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ABSTRACT 

A modulated laser beam by a phase pattern exp(ilθ) can be focused by an objective into a ring-like optical vortex, where 
l is a constant and θ is the azimuth angle.  The vortex is capable of trapping the particles nearby and circulating them 
along the ring.  This phenomenon is often explained involving Fourier optics and the transfer of orbital angular 
momentum (OAM).  Although Fourier optics transforms the electric field distribution of the modulated laser beam 
behind the phase pattern to that of the vortex, it does not include both the path and OAM of the photons of the 
electromagnetic wave.  Therefore, it is difficult to further trace the transfer of OAM from the photons to the particles in 
the vortex.  In this paper, we propose a simple and intuitive view to the origin of optical vortex.  By analyzing the 
relationship of the intensity distributions between the phase of the phase pattern and the intensity of the vortex by 
utilizing Fourier transform, we propose that the phenomenon of vortex also involve the transfer of linear momentum on 
the vortex plane transversely. 

Keywords: Optical vortex, orbital angular momentum, holographic optical tweezers. 
 

1. INTRODUCTION 

An optical vortex can be generated by focusing a laser beam modulated with a phase pattern, exp(ilθ), where l is a 
constant and θ is the azimuthal angle1. At the back focal plane of the focusing lens, an optical vortex is formed. Optical 
vortices have ring-shaped intensity distributions. In addition, particles trapped in optical vortices move along the 
circumference. This phenomenon is explained by orbital angular momentum (OAM) 2. Every photon in optical vortices 
can carry an OAM of lh , like the photons in Lagarre-Gaussian beam3 or Bessel beam4 do. As the particles in optical 
vortices absorb or scatter these photons, the orbital angular momentum is transferred to particles.  

Many researchers have been trying to utilize this property of optical vortices for transporting particles. Some researchers 
used an array of optical vortices to drive particles flow in a micro-fluid channel5. Some other researchers developed 
methods for producing optical vortices with desired intensity distributions6,7. However, within these methods, the OAM 
carried by a photon is hard to define. Since the phase patterns calculated by these methods is no longer the form, exp(ilθ). 
Thus, using the OAM carried by photons to describe the OAM in optical vortices becomes complicated. 

In this paper, we use linear momentum of photons to describe the OAM in optical vortices instead the OAM of photons. 
A method is proposed to provide a clarity concept of the origin of OAM in optical vortices. In this method, the initial 
propagating directions of the photons on the phase plane are qualitatively obtained from the localized gratings of the 
phase plane. Then, a ray-tracing approach is used to describe the photon propagation from the phase plane to optical 
vortices. A simpler and more intuitive picture of OAM can be obtained. 

2. THEORY 

2.1 Generation of optical vortices (holographic optical tweezers) 

In this section, the apparatus we used to generate optical vortices is introduced and the principle of it is also reviewed.  

Optical vortices can be easily generated by holographic optical tweezers (HOT) 1. HOT are basically optical tweezers 
(OT) with a phase-only spatial light modulator. The laser intensity distribution in the OT can be controlled by the spatial 

Optical Trapping and Optical Micromanipulation III, edited by Kishan Dholakia, Gabriel C. Spalding,
Proc. of SPIE Vol. 6326, 63261C, (2006) · 0277-786X/06/$15 · doi: 10.1117/12.678904

Proc. of SPIE Vol. 6326  63261C-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms



Phase Plane Lens Focal Plane

Ejx,y) t(x,y) E6u,v)

Phase Plane Lens Focal Planef -I- f

C

t(x,y)

 
 

 

light modulator. This gives HOT the capability of manipulating multiple objects at the same time, and creating some 
special laser modes, such as Bessel beam, Laguerre-Gaussian beam, or optical vortices.  

The simplified setup is shown in Fig. 1. The light comes from the left then is incident on the phase plane with 
transmittance t(x,y). The phase plane is where the spatial light modulator is placed and the transmittance of it can be 
controlled by a computer. After the light passes through the phase plane, the modulated light is focused by the lens. 

