[X_{\tau_n} = 0 \text{ for } n \text{ sufficiently large }], x \in \mathbb{R}^d$

is the largest element of E.

(b) The function

 $J(x) = -\log P_{\delta_x}[X_{\tau_n} \to 0 \text{ as } n \to \infty], \quad x \in \mathbb{R}^d$

is the smallest element of E.

We will prove Theorem II in Section 4, and give equivalence conditions in Theorem 4.2, for the uniqueness of unbounded solutions u of (1) with $u(x) \to \infty$ as $||x|| \to \infty$. As an application of Theorem 4.2, we give an alternative probabilistic proof of Cheng and Ni's result (cf. Cheng and Ni, 1992, Theorem II):

Theorem III. If $L = \Delta$, where $\Delta = \sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2}$, and $k(x) \sim ||x||^{-l}$, l > 2, as $||x|| \to \infty$, then there is only one unbounded solution u of (1) with $u(x) \to \infty$, as $||x|| \to \infty$.

(Writing $u \sim v$ as $||x|| \to \infty$ means there exist two constants $c_1, c_2 > 0$ such that $c_1v(x) \leq u(x) \leq c_2v(x)$ for x sufficiently large.)

In Section 5, as an application of Theorem III, we evaluate the probability for the range \mathcal{R} of X to be compact.

In this paper c always denotes a constant and it may have different values in different lines. The notation B_n stands for the open ball with radius n, centered at 0.

2. Preliminaries

2.1 Let L be a differential operator in \mathbb{R}^d of the form (2) satisfying conditions (1.a) and (1.b). Then there exists a Markov process $\xi = (\xi_i, \Pi_x)$ in \mathbb{R}^d with continuous paths such that for every bounded continuous function f on \mathbb{R}^d ,

$$u_t(x) = \prod_x f(\xi_t)$$

is the unique solution of the equation

$$\frac{\partial u}{\partial t} = Lu$$

with the property $u_t(x) \to f(x)$ as $t \downarrow 0$ (see, e.g. Stroock and Varadhan, 1979).

We call ξ the diffusion with the generator L.

2.2 Denote by \mathscr{B} the Borel σ -algebra in \mathbb{R}^d and by M the set of all finite measures on \mathscr{B} . Write \mathscr{M} for the σ -algebra in M generated by the functions $f_B(\mu) = \mu(B), B \in \mathscr{B}$. For every positive bounded Borel function k(x) in \mathbb{R}^d and $1 < \alpha \leq 2$, there exists a Markov process $X = (X_t, P_\mu)$ in (M, \mathscr{M}) such that the following conditions are satisfied.

(2.2.a) If f is a bounded continuous function, then $\langle f, X_t \rangle$ is right continuous in t on \mathbb{R}^+ .

(2.2.b) For every $\mu \in M$ and for every positive bounded Borel function f,

$$P_{\mu} \exp\{-\langle f, X_t \rangle\} = \exp\{-\langle v_t, \mu \rangle\},$$

where v is the unique solution of the integral equation

$$v_t(x) + \Pi_x \left[\int_0^t k(\xi_s) v_{t-s}^{\alpha}(\xi_s) \, \mathrm{d}s \right] = \Pi_x f(\xi_t).$$

Moreover, to every $D \in \mathscr{B}$, there corresponds a random measure X_{τ} on $(\mathbb{R}^d, \mathscr{B})$ associated with the first exit time $\tau = \inf\{t, \xi_t \notin D\}$ from D by the formula

$$P_{\mu} \exp\{-\langle f, X_{\tau} \rangle\} = \exp\{-\langle v, \mu \rangle,\}$$
(3)

where v satisfies the integral equation

$$v(x) + \Pi_x \left[\int_0^\tau k(\xi_s) v^{\alpha}(\xi_s) \,\mathrm{d}s \right] = \Pi_x f(\xi_\tau). \tag{4}$$

(See Dawson (1993) or Dynkin (1994).) Note that for every $\mu \in M$ with supp $(\mu) \subset D$, X_{τ} concentrates on ∂D , P_{μ} -a.s.

