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The heavy-quark effective theory is developed on the light front. Based on this effective theory, 
a light-front heavy-meson bound state with definite spin and parity is constructed. Within the 
effective theory, the Isgur-Wise function is derived in terms of the asymptotic light-front bound 
state amplitudes in the limit mQ -+ ca; the result is a general expression for arbitrary recoil 
velocities. With the asymptotic form of the BSW amplitudes, the Isgur-Wise function is given by 
((v . v') = 1/v .v'. The slope at the zero-recoil point is p2 = -tf(1) = 1, in excellent agreement with 
the recent CLEO result of p2 = 1.01 & 0.15 i 0.09. 
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I. INTRODUCTION 

The discovery of heavy-quark symmetry (HQS) [I]  and 
the subsequent construction of heavy-quark effective the- 
ory (HQET) [2,3] have led to intense activities in the 
study of heavy-hadron physics, and much progress has 
been made in recent years [4]. The so-called HQET is 
an  effective theory of quantum chromodynamics (QCD) 
valid in situations where the gluon momenta ( N  AqcD) 
are much smaller than the heavy-quark masses (mQ). 
In effect, HQET provides us with a systematic expan- 
sion of the QCD Lagrangian in terms of the dimension- 
less parameter A Q c ~ / r n Q  [5-91. In the symmetry limit 
(mQ + oo), the coupling between a heavy quark and 
gluon becomes independent of the spin and flavor of the 
heavy quark. Thus the leading order effective Lagrangian 
possesses a new spin-flavor symmetry, which is not man- 
ifest in the original QCD Lagrangian. 

Since HQS is a symmetry of QCD for heavy quarks 
at  the confinement scale, it can therefore be used to ex- 
tract model-independent dynamical consequences of the 
theory at  a scale where perturbative calculations are not 
possible. In practical applications, HQS is most useful in 
reducing the number of independent form factors in vari- 
ous heavy-hadron decays, and thereby greatly simplifying 
the complexity of theoretical analyses. For instance, in 
the symmetry limit, all of the form factors in B + D and 
B + D* are related by spin symmetry to a single univer- 
sal function, called the Isgur-Wise function. Moreover, 
the normalization of this universal function at  the zero- 
recoil point is also fixed by flavor symmetry, which then 
permits a model-independent means of extracting the im- 
portant Kobayashi-Maskawa matrix element I Vcb 1 from 
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experimental data. Similarly in heavy-baryon decays, 
such as Ab + A, [lo], the application of HQS also leads 
to tremendous simplifications. Although HQS was first 
discovered in the weak decays of heavy hadrons, it has 
since found applications in many other areas of heavy- 
hadron physics. For example, by combining HQS with 
chiral symmetry it is possible to construct a chiral La- 
grangian for the low energy interactions of heavy hadrons 
with Goldstone bosons [ll-131. This theory has been ex- 
tended to include heavy-flavor-conserving weak decays 
[14], as well as electromagnetic interactions [15,16]. Fur- 
thermore, HQS has also been applied in inclusive B me- 
son decays, where the main thrust was to reliably extract 
the Kobayashi-Maskawa (KM) matrix element VUb from 
the end point spectrum of the charge lepton [17]. 

Beyond the symmetry limit, HQET serves as a theoret- 
ical framework for the systematic computation of l / m Q  
corrections. However, in order to make definite pre- 
dictions, it is also necessary to construct explicitly the 
heavy-hadron bound state wave functions within HQET. 
This is of course a difficult task, to which a satisfactory 
solution does not exist. Nevertheless, we do expect that 
HQS will lead to considerable conceptual and calcula- 
tional simplifications. One of the purposes of this paper 
is to lay the groundwork for solving this important prob- 
lem on the light front. 