 

Fig. 1. The simplified setup of HOT. 

There are two ways to see how HOT control the intensity distribution on the focal plane. One way is from the basic 
property of a converging lens8. Since the phase plane is placed in the front focal plane of the lens. The light field at the 
back focal plane is the scaled Fourier transform of the light field just behind the phase plane. The light field just behind 
the phase plane is the product of the incident light field and the transmittance of the phase plane, that is Ein(x,y)t(x,y). 
Thus by proper control of t(x,y), any desired intensity distribution can be obtained. 

Another way is from the concept of angular spectrum8. The angular spectrum of the light filed on the phase plane tells us 
the composition of the plane waves that propagate in different directions away form the phase plane. The plane waves 
propagating in different directions focus to different points on the focal plane, as shown in Fig. 2. Thus, the intensity 
distribution on the focal plane can be controlled by controlling the angular spectrum.  

These two points of view are equivalent. Since the angular spectrum of the light field just behind the phase plane is 
simply the Fourier transform of the light field just behind the phase plane. The relation between the light field at the back 
focal plane and the light field just behind the phase plane is still a Fourier transform.  

The last one, however, can give us extra information, how photons travel from the phase plane to the focal plane. With 
this information, the transverse momentum distribution on the focal plane contributed by the photons can be known. 
Then the OAM distribution on the focal plane can be obtained. This is also the approach we used to describe the OAM in 
optical vortices.     

 

Fig. 2. The convergence of plane waves propagating in different directions. 

To generate an optical vortex, the transmittance of the phase plane is chosen to be 
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where the r and θ are polar coordinates of the phase plane and the l is a constant. Then, an optical vortex is generated in 
the focal plane. The l in equation (1) controls some properties of an optical vortex, such as the radius of an optical vortex 
and OAM. It has been shown that the radius of an optical vortex linearly depends on the magnitude of l2, 9. A larger 
magnitude of l produces an optical vortex with larger radius. The OAM carried by the photon in optical vortices also 
depends on l. It has also been shown that every photon carries an OAM of lh 2. 

The phase pattern of equation (1) with different l and the corresponding simulated intensity distributions on the focal 
plane are shown in Fig. 3. In these and latter simulations, we assume the phase plane is illuminated by a unit-amplitude 
plane wave. The field just behind the phase plane is equal simply to tv(r,θ). Since the light field on the focal plane is the 
Fourier transform of the light field just behind the phase plane. The intensity distribution on the focal plane is obtained 
from the Fourier transform of tv(r,θ). The Fourier transform is performed by fast Fourier transform (FFT). 

From Fig. 3, we can see that the optical vortices have ring-shaped intensity distribution and the optical vortex with a 
larger l has larger radius. 

 

Fig. 3. The phase pattern with different l and the corresponding intensity distributions of optical vortices. The figures in the 
first row are the phase pattern. The figures in the second row are the corresponding intensity distributions, which are 
normalized by the maximum intensity of the l = 10 optical vortex. 

2.2 Properties of optical vortices 

In addition to these l-dependent properties, it is worth noting that there exits an intensity correspondence between the 
phase plane and optical vortices.  If certain range of the azimuth angle, θ, of the phase plane is blocked, a range of the 
azimuth angle, φ, of the optical vortex disappears. It is also noted that these two ranges of the azimuth angle have 90o 
shift, as shown in Fig. 4. 

Fig. 4 shows the results of computer simulations. Each figure in Fig. 4 displays the phase and intensity distributions of 
the light field on the phase plane and the focal plane. From Fig. 4, we can see that the blocked angle range, △θ, in the 
phase plane approximately equals to the disappearing angle range, △φ, of the optical vortex, even for different l. Besides, 
the center angle, φ0, of the disappearing angle range shifts by 90o from the center angle, θ0, of the blocked angle range for 
a positive l. For a negative l, the angle shift between φ0 and θ0 is −90o.  