We call $X = (X_t, X_\tau, P_\mu)$ the superdiffusion with parameters (L, ψ) , where $\psi(x, z) = k(x)z^{\alpha}$. We explain the heuristic meaning of X_t and X_{τ} in terms of branching particle systems. Consider a system of particles which undergo random motion and branching on \mathbb{R}^d according to the following rules.

a. Particles are distributed at time 0 according to the Poisson point process with intensity $\mu \in M$.

b. Each particle survives with probability $\exp\{-\int_0^t k(\xi_s) ds\}$ at time t.

c. At the end of its lifetime, a dying particle gives birth to n offsprings at its own site, with probability p_n , where if $1 < \alpha < 2$,

$$p_n = \begin{cases} 0 & \text{if } n = 1 \\ \frac{1}{\alpha} (-1)^n \binom{\alpha}{n} & \text{if } n \neq 1, \end{cases}$$

and if $\alpha = 2$, $p_2 = p_0 = \frac{1}{2}$.

d. During its lifetime, the motion of each particle is governed by the process ξ .

e. All particle lifetimes, motions, and branching are independent of one another.

The historical path H_t^a of a particle consists of its own trajectory and the trajectories of all its ancestors. If each particle has mass β , then

$$X_t^{\beta}(B) = \beta \sum_a 1_B(H_t^a)$$

is the mass distribution at time t. (The sum is taken over all particles which are alive at time t.) Set

$$X^{\beta}_{\mathfrak{r}}(B) = \beta \sum_{a} \mathbf{1}_{B}(H^{a}_{\mathfrak{r}_{a}}),$$

where $\tau_a = \inf\{t, H_t^a \notin D\}$. (Here we identify particles *a* and *b* if $\tau_a = \tau_b$ and $H_s^a = H_s^b$ for all $s \leq \tau_a$.) If $k_\beta = \frac{k}{\beta^{\alpha-1}}$ and $\mu_\beta = \frac{\mu}{\beta}$, then X_t^β and X_τ^β converge weakly to X_t and X_τ as $\beta \to 0$. Let τ be the first exit time of ξ from a domain $D \subset \mathbb{R}^d$. A boundary point *y* of *D* is called regular if $\Pi_y[\tau = 0] = 1$. We quote two theorems from Dynkin (1991).

Theorem 2.1. Let D be a bounded domain in \mathbb{R}^d . For every positive bounded Borel function f on ∂D , the function

$$v(x) = -\log P_{\delta_x} \exp\{-\langle f, X_\tau \rangle\}$$

satisfies the equation

$$Lv(x) = k(x)v^{\alpha}(x) \tag{5}$$

for $x \in D$. Moreover if D is regular and if f is continuous, then v = f on ∂D . (We write v = f on $K \subset \partial D$ if for every $y \in K$, $\lim_{x \in D, x \to y} v(x) = f(y)$.)

Theorem 2.2. Let D be an arbitrary domain in \mathbb{R}^d . Choose a sequence of bounded regular domains $\{D_n\}_n$ with $D_n \uparrow D$ and let τ_n be the first exit time of ξ from D_n . If u is a solution of (5) in D, then $Z_u = \lim_{n \to \infty} \langle u, X_{\tau_n} \rangle$ exists a.s. and $u(x) = -\log P_{\delta_x} \exp\{-Z_u\}$ for all $x \in D$.

3. Bounded solutions of $Lu = ku^{\alpha}$

Throughout this paper we consider a strictly positive bounded continuous function k(x) on \mathbb{R}^d satisfying the condition :

$$\lim_{r\to\infty}\sup_{x\in\mathbb{R}^d}\int_{\|y\|>r}g(x,y)k(y)\,\mathrm{d}y=0,\tag{6}$$

where g(x, y) is the Green function of the operator L on \mathbb{R}^d .

Example 1. If $k(x) \le h(||x||)$ for x sufficiently large, and $\int_a^{\infty} sh(s)ds < \infty$ for some a > 0, then k satisfies condition (6) for $L = \Delta$ and d = 3.

