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Abstract—The past findings have suggested that temporal cor-
relation may relate the communications between the distributed
areas. There are some studies in Magnetoencephalography and
electroencephalography to analyze the functional connectivity
between cortical areas with the oscillations feature of neuronal
activity. However, it is also important to observe the functional
connectivity through temporal correlation between cortical areas.
We proposed a beamformer-based approach which exploits a
maximum correlation criterion to maximize the significance level
of correlation between brain activities. This criterion leads to a
closed-form solution of the dipole orientation. Experiments with
simulation data clearly demonstrate the effectiveness, necessity,
and accuracy of the proposed method.

I. INTRODUCTION

The past findings have suggested that temporal correlation
may relate the communications between the distributed areas.
To identify these correlations, millisecond-level of physiolog-
ical signal measurement is indispensable [1], [2].

Functional magnetic resonance imaging (fMRI) is a very
promising approach to investigate the cortico-cortical corre-
lation, but the temporal resolution is insufficient to observe
the details of the communications. There are some studies in
Magnetoencephalography (MEG) and electroencephalography
(EEG) to analyze the functional connectivity between cortical
areas with the oscillatory feature of neuronal activity using the
analysis tool, dynamic imaging of coherent sources (DICS)
[3]. However, there is still no work about investigating the
temporal correlation between different cortices. To investigate
the temporal correlation between the different cortices, new
analysis tools applying on MEG/EEG must be developed.

Nevertheless it is not easy to recover the activity of the
cortical region from the recording of MEG/EEG. The so-called
inverse problem is a difficult task due to the low signal-to-noise
ratio (SNR) and the underlying ill-posed property.

Recently, beamformer is one of the most promising so-
lutions to the inverse problem. [4]. Beamformer performs a
spatial filter on recordings of MEG/EEG to filter out the
signal at the targeted location, acting as a virtual sensor to
measure the signal with a specific orientation. Beamformer can
obtain the activities of the targeted location and suppress the
influence contributed from other sources by imposing the unit-
gain constraint and minimum variance criterion. Given a unit
dipole with specified position and orientation, we can calculate

a spatial filter from the data covariance matrix and the lead
field of the dipole. The neuronal activity of the dipole at the
specified position can be obtained by applying this spatial filer
on the recordings of MEG/EEG. By repeating the procedure
for each position inside the brain, we can obtain the neuronal
activities of the whole brain.

There are two kinds of beamformer, vector-type beamformer
[5] and scalar-type beamformer [6], [7]. The vector-type
beamformer decomposes the dipole orientation into three or-
thogonal components, each one with a fixed orientation. Every
component has its own spatial filter calculated individually.
Linearly constrained minimum variance (LCMV) [5] is one
of the vector beamformer and it sums the results probed on
three directions. There is only one spatial filter used for each
specific position in scalar-type beamformer and it determines
the direction by maximizing the pseudo Z value. Compared
to vector-type beamformer, the major advantage of scalar-
type beamformer is that the activity distribution is more focal
and higher signal-to-noise ratio [7], [8]. But using vector-
type beamformer is more efficient to calculate the spatial filter
because all the procedures involved are deterministic.

In the scalar-type beamformer, it is essential to accurately
determine the dipole orientation, because it can result in
effective spatial filter only when the dipole orientation is
accurate [8], [9]. One way to determine the dipole orientation
is to use the normal of cortical surface [9]. But the surface
reconstruction is very difficult and the reconstruction deviation
will decrease the accuracy of dipole orientation. Only when
the estimation error is smaller than ten degrees, the spatial
filter determined by the cortical surface normal is feasible [9].
Another way to determine the dipole orientation is to maxi-
mize the pseudo Z in the synthetic aperture magnetometery
(SAM) method [6] by exhaustively evaluating all the possible
candidates. Nonlinear optimization method is more efficient,
but only can guarantee the suboptimal solution.

Recently, a novel spatial filtering technique, called the max-
imum contrast beamformer (MCB), was proposed by Chen et
al [10]. This MCB method has the advantages of good output
SNR and focal activity distribution as in scalar beamformers,
while the dipole orientation is determined accurately and
efficiently in a close-form solution. The method exploits a
maximum-contrast criterion that maximizes the ratio of the
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reconstructed neuronal activities in the active state to those
in the control state and helps to analytically and accurately
determine the dipole orientation in a closed-form manner.

In this paper, we propose a beamforming-based imaging
method of correlated brain activities, that allows the studies
of the temporal interaction between different brain cortices by
imaging correlation and reveal the similarity signal pattern.
Our method can analytically and accurately determine the
dipole orientation in a close-from manner, and determine
the spatial filter efficiently for each targeted position. The
correlation map can be calculated to reveal cortical regions
with significant similarity to the reference position in the brain.