The angle shift, φ0 −θ0 , and △φ at different l and different △θ  are shown in Fig. 5. From Fig. 5 (a), we can see that    
△φ  is approximately equal to △θ .  From Fig. 5 (b), we can see that φ0 −θ0  are equal to 90o for positive l and −90 o for 
negative l, even at different △θ . 
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These properties imply that the light at certain position in an optical vortex only comes from a specific region of the 
phase plane. Thus, it is also why a ray-tracing method could be used to find the propagating paths of photons from the 
phase plane to an optical vortex on the focal plane.  

 

Fig. 4. The phase and normalized intensity distributions of the light field on the phase plane and on the focal plane, for (a) 
l=50 and △θ = 30o; (b) l = -50 and △θ  = 30o; (c) l = 50 and △θ  = 60o; (d) l = -50 and △θ  = 60o.  

 

Fig. 5. (a) The relation between △φ  and l at different △θ . The solid line represents the value of △θ . The points are the 
simulated results. (b) The relation between φ0 −θ0 and l at different △θ. In both figures, the range of l is from -199 to 
200.  
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2.3 Localized gratings 

From the properties of optical vortices described in previous section, we known that a ray-tracing method could be used 
to trace the paths of photons from the phase plane to the optical vortex. If the position and propagating direction of 
photons on the phase plane are known, how and where the photons are incident on the focal plane can be obtain. To find 
the initial condition of photons on the phase plane, let us consider the phase pattern of gratings first. The transmittance of 
the grating has the form  

 rkieyxt
v

v

⋅=),(  .      (2) 

Here, r
v

 is the position vector of the phase plane. k
v

is the direction vector. It determines the direction and the period of 
the grating. It also determines the propagating direction of the photons after passing through it. 

Consider the phase pattern of equation (1) with a positive l around θ = 0o region, as shown in Fig. 6.  From the properties 
of optical vortices mentioned before, the photons in this region focus to φ = 90o region of the focal plane. However, after 

passing through the grating with ykk ˆ=
v

, where k is a positive constant, the light also focuses to φ = 90o region of the 

focal plane. Since this grating deflects the light upward. The upward propagating wave focuses to φ = 90o region of the 

focal plane. Thus θ  = 0o region of equation (1) have a similar effect on the incident photons as the grating with ykk ˆ=
v

 
does. 

For the region around θ  = 180o, we can also find a corresponding grating that has similar effects on the incident photons. 
From the properties of optical vortices, we know that the photons on this region focus to φ  = 270o region of the focal 

plane. The grating with ykk ˆ−=
v

 also makes light propagate downward and focus to φ  = 270o region of the focal plane. 

 Thus, in a small region of the phase pattern of equation (1), we use the phase pattern of the corresponding grating to 

approximate the original phase pattern. Since the phase pattern of the grating with different k
v

only exist in a small 
region. We call these gratings as localized grating. In such way, the initial directions of the photons on the phase plane 
can be easily qualitatively determined by these localized gratings. 

Therefore, the phase distributions of equation (1) can be considered as the assembly of many localized gratings orientate 
in different directions at different position.  

 

 

Fig. 6. The comparison between the phase pattern of exp(ilθ) and that of gratings. (a) The phase pattern around the θ = 0o 
region of exp(ilθ) is similar to that of the grating, exp(iky). The corresponding intensity distributions are also similar. (b) 
The phase pattern around θ = 180o region is similar to the phase pattern of exp(-iky). The corresponding intensity 
distributions are also similar. Thus, the phase pattern, exp(ilθ), can be considered as many localized gratings orientate 
in different directions at different position. 
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2.4 An intuitive view of the OAM in optical vortices 

OAM is defined as the cross product of a position vector and the transverse momentum of light at that position. If the 
transverse momentum distribution is known, the OAM distribution can be obtained. In addition, since photons carry 
momentum. If how photons are incident on the focal plane is known, the transverse momentum on the focal plane can be 
known.  