In order to better motivate the work of this paper as 
well as to be self-contained, we present below a brief de- 
scription of HQET in the equal-time form, and point out 
the issues to be addressed in this paper as we proceed. 
Let us start with the QCD Lagrangian for a heavy quark: 

where Q is the heavy-quark field operator, mQ the heavy- 
quark mass, and DP = - igT,A: the QCD covariant 
derivative. The pure gauge part of the QCD Lagrangian 
has not been included because it is irrelevant for our dis- 
cussions. HQET in the usual equal-time formalism is 

0556-2821/95/52(5)/2915(11)/$06.00 - 52 2915 @ 1995 The American Physical Society 



2916 CHI-YEE CHEUNG, WEI-MIN ZHANG, AND GUEY-LIN LIN 

obtained simply by redefining the heavy-quark fields as 

I31 

where vp is the four-velocity of the heavy hadrons v2 = 1; 
h,(x) and H,(x) are, respectively, the large and small 
components of Q(x),  such that 

yfhv (x) = hv (x), 

$Hv (2) = - Hv (x) . (1.3) 

This phase redefinition amounts to a splitting of the 
heavy-quark momentum: p = mqv + k, where k N AQCD 
is called the residual momentum which measures the fluc- 
tuation around the mass shell. With such a redefinition, 
the heavy-quark Dirac equation is reduced to 

which can be further decomposed into two coupled equa- 
tions: viz., 

-iv . Dh, = i JDIHv, 

(iv . D + 2mQ)H, = i pL h,, (1.5) 

where DT = Dp - vpv 3 D. Thus, one can express H,(x) 
in terms of h,(x) and show that H,(x) is suppressed by 
l / m Q  compared to h,(x). Using the relation between 
h,(x) and H,(x) obtained from the Dirac equation, one 
can then rewrite the QCD Lagrangian in powers of l /mQ:  

L = Z,iv . Dh, + z,(i PI) 1 

2mQ + i v . D  - ie  (i P d h v  

This is the effective Lagrangian for the heavy quark. An 
equivalent derivation of HQET via the QCD generating 
functional can be found in Ref. [9]. In the heavy-mass 
limit (mQ t m), only the first term in Eq. (1.6) survives. 
This leading order Lagragian is obviously spin and fla- 
vor independent, which is the origin of the heavy-quark 
spin-flavor symmetry. Note that,  in Eq. (1.6), the non- 
leading contributions contain high order time derivatives. 
Consequently the quantization of HQET beyond leading 
order is rather cumbersome [I€%]. As we will see later, 
this unpleasant feature does not exist in the light-front 
formulation. 

In order to gain a deeper understanding of heavy-quark 
dynamics, it is both necessary and important to study 
the symmetry-breaking effects caused by the higher or- 
der terms in the effective Lagrangian. Similar terms can 
also arise in the l / m Q  expansion of heavy-quark cur- 
rents. These higher order interactions would either spoil 
relations established by HQS or introduce new transi- 
tion form factors. With HQET, one can in principle in- 
vestigate these symmetry-breaking effects systematically. 
However, in order to  evaluate the various matrix elements 
involved, one needs a detailed knowledge of the structures 

of heavy-hadron bound states. To date, except for lat- 
tice simulation, a direct QCD approach to the hadronic 
bound states does not exist, and one has to rely on var- 
ious phenomenological models, such as the constituent 
quark model [19], the bag model [20], and the QCD sum 
rules [21], to estimate these matrix elements. Since one 
does not know how to properly boost a constituent quark 
bound state or a bag wave function to arbitrary veloci- 
ties, these models are, strictly speaking, applicable only 
a t  the zero-recoil point. However, to compare with ex- 
perimental data, matrix elements a t  various momentum 
transfer are re~ui red  in general. - 

In the past few years, a boost-free relativistic approach 
to the hadronic bound state problem of QCD on the 
light front has attracted much attention [22-241. One 
of the advantages for the light-front QCD approach is 
that light-front Hamiltonian field theory provides a di- 
rect way of calculating relativistic bound states by solv- 
ing Schrodinger-type eigenstate equations in a truncated 
Fock space [25]. It is well known that boost operations 
on the light front are kinematic and therefore it is easy 
to boost a hadron state to any frame of reference when 
its wave function is known in a particular Lorentz frame. 
Moreover, the special behavior of the light-front infrared 
singularity may also lead to a possible understanding of 
nontrivial QCD dynamics, such as color confinement and 
dynamical chiral symmetry breaking [22]. Nevertheless, 
light-front quantization for heavy quarks has only been 
briefly explored in the (l+l)-dimensional model [26]. 
Recently some light-front hadronic wave functions have 
been constructed either phenomenologically [27] or from 
the light-front QCD sum rule [28,29]. They have been 
used quite sucessfully in the calculations of the Isgur- 
Wise function and other heavy-hadron form factors. Fur- 
thermore, inclusive heavy-meson decays have also been 
discussed on the light front [30]. 