Proof. It follows from Eq. (13.74) in Dynkin (1965) that $g(x, y) \leq c ||x - y||^{2-d}$ for all $x, y \in \mathbb{R}^d$. Our conclusion follows from Zhao (1993, Propositions 1 and 2). \Box

As before, τ_n stands for the first exit time of the diffusion ξ from the domain B_n and $X = (X_t, X_\tau, P_\mu)$ is the superdiffusion with parameters (L, ψ) , where $\psi(x, z) = k(x)z^{\alpha}$. Put $Z_{h,n} = \langle h, X_{\tau_n} \rangle$ if $h \in H$.

Lemma 3.1. For every $\mu \in M$ and $h \in H$, P_{μ} -a.s., $Z_h = \lim_{n \to \infty} Z_{h,n}$ exists and $Z_h < \infty$.

Proof. Let $\mathscr{F}_n = \sigma\{X_{\tau_k}, 1 \le k \le n\}$. If m < n, then, by the strong Markov property and Eqs. (3) and (4),

$$P_{\mu}[\exp\{-Z_{h,n}\}|\mathscr{F}_{m}] = P_{X_{\tau_{m}}}\exp\{-Z_{h,n}\} = \exp\{-\langle w_{n}, X_{\tau_{m}}\rangle\},\tag{7}$$

where w_n satisfies the equation

$$w_n(x) + \Pi_x \left[\int_0^{\tau_n} w_n^{\alpha}(\xi_s) k(\xi_s) \,\mathrm{d}s
ight] = h(x), \quad x \in B_n.$$

Clearly $w_n(x) \leq h(x)$ and we have, by (7),

$$P_{\mu}[\exp\{-Z_{h,n}\}|\mathscr{F}_{m}] \ge \exp\{-Z_{h,m}\}$$

Therefore, $(\exp\{-Z_{h,n}\}, \mathscr{F}_n, P_{\mu})$ is a bounded submartingale and $Z_h = \lim_{n \to \infty} Z_{h,n}$ exists P_{μ} -a.s.

It follows from (3) and (4) that $P_{\mu}Z_{h,n} = \prod_{\mu}h(\xi_{\tau_n}) = \langle h, \mu \rangle$. By Fatou's lemma,

$$P_{\mu}Z \leq \liminf_{n \to \infty} P_{\mu}Z_{h,n} = \langle h, \mu \rangle < \infty,$$

which implies that $Z_h < \infty, P_{\mu}$ -a.s. \Box

We will write Z for Z_h if h(x) = 1 for all $x \in \mathbb{R}^d$.

Theorem 3.2. For every $h \in H$, the function

$$v_h(x) = -\log P_{\delta_x} \exp\{-Z_h\}, \quad x \in \mathbb{R}^d,$$

is the unique solution of (1) with $v_h = h$ at ∞ . Moreover v_h satisfies the integral equation

$$v(x) + \int_{\mathbb{R}^d} g(x, y) k(y) v^{\alpha}(y) \, \mathrm{d}y = h(x) \tag{8}$$

in \mathbb{R}^d .

Proof. Set $v_{h,n}(x) = -\log P_{\delta_x} \exp\{-Z_{h,n}\}, x \in B_n$. It follows from Eqs. (3) and (4) that $v_{h,n}$ satisfies the equation

$$v_{h,n}(x) + \int_{B_n} g_n(x, y) k(y) v_{h,n}^{\alpha}(y) \, \mathrm{d}y = h(x), \quad x \in B_n,$$
(9)

where $g_n(x, y)$ is the Green's function of L on B_n . Set $g_n(x, y) = 0$ if $x \notin B_n$ or $y \notin B_n$, and put $v_{h,n}(x) = h(x)$ if $x \notin B_n$. Then equation (9) becomes

$$v_{h,n}(x) + \int_{\mathbb{R}^d} g_n(x, y) k(y) v_{h,n}^{\alpha}(y) \, \mathrm{d}y = h(x), \quad \forall x \in \mathbb{R}^d.$$

$$(10)$$

Note that $g_n(x, y) \uparrow g(x, y)$ as $n \to \infty$, and, by Lemma 3.1, $v_h(x) = \lim_{n\to\infty} v_{h,n}(x)$ for all $x \in \mathbb{R}^d$. Therefore, for every $x \in \mathbb{R}^d$,

$$g_n(x, y)v_{h,n}^{\alpha}(y) \to g(x, y)v_h^{\alpha}(y)$$
 as $n \to \infty$.