From previous section, we said that the phase pattern of equation (1) can be considered as the assembly of many 
localized gratings orientate in different directions at different position. The orientation and period of each grating can 
qualitatively decide the propagating direction of photons after they leave the phase plane. With these initial conditions of 
the photons, the ray-tracing method is applied to decide the paths of these photons. Then, the incident angles of the 
photons at the focal spot on the focal plane can be known. Thus the OAM in optical vortices can be obtained   

Fig. 8 shows the path of photons that travel from the phase plane to the optical vortex with positive l. In the right of Fig. 
8 are the projections of the photon path on y-z plane and x-z plane. From Fig. 8, the photons travel upward after passing 
through the θ = 0o region of the phase plane. Then, the photons are focused to point A on the focal plane by the lens. 

From the incident angle of the photons, we know that the direction of the total transverse momentums, tP
v

, on the focal 

plane is along - û . The direction of the position vector of point A is along v̂ .  Thus, the direction of OAM at point A is 
along ẑ . The directions of the OAM in other positions of the optical vortex are also along ẑ , since the phase pattern has 
azimuth symmetry. Thus, when the particles trapped in the optical vortex absorb the photons, they obtain the OAM and 
move around the optical vortex.  

Fig. 9 shows the case of negative l. By the same process, we can know that the direction of the OAM in the optical 
vortices with negative l is along - ẑ . This is the opposite direction of the OAM in the optical vortices with positive l. 
Thus the particles trapped in the optical vortex with negative l move around the optical vortex in different direction.  

 

 

Fig. 8. The path of photons traveling from phase plane to the optical vortex with positive l. The projection of the path on the 
y-z plane is shown in right top. The projection of the path on the x-z plane is shown in right bottom. 
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Fig. 9. The path of photons traveling from phase plane to the optical vortex with negative l. The projection of the path on the 

y-z plane is shown in right top figure. The projection of the path on the x-z plane is shown in right bottom figure. 

 

3. CONCLUSIONS 

In this paper, a method that uses the linear momentum of photons to describe the OAM in optical vortices is proposed. 
Although it only gives the qualitative results of the OAM in optical vortices, it provides us a much simpler way to obtain 
some properties of optical vortices. By simply looking at the phase pattern and then the direction of OAM and the shape 
of optical vortices can be estimated. 

In addition, we also found that the transporting property of optical vortices can be simply described by the linear 
momentum transfer form the inclined incident photons. Thus we might be able to create an optical field which has the 
transporting property without using optical vortices. 

 

REFERENCES 

1. J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commum., 207,   169-175, 2002. 
2. J. E. Curtis and D. G. Grier, “ Structure of optical vortices,”  Phys. Rev. Lett., 90, 133901-1-133901-4, 2003. 
3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the    
 transformation of Laguerre-Gaussian Lase modes,” ,Phys. Rev. A, 45, 8185-8189, 1992. 
4. K Volke-Sepulveda, V Garcés-Chávez, S Chávez-Cerda, J Arlt and K Dholakia, “Orbital angular momentum of a
  high-order Bessel light beam,” J. opt. B, 4, S82–S89, 2002. 
5. K. Ladavac and D. G. Grier, ”Microoptomechanical pump assembled and driven by holographic optical vortex
 arrays,” Opt. Exp., 12, 1144-1149, 2004. 
6. J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872-874, 2003. 
7. J. Lin, X.-C. Yuan, S. H. Tao, X. Peng and H. B. Niu, “Deterministic approach to the generation of modified helical
  beams for optical manipulation,” Opt. Exp., 13, 3862-3867, 2005. 
8.  J. W. Goodman, Introduction to Fourier optics 2nd, MacGRAW-HILL,New York, 1996. 
9. S. Soundbeck, I. Gruzberg and D. G. Grier, ”Structure and scaling of helical modes of light,” Opt. Lett., 30, 477-479,
  2005. 

Proc. of SPIE Vol. 6326  63261C-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/26/2014 Terms of Use: http://spiedl.org/terms