II. METHODS

Our method based on the scalar-type beamformer exploits a
maximum-correlation criterion that maximizes the significant
level of correlation between the reference and each source
signal inside the brain.

A. Scalar beamformer

We define a unit dipole with parameter θ = {r,q}, where r
is the dipole location, q is the dipole orientation, and lθ is the
lead field vector of the unit dipole. The lead field vector is the
predicted measurement of N MEG sensors from a unit dipole
with orientation q. The lead field vector lθ is calculated by

lθ = Lrq , (1)

where Lr is the lead field matrix of the unit dipole in location
r and can be derived from the forward model.

The MEG recordings m(t) is decomposed into three com-
ponents

m(t) = mθ(t) + mδ(t) + n(t)
= mθ(t) + mn(t) , (2)

where m(t) = lθsθ(t) denotes the magnetic field originated
from the source with parameter θ, mδ(t) denotes the magnetic
field originated from all other sources, n(t) is the noise, and
mn(t) denotes the combination of the noise and the magnetic
recordings originated from all other sources.

Scalar MEG beamformer performs spatial filtering on
recordings to separate the signals of the location of interest
from others. For a dipole source with parameter θ, the output
signal of the beamformer y(t) is obtained by

y(t) = wθ
tm(t) (3)

which approximates the source signal sθ(t) of the dipole. To
achieve this goal, the spatial filter wθ, an N×1 column vector,
can be decided by the unit-gain constraint and the minimum
variance criterion. With these constraints, the strength of
output signal y(t) can be identical with the source strength
sθ(t) while suppressing the contribution of the other sources.

By the following equation

y(t) = wθ
tm(t)

= wθ
tmθ(t) + wθ

tmn(t)
= sθ(t)wθ

tlθ + wθ
tmn(t)

= sθ(t) + wθ
tmn(t) , (4)

the source signal sθ(t) can be obtained by applying unit-gain
costrain, wθ

tlθ = 1. We still have to reduce the leakage from
all other sources, wθ

tmn(t). This is equivalent to minimize
the variance of y(t). Therefore, the optimal spatial filter ŵθ

can be calculated by

ŵθ = arg min
wθ

E{|y(t)− E{y(t)}|2}+ α‖wθ‖2

subject to wθ
tlθ = 1 , (5)

where E represents the expectation value and α represents the
parameter of Tikhonov regularization. Here α is a parameter
to restrict the norm of ŵθ, corresponding to the shape of
beamformer spatial filter. Substituting (4) into (5), we can
solve the equation by Lagrange multipliers and obtain the
optimal solution of ŵθ:

ŵθ = arg min
wθ

wθ
t(C + αI)wθ subject to wθ

tlθ = 1

=
(C + αI)−1lθ

lθt(C + αI)−1lθ
, (6)

where C is the N × N covariance matrix of the MEG
recordings m(t) and I is the N ×N identity matrix.

B. Imaging of the brain activities correlated to the reference
signal

For each dipole source in location r with fixed orientation q,
we can use (6) to obtain the spatial filter, and further compute
the dipole activity by using (3). Once we apply the procedure
mentioned above individually to each position of head region,
we can obtain the activities of the whole brain.

Although there are many origins of activities in brain, we
aim to focus on correlated brain activities. In other words,
what we want to reveal is only some specific brain activi-
ties. Through the spatial filter calculated by the conventional
methods, we may obtain strong non-targeted activities in the
filtered outputs. Therefore, we propose a method to reveal
the imaging of the brain activities correlated to the targeted
signal. In contrast to the original beamforming methods which
provide statistical maps to reveal the regions having significant
neuronal activities, we calculated the correlation between the
source signal and the targeted one:

Rθ =
E{|wθ

tm(t)a(t)|}

E{|wθ
tm(t)|2}

1
2E{|a(t)|2}

1
2

=
{wθ

tE{|m(t)a(t)|2}wθ}
1
2

{wθ
tCmwθ}

1
2E{|a(t)|2}

1
2

=
{wθ

tCamCam
twθ}

1
2

{wθ
tCmwθ}

1
2E{|a(t)|2}

1
2
, (7)
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(a) (b) (c)

Fig. 1. Dipole sources of simulation data contain (a) the first two sources at yellow location with different temporal activities (in red and green), (b) another
source at green location with the same temporal activities as the green one at (a), and (c) the last source at the blue location with the temporal activities in
blue.

where a(t) is the targeted signal given by users. The value
of Rθ indicates the significant level of similarity between the
dipole activity with parameter θ and the targeted signal.