In order to better understand these light-front wave 
functions and their applications in various heavy-hadron 
processes, we have recently reformulated HQET on the 
light-front 131). In the present paper, apart from provid- 
ing a more detailed account of the derivation of light-front 
heavy-quark effective theory (LFHQET) , the construc- 
tion of heavy-meson bound states is also formulated. We 
then derive the Isgur-Wise function using the light-front 
wave functions so constructed; the resulting expression 
is compatible with HQS and valid for arbitrary recoil ve- 
locities. The paper is organized as follows. In Sec. 11, 
LFHQET is derived, and its advantages over the equal- 
time formulation are discussed. In Sec. 111, the quanti- 
zation procedure for LFHQET is described. In Sec. IV, 
based on LFHQET, heavy-meson bound states are con- 
structed in the heavy-mass limit. An explicit calculation 
of the Isgur-Wise function is given in Sec. V. Finally, a 
summary is presented in Sec. VI. 

11. LIGHT-FRONT 
HEAVY-QUARK EFFECTIVE THEORY 

In this section, HQET is formulated on the light front. 
We shall use the following light-front notation: The light- 
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front coordinate is denoted by xp = (x+,  x-, xl) where 
xf = xO + x3 is the light-front timelike component and 
x- = xO - x3 and xi, (i = 1,2)  the light-front longi- 
tudinal and transverse components, respectively. With 
this notation, the product of 2 four-vectors is given by 

1 a . b = Z(a+b- + a-b+) - a l  . bl, and the light-front 
derivatives are written as d- = 2& (the light-front 
time derivative), d+  = 2&, and di = & (the longitu- 
dinal and transverse derivatives, respectively). In order 
to express the final results in covariant forms, we will also 
need the light-front unit vector np = (0,1, 01), such that 
the "+" component of any four-vector a can be written 
covariantly as n . a. 

In the conventional formulation of HQET, the first 
step is to separate the full heavy-quark field Q(x) into 
large and small components, by means of the projec- 
tion operators A* = +( I  z t  $). The situation is some- 
what different in the framework of light-front field theory 
[24]. Here, before the l /mQ expansion is introduced, the 
heavy-quark field is first divided into two parts: Q(x) = 

l o *  Q+(x) + Q-(x), with Q+(x) = A*Q(x) = Z Y  Y Q(x). 
The equation of motion for Q can then be rewritten as 
two coupled equations for Q*: 

iD-Q+(x) = ( i a ~  . D L  + ,BmQ)Q-(x), (2.1) 
iDf Q- (x) = (ial . D l  + PmQ)Q+ (x),  (2.2) 

where C Y ~  = yoYl and ,B = -yo. The above equations 
show that only the plus component Q+(x) is the dynam- 
ical field. The equation of motion for the minus compo- 
nent Q- (x) does not contain a light-front time derivative 
and therefore is a light-front constraint that determines 
Q- (x) from Q+ (x). In terms of Q+(x),  the heavy-quark 
part of the QCD Lagrangian (1.1) can be rewritten as 

where Q- can be eliminated by Eq. (2.2). 
To derive the light-front HQET, we use the same re- 

definition for the heavy-quark field as in the equal-time 
case, 

but without imposing the separation of large and small 
components. It follows that 

Substituting these equations into Eq. (2.2), we obtain 

L: = QL~D-Q+ - ~ L ( i a l .  DL + pmQ)Q-, (2.3) Thus, 

It is worth noting that in the ordinary light-front for- 
mulation of quantum field theory, the elimination of the 
dependent component Q- requires the choice of the light- 
front gauge A+ = 0 and a specification of the operator 
l / d +  which leads to severe light-front infrared problem 
that has still not been completely understood [32]. How- 
ever, for the heavy-quark field with the redefinition of Eq. 
(2.4), the above problem does not occur since the elim- 
ination of the dependent component &,- now depends 
on the operator l / (mQvf + i D f )  which has no inii-ared 
problem. Moreover, it has a well-defined series expansion 
in powers of iD+/mQ: 

where we denote 

In the following, we show that an alternative derivation based on the conventional way of eliminating the dependent 
quark field component Q- gives the same result as above. We shall work with the light-front gauge, in which A+ = 0, 
so that Eq. (2.2) becomes 