Since $v_{h,n}(y) \leq ||h||$, we have $v_h(y) \leq ||h||$ and so

$$g_n(x, y)v_{h,n}^{\alpha}(y)k(y) \leq cg(x, y)k(y)$$

For every $x \in \mathbb{R}^d$, condition (6) implies that g(x, y)k(y) is integrable. Letting $n \to \infty$ in (10), the dominated convergence theorem implies that v_h satisfies Eq. (8).

For n > m, both the functions $v_{h,n}$ and $-\log P_{\delta_x} \exp\{-\langle v_{h,n}, X_{\tau_m} \rangle\}$ are solutions of (5) in B_m , and they have the same boundary values on ∂B_m . The maximum principle (see, e.g. Dynkin (1991, Theorem 0.5)) implies that

$$v_{h,n}(x) = -\log P_{\delta_x} \exp\{-\langle v_{h,n}, X_{\tau_m} \rangle\}, \quad x \in B_m.$$

Letting $n \to \infty$, we get $v_h(x) = -\log P_{\delta_x} \exp\{-\langle v_h, X_{\tau_m} \rangle\}$ in B_m . Theorem 2.1 implies that v_h is a solution of (5). To check $v_h = h$ at ∞ , it suffices, by (8), to show that $\int_{\mathbb{R}^d} g(x, y)k(y) \, dy \to 0$ as $||x|| \to \infty$. Write

$$\int_{\mathbb{R}^d} g(x, y)k(y) \,\mathrm{d}y = A(x, r) + B(x, r), \tag{11}$$

where

$$A(x,r) = \int_{\|y\| \leq r} g(x,y)k(y) \,\mathrm{d}y$$

and

$$B(x,r) = \int_{\|y\| \ge r} g(x,y)k(y) \,\mathrm{d}y$$

Since k is bounded and $g(x, y) \to 0$ as $||x - y|| \to \infty$, for every r > 0, A(x, r) goes to 0 as $||x|| \to \infty$. Clearly condition (6) implies that $\sup_{x \in \mathbb{R}^d} B(x, r) \to 0$ as $r \to \infty$. Letting $||x|| \to \infty$ and then $r \to \infty$ in (11), we observe that $\int g(x, y)k(y) dy \to 0$ as $||x|| \to \infty$.

Let u be a solution of (1) with u = h at ∞ . Since $Z < \infty$ and u = h at ∞ , $\langle u, X_{\tau_n} \rangle \rightarrow Z_h$. By Theorem 2.2, $u(x) = -\log P_{\delta_x} \exp\{-Z_h\} = v_h(x)$. \Box

Remark. (a) If $L = \Delta$ and k is radial, then $v_{c,n}$ is radial for every constant function h = c and so is v_c .

(b) Under the same assumptions on k(x) as in Example 1, Kawano (1984) and Cheng and Ni (1992) obtained similar results for $L = \Delta$. By using Brownian path integration and potential theory, Zhao (1993) studied related problems for $L = \Delta$.

Theorem 3.3. If u is a bounded solution of (1), then v = h at ∞ for some $h \in H$ and $v(x) = v_h(x)$.

Proof. Note that if u satisfies Eq. (8) for some $h \in H$, our conclusions follow from the same arguments as in the proof of Theorem 3.2. Since $u(x) = -\log P_{\delta_x} \exp\{-\langle u, X_{\tau_n} \rangle\}$, (3) and (4) imply that u satisfies the equation

$$u(x) + \int_{B_n} g_n(x, y) k(y) u^{\alpha}(y) \, \mathrm{d}y = h_n(x), \quad x \in B_n,$$
(12)

where $h_n(x) = \prod_x [u(\xi_{\tau_n})]$. Clearly $Lh_n = 0$ and $h_n(x) = \prod_x u(\xi_{\tau_n}) \leq ||u||$ for all n. By passing n to the limit in (12), $h(x) = \lim_{n \to \infty} h_n(x)$ exists for all $x \in \mathbb{R}^d$. Therefore, h is bounded and Lh = 0 in \mathbb{R}^d . By passing to the limit in (12) again, u satisfies Eq. (8). \Box

Remark. The special case of Theorem 3.2, where $L = \Delta$ and k satisfies the conditions in Example 1, was observed earlier by Cheng and Ni (1992).