The solution of ŵθ is derived with parameter θ = {r,q}. To
obtain the activities of the whole brain, the proposed method
scans through the whole brain by setting the position parameter
r to each position within the brain area. But the orientation
parameter q is difficult to determine. Instead of the exhaustive
search, we propose a closed-form solution to determine the
dipole orientation. By substituting (1) to (6), we obtain:

ŵθ =
(C + αI)−1Lrq

qtLtr(C + αI)−1Lrq

=
Arq

qtBrq
, (8)

where Ar = (C + αI)−1Lr and Br = LtrAr depend only
on the parameter position r. We determine the optimal dipole
orientation q̂ which can maximize the correlation between the
source signal sθ and the targeted signal:

q̂ = arg max
q

 (wθ
tCamCam

twθ)
1
2

(wθ
tCmwθ)

1
2E{|a(t)|2}

1
2

2

= arg max
q

qtAt
rCamCam

tArq
qtAt

rCmArqq

= arg max
q

qtPrq
qtQrq

, (9)

where Cam is the N × 1 cross-covariance matrix between the
targeted signal a(t) and the MEG recordings m(t), Cm is the
N × N covariance matrix of the MEG recordings m(t), and
Pr = Ar

tCamCam
tAr and Qr = Ar

tCmAr are both 3× 3
matrices. The solution of (9) is the eigenvector corresponding
to the maximum eigenvalue of the matrix Q−1

r Pr.

III. EXPERIMENTS

We performed experiments to verify the proposed method
described in Section II and to evaluate the location accuracy
of correlated sources. The magnetic signals were simulated
according to the 204 planar gradiometers of a whole-head

neuromagnetometer (Vectorview system, Neuromag Ltd., Fin-
land).

Four dipole sources with temporal profiles of sinusoidal
were located in three position inside the brain, as shown in
Figure 1. Strengths of the red, green, and blue profiles are all
40 nAm. The profile in the green position is as the red profile
at yellow position with 350 ms delay. The orientation of each
of the four dipoles was arbitrarily set on the plane tangential
to the head sphere. We used (2) to compute the simulated
MEG signals induced from the four dipole sources, as well as
additive background noises from 3000 random dipoles with
the standard deviation of 25 nAm.

We applied independent component analysis on the sim-
ulated measurements to extract components (Figure 2) and
manually selected four components C1, C2, C3, and C4. Then
we calculated and imaged the correlation distribution between
each of the selected component and brain activities by (7) as
shown in Figure 3. The correlation map of the estimated source
is focal and significant, and the source localization error is 0
mm for all chosen components.

C1

C2

C3

C4

C114

…

ICA

Fig. 2. The simulated data was decomposed by ICA into 114 components.

We applied MCB on the simulated recordings to calculate
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C1 as the reference signal

0.75

0.99

(a)

C2 as the reference signal

0.85

0.99

(b)

C3 as the reference signal

0.8

0.99

(c)

C4 as the reference signal

0.8

0.99

(d)

Fig. 3. The correlation map calculated with the reference signal (a) C1, (b)
C2, (c) C3, and (d) C4.

the F-statistic maps which reveal cortical regions with signif-
icant difference of activities between the active and control
states. Then we chose the filtered signal at the highest F value
position from 350 to 550 ms interval as the reference signal.
Then we calculated the correlation map between the reference
signal and brain activities at different time interval. Figure 4(a)
shows the corelation map from 0 to 200 ms, and Figure 4(b)
shows the map from 350 to 550 ms. It is obviously that both
maps match the dipole locations at the corresponding time
interval.

0.8

0.99

the filtered signal at green position by MCB as the reference signal

(a)

0.8

0.99

the filtered signal at green position by MCB as the reference signal

(b)

Fig. 4. The correlation maps calculated with the reference signal filtered by
MCB at different time intervals within (a) [0, 200] ms and (b) [350, 550] ms.

IV. DISCUSSION AND CONCLUSIONS

The result in Figure 5(a) is the reconstructed signal at the
highest correlation position when we used C2 as the reference

signal. The filtered signal is similar to reference signal even
there are two source signals at the position. When we used the
conventional source localization technique, we can reconstruct
the signal containing two sources. The Figure 5(b) is the result
calculated by MCB. The reconstructed signal is not similar to
what we focus on, that is why we need to develop the proposed
method to reveal the correlated level according to a specified
reference. The reference can be a component decomposed by
ICA, a cortical activities inside the brain, or the peripheral
signal such as EMG measurement.

The filtered source signal at  yellow position

(a)

The filtered source signal by MCB at  yellow position

(b)

Fig. 5. (a) The filtered signal at the yellow position obtained by our method
(b) The filtered signal in the yellow position obtained by MCB.

In this work, we have proposed a beamformer-based imag-
ing approach to map the correlated brain activities. The
maximum correlation criterion helps to estimate a spatial
filter efficiently that can maximize the significance level of
correlation between brain activities.
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