Using the integral definition [32] of the operator l / d+ ,  

where E(X) = - 1, 0, 1 for x < 0, = 0, > 0, respectively, we have 
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where 2' r (x', XI- ,  xl). By repeated integration by parts, and ignoring the surface terms [which are proportional 
to exp(-imgv. ~ ) l ~ - = * ~ ,  a highly oscillating term that can be dropped], we finally find 

which is the same as Eq. (2.8) in the light-front gauge. 
Using Eq. (2.8), one can rewrite the equation of motion for Q,+(x), i.e., Eq. (2.1), as 

Likewise, the heavy-quark QCD Lagrangian (2.3) can be reexpressed in terms of Q,+ alone. The complete l /mQ 
expansion is then given by 

This is the light-front effective heavy-quark Lagrangian. One can readily check that the equation of motion, Eq. 
(2.14), is consistent with this Lagrangian. The dimensionless expansion parameter in the above Lagrangian is indeed 
AQcD/mQ as advertised earlier, since the operator (-iD+) picks up the "residual1' momentum of the heavy quark, 
k+  = p+ - mQv+, which is of the order AQcD. 

As mentioned earlier, in the above derivation of light-front HQET, unlike the equal-time case, no constraint is 
imposed from the start to separate the large and small components of the heavy-quark field. In the present formalism, 
this separation of the large and small components is automatic. To see this point more clearly, we rewrite the above 
results in covariant forms. First let us define 

where h t  is m g  independent and H: contains all the l /mQ correction terms, viz., 

where n'' = (0,1,  O1) as defined earlier. The superscript L represents the fact that the large and small components 
of the heavy-quark field are separated on the light front. One can readily prove that the zeroth order field operator 
hf has the desired property 

whereas H t  satisfies A+H: = 0. Thus all l /mQ corrections are contained in the light-front "bad" component Q-(x). 
This fact provides a direct connection of the l /mQ correction terms to high-twist operators, as noticed in a QCD 
sum rule calculation of the Isgur-Wise function [29]. In terms of h f ,  the covariant form of the light-front effective 
heavy-quark Lagrangian reads 

-L . -L . 
C = h, (zv . D)h: - f i  

hv ('@) 2(mQn.  v + i n .  D) ( i ~ ) h k  

-L . 1 
= h, (zv . D ) h i  - - 2 z ( r n Q  n . v  )'hf(i@)fi(-in.~)'-~(i@)h:. 

1=1 
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From Eq. (1.3), we see that formally light-front HQET to apply this theory to practical problems, one must first 
has a very similar structure as equal-time HQET. In the quantize it on the light front. We will turn to this subject 
heavy-mass limit, the lowest-order Lagrangian reads in the next section. 

2 -L 
Lo = -&;+(iv. D)&,+ = h, (iv . ~ ) h : ,  (2.21) 111. LIGHT-FRONT QUANTIZATION OF HQET 

v + 

which is the same as the leading order equal-time effective 
theory and clearly exhibits the familiar flavor and spin 
symmetries. Note that spin symmetry on the light front 
is actually the same as helicity symmetry. 

However, beyond the heavy-mass limit, LFHQET has 
its advantages. It  is well known that, in the equal-time 
formulation, the nonleading part of HQET contains high- 
order time derivatives. This noncanonical structure of 
HQET causes certain difficulties in solving the theory 
1181. For instance, it is very difficult to write down the 
~ a k i l t o n i a n  to all orders in l /mQ. It is remarkable to 
see that,  in LFHQET, only the linear time derivative ap- 
pears, and it resides in Lo only. The factor ~ in the non- 
leading terms of LFHQET eliminates all light-front time 
derivative contributions, as can be seen clearly from Eq. 
(2.15). Therefore, there is no difficulty in writing down 
the canonical conjugate field and hence the Hamiltonian 
from the effective Lagrangian on the light front. Explic- 
itly, the canonical conjugate of the dynamical variable 
Qv+ is 

which does not involve any terms of order l /mQ or 
higher. The light-front heavy-quark effective Hamilto- 
nian density is then given by 

with 

and the light-front Hamiltonian is defined as 

This light-front heavy-quark effective Hamiltonian can 
serve as a useful basis for constructing the heavy-hadron 
bound states. It is also interesting to note that the 
light-front effective Hamiltonian X, is precisely the mi- 
nus of the light-front effective Lagrangian Ln given by 
Eq. (2.15). This simple relation does not exist in equal- 
time HQET. The reason is that,  due to the existence of 
high-order time derivatives in equal-time HQET, the ef- 
fective Hamiltonian is minus of the effective Lagrangian 
plus some noncanonical terms coming from the unusual 
conjugate field. 