4. Unbounded solutions of $Lu = ku^{\alpha}$

Lemma 4.1. (a) Let $B = \{x; ||x - x^0|| < R\}$ and

 $u(x) = \lambda (R^2 - r^2)^{-\frac{2}{\alpha-1}}$

where λ is a positive constant and $r = ||x - x_0||$. We have

$$\lim_{x\to a,x\in B}u(x)=\infty$$

for all $a \in \partial B$, and

$$Lu - ku^{\alpha} \leq 0$$
 in B

for some λ depending only on α , the dimension d and the upper bounds for $\tilde{a}_{ij} = \frac{a_{ij}}{k}$

and $\tilde{b}_i = \frac{b_i}{k}$ in B. (b) If $\tilde{B} \subset D$ for some open set D, and v is a solution of (5) in D, then $v \leq u$ in B.

Proof. (a) is quoted from Dynkin (1991, Lemma 3.1) and (b) follows easily from the maximum principle. \Box

Proof of Theorem II. (a) For $x \in B_n$ and m > 0, set $I_{n,m}(x) = -\log P_{\delta_x} \exp\{-mZ_{1,n}\}$. Theorem 2.1 implies that $I_{n,m}$ satisfies (5) in B_n and $I_{n,m} = m$ on ∂B_n . By the maximum principle, $I_{n,m}$ is increasing in m. Therefore, for every $x \in B_n$,

$$I_n(x) = \lim_{m \to \infty} I_{n,m}(x)$$

exists. Clearly $I_n(x) = -\log P_{\delta_x}[Z_{1,n} = 0]$ and $I_n = \infty$ on ∂B_n . Let B be an arbitrary bounded open ball and let τ be the first exit time of ξ from B. If $\overline{B} \subset B_n$ for some n, Theorem 2.1 and the maximum principle imply that

$$I_{n,m}(x) = -\log P_{\delta_x} \exp\{-\langle I_{n,m}, X_\tau \rangle\}, \ x \in B.$$
(13)

Note that, by Lemma 4.1, $|I_{n,m}| \leq c$ in \overline{B} , for all *m*. Letting *m* go to ∞ in (13), we have

$$I_n(x) = -\log P_{\delta_x} \exp\{-\langle I_n, X_\tau \rangle\}.$$
(14)

Clearly $I(x) = \lim_{n \to \infty} I_n(x)$ and, letting $n \to \infty$ in (14), we observe $I(x) = -\log P_{\delta_x} \exp\{-\langle I, X_\tau \rangle\}$. By Theorem 2.1, I satisfies Eq. (1).

Assume u is a solution of (1). Since $I_n = \infty$ on ∂B_n , the maximum principle implies that $u \leq I_n$ in B_n and so $u \leq I$.

(b) Write v_c for v_h in Theorem 3.2 if h is a constant function c. Clearly $v_c(x) \uparrow J(x)$ as $c \uparrow \infty$ and $J(x) \to \infty$ as $||x|| \to \infty$. Since $v_c(x) = -\log P_{\delta_x} \exp\{-\langle v_c, X_{\tau_n}\rangle\}$ in B_n , we have $J(x) = -\log P_{\delta_x} \exp\{-\langle J, X_{\tau_n}\rangle\}$ in B_n . By Lemma 4.1, J is bounded on ∂B_n , and so Theorem 2.1 implies that J is a solution of (1). Assume $u \in E$. For every c > 0, $\langle u, X_{\tau_n} \rangle \ge cZ_{1,n}$ for sufficiently large *n*. For any c > 0,

$$u(x) = \lim_{n \to \infty} -\log P_{\delta_x} \exp\{-\langle u, X_{\tau_n} \rangle\}$$

$$\geq \lim_{n \to \infty} -\log P_{\delta_x} \exp\{-cZ_{1,n}\} = v_c(x).$$

Letting $c \uparrow \infty, u(x) \ge J(x)$ for all $x \in \mathbb{R}^d$. Therefore J is the minimal element in E. \Box

Remark. (a) Assume $L = \Delta$ and k is radial. Then both $I_{n,m}$ and I_n are radial. Therefore I is radial. Clearly J is radial.