This concludes the derivation of LFHQET. In order 

As shown earlier, the equal-time heavy-quark effec- 
tive Lagrangian contains higher-order time derivatives, so 
that it is very difficult to perform a consistent canonical 
quantization beyond the limit m~ + w [IS]. However, 
as we have seen, the light-front heavy-quark effective La- 
grangian only contains a linear light-front time derivative 
term which resides in Lo. Thus the full light-front effec- 
tive Lagrangian can be easily quantized canonically. By 
the light-front phase space quantization procedure [32], 
the basic anticommutation relation is 

which is valid to all orders in l/,mQ. 
In the limit mQ + w ,  the light-front heavy-quark field 

&+ can be expanded in momentum space as 

where k is the residual momentum of the heavy quark, 
p = mQv + k, with v . k = 0 (mass-shell condition); wx 
is the plus-component of the heavy-quark spinor which 
can be chosen to be momentum independent in a partic- 
ular representation of the Dirac matrices 1321, and it is 
normalized according to wlwxt = EX w x w i  = A+ 
[from Eq. (3.1)]. b,(k, A )  is the heavy-quark annihilation 
bperator, satisfying the basic anticommutation relation 

{b, (k,  A ) ,  bz, (kt, A')) = 2(27~)~6,,96(k+ - kt+) 

xS2 (k l  - k y ) S ~ ~ l ,  (3.3) 

where S,,, gives rise to the so-called velocity superselec- 
tion rule [3]. Note that the antiquark part in Eq. (3.2) is 
dropped because heavy-quark-antiquark pair production 
is kinematically suppressed at  the scale we are interested 
in. 

Feynman rules for the effective heavy-quark field Qv+ 
are 

for the heavy-quark propagator and the quark-gluon ver- 
tex, respectively. 

For practical calculations, it is sometimes more conve- 
nient to work with the effective field h i (x ) ,  introduced 
in Sec. 11, since it represents the full leading order part 
of the heavy-quark field Q(x). The momentum space 
expansion of h i  is given by 

h;(x) = c 1 d k + d 2 k ~ ~ ( ~ ,  h)bv (k ,  A)e-"'", (3.5) 

X 
2 ( 2 ~ ) 3  
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where the corresponding heavy-quark spinor u is defined This completes our discussion on the quantization of 
as LFHQET. 

u(v, A) = {1 + . v i  + P  
v+ hX (3.6) IV. LIGHT-FRONT 

and satisfies the normalization conditions HEAVY-MESON B O U N D  STATES 

- 2 1+ Yf 
u(v, X)u(v, XI) = - 6 ~ ~ 1  , ): u(v, X)E(V,  A) = - v + v+ ' 

In this section, we outline the procedure for construct- 
x ing a heavy-meson bound state wave function on the light 

(3.7) front [25 ] .  In general, a hadronic bound state on the 

The corresponding Feynman rules for the h$ field are light front can be expanded in the Fock space composed 

given by of states with a definite number of particles. Explicitly, 
a hadronic bound state with the total longitudinal and 

Sht(k) = f ~, transverse momenta P+, PL, and helicity X can be writ- 
r h t h t g  = igTavp. (3.8) ten as 

where @ E (p+,pl),  so that d3@ = dp+d2pl, and h3(@ - @I) = 6(p+ - p1+)62(pl - pL); In,@, Xi) is the Fock state 
consisting of n constituents, each of which carries momentum Pi and helicity Ai (xi Xi = A); @(xi, ~ l i ,  Xi) is the 
corresponding amplitude which depends on Xi, the longitudinal momentum fraction xi, and the relative transverse 
momentum ~cli: 

The eigenstate equation that the wave functions obey on the light front is obtained from the operator Einstein 
equation P2 = P+P- - P2 I - - M 2 :  

where HLF = P- is the light-front Hamiltonian. Explicitly, for a meson wave function, the corresponding light-front 
bound state equation is 

where Hint is the interaction part of P-. 
Obviously to solve the above equation from QCD with the whole Fock space is impossible. Nevertheless, HQS 

can still bring great simplification to the problem. First of all we note that,  on the light front, the total helicity of 
a heavy meson is simply the sum of the helicity of the heavy quark and the total helicity of the light-quark sector 
(the so-called brown muck which carries total spin 112; the brown muck of a baryon is more complex, and will not 
be discussed here.) HQS implies that, in the limit mq -+ a, the spin of the heavy quark is decoupled kom that 
of the light-quark part, because the heavy quark interacts with the light-quark part only through spin-independent 
soft-gluon exchanges. Thus, for a heavy meson, we can approximate the general expression of the light-front bound 
states, Eq. (4.1), as 

where P = Mu, M is the mass of meson, and v p  is its four-velocity, while 

and d: should be regarded as the creation operator of a constituent light antiquark (brown muck), consisting of the 
valence current antiquark and a sea of gluons and quark-antiquark pairs. Consequently, contribution from the higher 
Fock states may be replaced by an effective two-body interaction kernel, so that Eq. (4.4) is reduced to a light-front 
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Bethe-Salpeter equation 

and 

In principle, the two-body effective interaction kernel Veff should be derived from the leading order light-front heavy- 
quark effective Hamiltonian, plus the full QCD Hamiltonian for the light quarks a t  the hadronic scale. As is well 
known, the latter is very complicated even in the naive canonical case [32], and to derive Vea is beyond the scope of 
this paper. We will leave this subject for future investigation. Until a way is found to solve the light-front bound 
state dynamics, we will have to be content with a phenomenological amplitude for QQq. One example that has been 
often used in the literature is the so-called Bauer-Stech-Wirbel (BSW) amplitude [27]: 

where n/ is the normalization constant, x is the longitudinal momentum fraction carried by the light quark, xo = 

(1 - w), and w is a parameter related to the physical size of the meson. Other forms, such as the Gaussian-type 

[33,34], are aiso possible, but we shall not dwell on this matter further. 
Spin is always a troublesome issue in the light-front approach. For example, the heavy-meson light-front bound 

state we have constructed is labeled by helicity rather than spin. However, for practical applications physical states 
with definite spins are needed. This discrepancy is usually remedied by introducing the so-called Melosh rotation [35], 
which transforms a single particle state from the light-front helicity basis to the ordinary spin basis, 

m; + z;Mo - iu. (n x nl) 
R(xi,  k l ,  mi) = 

J(mi + X ~ M O ) ~  + 6: ' 

where n = (0,0,1).  With the Melosh transformation incorporated, the light-front heavy-meson bound state with a 
definite spin can be expressed as [36] 

where 

and (;sl$szlSS,) is the Clebsch-Gordan coefficient. A covariant form of Eq. (4.12) has been derived by Jaus [37], 
which makes practical calculations very convenient: 

where 

r = 7 5  (for pseudoscalar, S = O), (4.14) 

' . (PQ - 'q) (for vector, s = 11, = -  4('z) + Mo + m Q  + m q  

with 

and the spinor ~ ( p ,  A) has the same form as Eq. (3.6). Equation (4.11) is the phenomenological light-front heavy-meson 
bound state that has been widely used in the study of heavy-hadron dynamics [27,38]. 
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However, the heavy-meson bound state so constructed still explicitly depends on the heavy-quark mass m ~ ,  and so 
is inconvenient from the view point of HQET. To calculate heavy-hadron matrix elements, we would like to use wave 
functions constructed in the heavy-mass limit, and then l /mQ corrections can be treated order by order within the 
framework of LFHQET. From Eq. (4.11), a heavy-meson bound state in the heavy-quark limit is given by 

d3kd3@, 
B(v,SIS,)) = / w6 (AQG - b - 6 q ) @ q q ( ~ ,  ~ r ) ~ : i ; ~  , ~ , ( k ,  hQ), ((p,, A,)), 

X Y  A, 

where AQ = M - mQ, x = p:/(Mv+), KL = p , ~  - %(Mul),  and the Melosh transformation matrix element is reduced 
to 

for a pseudoscalar meson and 

for a vector meson, and the polarization vector becomes 

where we have approximately let p, = (M - mQ)v = AQv in the Melosh transformation matrix elements. This is 
because in the symmetry limit the heavy-quark spinor in the Melosh transformation matrix element is independent 
of the residual momentum k (or the relative momentum x, kl), as can be seen from Eqs. (4.18) and (4.19). Thus 
the residual momentum dependence in the light-quark spinor should also be very weak in order that the light-front 
heavy-meson state carry a fixed spin. The normalization condition for the state lQ(u, S, S,)) is taken to be 

(Q(vl, S1, S:) IB(u, S, S,)) = 2 ( 2 ~ ) ~ P + S ~ ( 6  - 61)fiS~S6S:S,, 

which leads to 

Thus we have constructed a light-front heavy-meson bound state in the symmetry limit (mQ -+ m) which has 
definite spin and parity. In the next section, we shall derive the Isgur-Wise function from this light-front wave 
function. 