(b) Let k_1, k_2 be two bounded strictly positive continuous functions on \mathbb{R}^d which both satisfy condition (6). Assume further that $k_1(x) \leq k_2(x)$ for all x. For s = 1, 2, let $I_{s,n,m}, I_s$, and J_s denote $I_{n,m}, I$, and J respectively, with k replaced by k_s . For $x \in B_n$, we have

$$LI_{2,n,m} - k_2 I_{2,n,m}^{\alpha} = 0 = LI_{1,n,m} - k_1 I_{1,n,m}^{\alpha} \ge LI_{1,n,m} - k_2 I_{1,n,m}^{\alpha}$$

The Maximum principle implies that $I_{2,n,m} \leq I_{1,n,m}$ on B_n . Therefore $I_2 \leq I_1$. Similar arguments imply that $J_2 \leq J_1$.

Denote by |E| the cardinality of E. By Theorem II, $|E| \ge 1$.

Theorem 4.2. The following three statements are equivalent.

(a) |E| = 1.

(b) For every measure $\mu \in M$ with compact support, we have

 $P_{\mu}[Z_{1,n} \rightarrow 0] = P_{\mu}[Z_{1,n} = 0 \text{ for sufficiently large } n].$

(c) There exists a constant c such that

 $I(x) \leq cJ(x)$ for x sufficiently large,

where I and J are functions in Theorem II.

Proof. Note that for every $\mu \in M$ with compact support, we have

 $P_{\mu}[Z=0] = \exp\{-\langle J, \mu \rangle\}$

and

 $P_{\mu}[Z_{1,n} = 0 \text{ for sufficiently large } n] = \exp\{-\langle I, \mu \rangle\}.$

Therefore (a) and (b) are equivalent. Clearly (b) implies (c). Assume that (c) holds. To prove (a), it suffices to show that I = J. Fix $x \in \mathbb{R}^d$. By Theorem 2.2, both $Z_I = \lim_{n\to\infty} \langle I, X_{\tau_n} \rangle$ and $Z_J = \lim_{n\to\infty} \langle I, X_{\tau_n} \rangle$ exist P_x -a.s. Since $I(x) \to \infty$ and $J(x) \to \infty$, $Z_I = J_J = \infty$ on $\{Z > 0\}$. Combining with Theorem 2.2, we have

$$-\log P_{\delta_x}[Z=0] = J(x) = -\log P_{\delta_x} \exp\{-Z_J\}$$
$$= -\log P_{\delta_x}[\exp\{-Z_J\}, Z=0]$$

Therefore $Z_J = 0$ on $\{Z = 0\}P_x$ -a.s. By assumption, we have $\langle I, X_{\tau_n} \rangle \leq c \langle J, X_{\tau_n} \rangle$ for *n* sufficiently large, which implies that $Z_I = 0$ on $\{Z = 0\}, P_x$ -a.s. Therefore

$$I(x) = -\log P_{\delta_x} \exp\{-Z_I\}$$

= - log $P_{\delta_x} [\exp\{-Z_I\}, Z = 0]$
= - log $P_{\delta_x} [Z = 0] = J(x).$

If $L = \Delta$ and if k is radial with $k(x) = c|x|^{-l}$, l > 2, for large x, then the first part of Theorem 4.3 of Cheng and Ni (1992), implies that for every radial solution u of (1), we have $u(x) \sim |x|^{\frac{l-2}{\alpha-1}}$ as $||x|| \to \infty$. By using this observation and Theorem 4.2, we prove Theorem III.

Proof of Theorem III. By assumption, there exist two constants c_1, c_2 and two radial functions k_1 and k_2 with $k_1(x) = |x|^{-l} = k_2(x)$ for x sufficiently large and

$$c_1k_1(x) \leq k(x) \leq c_2k_2(x)$$
 for all $x \in \mathbb{R}^d$.

For s = 1, 2, let I_s, J_s denote I and J respectively with k replaced by $c_s k_s$. By Remark (b) following the proof of Theorem II, we have, for all x,

$$I_2(x) \leqslant I(x) \leqslant I_1(x)$$

and

$$J_2(x) \leq J(x) \leq J_1(x).$$

Since $I_s(x) \sim |x|^{\frac{l-2}{\alpha-1}}$ and $J_s(x) \sim |x|^{\frac{l-2}{\alpha-1}}$, s = 1, 2, as $||x|| \to \infty$, we get

$$\frac{I(x)}{J(x)} \leqslant \frac{I_1(x)}{J_2(x)} \leqslant c$$

for x sufficiently large. Our result follows from Theorem 4.2. \Box

Remark. In general we do not know if condition (6) is a sufficient condition for |E| = 1.

5. Application

The range \mathscr{R} of the superdiffusion X is the smallest closed subset of \mathbb{R}^d such that \mathscr{R} contains supports of X_t for all $t \ge 0$. For constant k, Iscoe (1986) proved that \mathscr{R} is compact a.s. for $L = \Delta$ and Dynkin (1991) observed this for general L.

Theorem 5.1. If $L = \Delta$ and $k(x) \sim |x|^{-l}$, l > 2, as $||x|| \to \infty$, then for every $\mu \in M$ with compact support,

 $P_{\mu}[\mathcal{R} \text{ is compact}] = \exp\{-\langle I, \mu \rangle\},\$

where I is the unique unbounded solution of (1).

Proof. If $\mu \in M$ has compact support, we have, P_{μ} -a.s.,

$$\{\mathscr{R} \text{ is compact}\} = \bigcup_{n=1}^{\infty} \{Z_{1,n} = 0\}$$

(See Dynkin, 1991). Our statement follows from Theorem II and Theorem III. \Box

Acknowledgements

The author is indebted to a referee who read the paper carefully and made some invaluable suggestions.

References

- K.S. Cheng and W.M. Ni, On the structure of the conformal scalar curvature equation on \mathbb{R}^d , Indiana Univ. Math. J. 41 (1992) 261-278.
- D.A. Dawson, Measure-valued Markov processes, École d'Été de Probabilités de Saint Flour, Lecture Notes in Math., Vol. 1541 (Springer, NewYork, 1993).
- E.B. Dynkin, Markov Processes, Vol. II (Springer, Berlin, 1965).
- E.B. Dynkin, A probabilistic approach to one class of nonlinear differential equation, Probab. Theory Related Fields 89 (1991) 89-115.
- E.B. Dynkin, An introduction to branching measure-valued processes, Centre de Recherches Mathématique of Univérsité de Montreal and American Mathematical Society, 1994.
- I. Iscoe, On the support of measure-valued critical branching Brownian motion, Ann. Probab. 16 (1986) 200-221.
- N. Kawano, On bounded solutions of semilinear elliptic equations, Hiroshima Math. J. 14 (1984) 125-158.
- J.B. Keller, On the solution of $\Delta u = f(u)$, Comm. Pure. Appl. Math. 10 (1957) 503-510.
- M. Naito, A note on bounded positive entire solutions of semilinear elliptic equations, Hiroshima Math. J. 14 (1984) 211-214.
- W.M. Ni, On the elliptic equation $\Delta u + Ku^{\frac{n+2}{n-2}} = 0$, its generalizations, and applications in geometry, Indiana Univ. Math. 31 (1982) 493-529.
- R. Osserman, On the equation $\Delta u \leq f(u)$, Pacific J. Math. 7 (1957) 1643-1647.
- D.W. Stroock and S.R.S. Varadhan, Multidimensional diffusion processes (Springer, Berlin, 1979).
- Z. Zhao, On the existence of positive solutions of nonlinear elliptic equations a probabilistic potential theory approach, Duke Math. J. 69 (1993) 247-258.