V. ISGUR-WISE FUNCTION 

In LFHQET, as in the equal-time formulation, one can readily show that there exists a universal function describing 
weak transitions between heavy mesons. To do so, we first expand the weak heavy-quark current in l /mQ on the 
light-front: namely, 

where I? stands for an arbitrary Dirac matrix (ys, y,, etc.). In the heavy-mass limit, it reduces to the familiar form 

which shows that, apart from a trivial exponential factor, the effective current does not depend on the heavy-quark 
masses, and hence is flavor independent. The consequences of the spin and flavor symmetries can be readily derived 
using this zeroth order heavy-quark current. Consider the following matrix elements, for example: 
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-jL 
(pQj (u') E::~~:LPQ~ ( U ) )  and (PG, ( U  ) I  hv, rh iL  1 pQi (u))  , (5.3) 

where PQ and P; represent, respectively, a pseudoscalar meson and a vector meson containing a single heavy quark 

Q. Formally the heavy-meson states can be represented by the interpolating fields lPQi(v)) = a c T s l V l 0 ) ,  

P;,(u)) = c { lV10), where the mass factors are introduced for normalization purpose only, and tv stands 
for the fully interacting light antiquark (or brown muck) inside a heavy meson moving with velocity v. lv carries the 
quantum numbers of the valence light antiquark, but is independent of the spin and flavor of the associated heavy 
quark. As we have seen in Sec. 111, the propagator for the h: field is proportional to (1 + $)/2. It is then easy to 
show that, in the symmetry limit, the heavy-meson transition matrix elements take the familiar forms [39] 

-jL I+$' I + $  
(PQ~ (v Ih.1 rh iL  I P Q ~  (v)) = J M ~ M , ~ { Y ~  (T)r ( 1 ) ~ ~ ) 1  

(9, (v1)l<f rh:'lpQi ( w ) )  = (=) 2 r ( T ) 7 5 ~ )  , 

where M is the transition matrix element for the light antiquark (brown muck): 

M = (0lZv~t,(0) -+ [(v . vl)I.  

Thus HQS implies that the transition matrix elements (5.3) are described by a single form factor [(v . v'), known as 
the Isgur-Wise function. 

Next, we explicitly derive Eq. (5.4) and (5.5) from light-bont bound state wave functions of the general form (4.17), 
and thereby extract the Isgur-Wise function in terms of the light-front amplitudes. The hadronic matrix element for 
the B to D transition is given by 

d3pqd35' 
(D(vl, 0, ~ ) l ~ : f r h t ~ l ~ ( v ,  Ol0)) = 1 [2(2r)313'b n ! L ) @ ~ ( x l  r l ) R ~ c ~ L  too Roo A.Aq 

Since Ab = A, in the heavy-quark limit, and 

(@(P:, A ~ ) ~ Q ( P , ,  A,)) = 2(2r)363(5q - I j b )6~ ,~ ; ,  

(cvj (A,v' - pb, ~ , ) j ~ z ? r h ~ ~ ~ b , ( h b w  - pql A b ) )  = %(vl, Ac)ru(v1 X b ) ,  

making use of relation (3.7), we obtain 

similarly for the B to D* transition, we have 

where E is given by Eq. (4.20). The Isgur-Wise function 
appearing in the above expressions is given by 

where z G v+/vl+, 2' = ~ Z X ,  and n; = n l  + 
xMB(vl-ZV',). To see the covariant structure of ~ ( v , v ' ) ,  
without the loss of generality, we can choose a frame 
where v l  = v', = 0; this is the most natural choice for 
light-front calculations. In such a frame C is a function 
of z only, and z can be expressed in terms of v v' as 

where the + (-) sign corresponds to v3 greater (less) 

I 

than vI3, and z+ = l/z-. In the rest frame of the B 
meson, this sign ambiguity corresponds to  whether one 
chooses the velocity of the D(D*) meson, v", to be in the 
negative or positive z direction. Since physically these 
two situations are indistinguishable, we must have 

which puts a constraint on the light-front amplitudes. 
Furthermore, it is interesting to  note that this constraint 
condition can also be derived by demanding that altering 
the order of the integrations in Eq. (5.7) does not change 
the final result. 

In the symmetry limit, the Isgur-Wise function, Eq. 
(5.12), should be independent of all heavy-meson masses. 
This property can be explicitly checked by observing 
that, when mQ + a, the light-front amplitude must 
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have the scaling behavior 

where the factor ( M  being the meson mass) comes 
from the particular normalization we have assumed for 
the physical state in Eq. (4.21). The reason why the 
light-front heavy-meson wave function should have such 
an asymptotic form is as follows. Since x is the longi- 
tudinal momentum fraction carried by the light quark, 
the meson wave function should be sharply peaked near 
x N AQCD/M. It is then clear that only terms of the form 
"Mx" survive in the wave function as M ( m Q )  -+ m.' 
With Eq. (5.15), Eq. (5.12) can be rewritten as 

where X E M B x ,  X' = MDx', and X'  = X z .  Now it 
is evident that the Isgur-Wise function ((z),  or [ ( u  . v'), 
is totally independent of the heavy-meson masses, not 
even their ratio [38]. Furthermore, we also see that,  a t  
the zero-recoil point (v . v' = I ) ,  Eq. (5.16) reduces to 
the normalization condition (4.22) in the symmetry limit; 
hence E(1) = ((1) = 1 as required. 

In other works which also use light-front wave func- 
tions, hadronic form factors are usually evaluated ei- 
ther at  the maximum recoil point (P - = 0 or for 
(P - P')' 5 0, and special techniques are required to 
cover the whole kinematic region of interest [37,38]. This 
is not the case here. In this paper, the Isgur-Wise func- 
tion is derived without assuming a particular value for 
(P - Hence Eq. (5.16) is quite general and valid 
for arbitrary momentum transfers. 

In the following, we explicitly calculate the Isgur-Wise 
function for model light-front amplitudes. In the heavy- 
quark limit, one can easily show that the phenomenologi- 
cal wave function given in Eq. (4.9) does have the correct 
asymptotic form (5.15). with 

Combining this expression and Eq. (5.16), we find 

'Note that M a  = pi in the rest frame of the heavy meson. 

which indeed satisfies the consistency condition (5.14). 
With relation (5.13), the Isgur-Wise function in the sym- 
metry limit can be expressed in terms of v . v', viz., 

One can also check that the slope of [(v . v') at  the zero- 
recoil point (v . v' = I ) ,  

satisfies the Bjorken constraint of p2 > 114 [40]. More- 
over, it is in excellent agreement with the recent experi- 
mental result from CLEO, = 1.01 4I 0.15 4I 0.09 [41]. 

VI. SUMMARY 

To summarize, in this paper, we have explored in de- 
tails HQET and the l / m Q  expansion on the light front. 
In the heavy-quark limit, the light-front formulation re- 
produces the heavy-quark spin-flavor symmetry, as in the 
equal-time case. However, the structure of LFHQET is 
rather simple, so that canonical quantization presents 
no difficultv. and the Hamiltonian is well defined to all " ,  

orders in l /mQ,  which is in contrast with the equal- 
time approach where since the nonleading terms contain 
high-order time derivatives, the canonical procedures are 
not valid for quantizing the theory and constructing the 
Hamiltonian. In Sec. IV, we construct the light-front 
heavy-meson bound states in the mQ -+ co limit for per- 
forming practical evaluations of heavy-hadron dynamics 
within LFHQET. Finally, the Isgur-Wise function is de- 
rived from the light-front heavy-meson wave functions, 
and the result is a general expression valid for arbi- 
trary recoil velocities. For the asymptotic form of the 
BSW amplitude in the m g  -+ cc limit, we find that 
the Isgur-Wise function <(v . v') = l /v  . v' and its slope 
at  the zero-recoil point is p2 = -['(I) = 1 which is 
in excellent agreement with the recent CLEO result of 
p2 = 1.01 i 0.15 f 0.09. 
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